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Identifying dysregulated pathways from high-throughput experimental data

in order to infer underlying biological insights is an important task. Current

pathway-identification methods focus on single pathways in isolation;

however, consideration of crosstalk between pathways could improve our

understanding of alterations in biological states. We propose a novel

method of pathway analysis based on global influence (PAGI) to identify

dysregulated pathways, by considering both within-pathway effects and

crosstalk between pathways. We constructed a global gene–gene network

based on the relationships among genes extracted from a pathway database.

We then evaluated the extent of differential expression for each gene, and

mapped them to the global network. The random walk with restart algor-

ithm was used to calculate the extent of genes affected by global

influence. Finally, we used cumulative distribution functions to determine

the significance values of the dysregulated pathways. We applied the

PAGI method to five cancer microarray datasets, and compared our results

with gene set enrichment analysis and five other methods. Based on these

analyses, we demonstrated that PAGI can effectively identify dysregulated

pathways associated with cancer, with strong reproducibility and robust-

ness. We implemented PAGI using the freely available R-based and

Web-based tools (http://bioinfo.hrbmu.edu.cn/PAGI).
1. Introduction
The development of high-throughput experimental techniques such as gene

expression microarrays, mass spectrometry and large-scale mutagenesis has

led to the identification of many interesting genes and gene products. In

order to interpret these high-throughput experimental data more thoroughly,

researchers often study the functional relationships among these genes or

gene products systematically. Such studies have shown that canonical biological

pathways can help us to understand high-level biological functions at the

system level [1], and understanding the inherent interdependency among cano-

nical biological pathways and altered cellular states has become a significant

research task. Several computational methods have been developed to identify

dysregulated pathways associated with disease states. The classical approaches

use statistical models (e.g. the hypergeometric test) to calculate the probability

of observing the actual number of differentially expressed genes in a given

pathway by chance. These methods consider all differentially expressed genes

equally; however, prioritizing genes according to the extent of differential

expression may help to identify dysregulated pathways more effectively.
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An improved method, gene set enrichment analysis

(GSEA), ranks all genes according to the correlations between

gene expression profiles and phenotype, and then calculates

an enrichment score to determine whether the genes from a

predefined pathway cluster at the top or the bottom of the

list [2]. However, despite its wide application in pathway

analysis, GSEA considers only sets of genes belonging to the

pathways and does not take advantage of the important topolo-

gical relationships between genes embedded in different

pathways. Pathway databases, such as the Kyoto Encyclopaedia

of Genes and Genomes (KEGG), provide useful pathway top-

ology information. Exploiting this topology information in

pathway-identification analysis would improve our understand-

ing of delicate pathway functions and would be meaningful

from a systems-biology perspective [3].

Several recent techniques have adopted pathway topology

for the identification of dysregulated pathways. ScorePage cal-

culates the significance of changes in activity of metabolic

pathways by integrating the shortest distances between

genes in pathways [4]. Pathway enrichment analysis (PWEA)

incorporates the shortest distance between each pair of genes

and uses gene–gene correlations to identify dysregulated

pathways [5]. Signalling pathway impact analysis (SPIA) prior-

itizes pathways by combining classical over-representation

evidence with the positions and interactions of genes in the

given signalling pathways [6]. These approaches improve the

identification of dysregulated pathways from gene expression

data; however, they invariably focus on the internal effects

of single pathways and fail to consider crosstalk between

pathways. Pathway crosstalk refers to the phenomenon of

interaction or cooperation between pathways. Understanding

crosstalk between pathways will help us to understand the

comprehensive biological functions of complex systems [7].

Although latent pathway-identification analysis (LPIA) con-

structs pathway networks based on shared gene ontology (GO)

functions to look for evidence of dysregulated pathways [8],

these links between pathways do not consider the overlap

between pathways, and the internal effects of pathways are

ignored. Pathways based on network information (PathNet) is

another interesting method for identifying pathways, which

uses inter- and intrapathway relationships to calculate the

enrichment of non-metabolic pathways [9]. In PathNet, the

association of each gene with a disease phenotype depends on

the differential expression level of the gene and its direct path-

way neighbours, and thus the effect of other non-neighbour

genes may be neglected. From a systems-biology perspective,

dysregulated genes may iteratively alter the properties of

many other genes, both within and outside a given pathway,

via both internal pathway effects and pathway crosstalk. Com-

plex diseases such as cancer are caused by the joint effects of

multiple dysregulated genes in pathways and the crosstalk

between pathways [10]. The identification of dysregulated path-

ways, taking into account both internal pathway effects and

crosstalk between pathways, thus presents a challenge.

In this study, we propose a novel computational approach to

pathway analysis based on global influence (PAGI) to identify

dysregulated pathways associated with the initiation or pro-

gression of complex diseases. PAGI uses a network-based

approach to detect latent dysregulated pathways by considering

the global influence of both the internal effect of pathways and

crosstalk between pathways. We initially constructed a global

gene–gene network based on the relationships of genes

extracted from all pathways in the KEGG database and the
genes that overlap between pathways. We then evaluated the

extent of differential expression for each gene, and all genes rep-

resented in the expression data were mapped to the global

network. A global dysregulated score (GDS) was defined to rep-

resent the extent to which genes were affected by global

influence from both internal pathway effects and crosstalk

between pathways. The random walk with restart (RWR) algor-

ithm was used to calculate the GDS by integrating the extent of

differential gene expression and the global network topology.

Finally, we used cumulative distribution functions (CDFs) to

evaluate each pathway in the pathway database. We applied

PAGI to datasets on breast, prostate and lung cancer and demon-

strated its ability to produce biologically meaningful outcomes.
2. Material and methods
We developed a novel computational approach, PAGI, to ident-

ify dysregulated pathways by considering the global influence

of both the internal effects of pathways and crosstalk between

pathways. A flow diagram of the PAGI methodology is shown

in figure 1. PAGI was implemented as a freely available

R-based tool (http://cran.r-project.org/web/packages/PAGI)

and a Web-based tool (http://bioinfo.hrbmu.edu.cn/PAGI or

http://202.97.205.78:8080/PAGI).

2.1. Datasets
Expression datasets were obtained from the NCBI Gene Expression

Omnibus (http://www.ncbi.nlm.nih.gov/geo/). We analysed five

cancer datasets: one breast cancer, one prostate cancer and three

lung cancer datasets. The breast cancer expression dataset was pub-

lished by Pau Ni et al. [11] (GSE15852) and consisted of data on

43 human breast tumours and 43 normal tissues. The prostate

cancer dataset was obtained from Nanni et al. [12] (GSE3868) and

included information on 22 prostate cancer samples and eight

control samples derived from normal/hyperplastic tissues and

prostate epithelial cells. The three lung cancer datasets [13–15]

(GSE7670; GSE10072; GSE2514) each included data on cancer

samples and normal controls. Details of these datasets are listed

in the electronic supplementary material, table S1. The raw data

were log transformed for downstream analysis.

2.2. Constructing the global gene – gene network
The KEGG database provides copious and complex pathway

structure information and is widely used in pathway analysis

[4–6]. We analysed all 219 pathways, including those for

metabolism, genetic information processing, environmental

information processing, cellular processes, organism systems

and human diseases, from the KEGG database (release 56.1).

Each pathway can be converted to a gene–gene network on

the basis of the relationships such as reactions, modifications

and binding involved in the pathway. Information on pathway

crosstalk can be derived from the genes that overlap between

pathways [16,17]. We constructed a global gene–gene network

as follows. The relationships of genes from the XML files for

each pathway in KEGG were extracted (ftp://ftp.genome.jp/

pub/kegg/xml). Two genes were connected by an edge if

there was a common compound in their corresponding reaction

in a metabolic pathway, or if they had a relationship such as

interaction, binding or modification indicated in the relation

element of the XML file for a non-metabolic pathway. We then

merged the genes that overlapped between each pair of path-

ways and retained the topological relationships of each

pathway. A global gene–gene network reflecting the relation-

ships both within and between pathways was therefore

constructed using our developed ‘iSubpathwayMiner’ system

http://cran.r-project.org/web/packages/PAGI
http://cran.r-project.org/web/packages/PAGI
http://bioinfo.hrbmu.edu.cn/PAGI
http://bioinfo.hrbmu.edu.cn/PAGI
http://202.97.205.78:8080/PAGI
http://202.97.205.78:8080/PAGI
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
ftp://ftp.genome.jp/pub/kegg/xml
ftp://ftp.genome.jp/pub/kegg/xml
ftp://ftp.genome.jp/pub/kegg/xml
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Figure 1. Flow diagram of the methodology. A global gene – gene network was initially constructed on the basis of the relationships among genes extracted from
all pathways. The extent of differential expression for each gene was evaluated by t-test, and all genes represented in the expression data were mapped to the
global network. The RWR algorithm was then used to evaluate the number of genes affected by global influence from both internal effects of the pathways and
crosstalk between pathways. Finally, cumulative distribution functions were used to identify dysregulated pathways. (Online version in colour.)
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[18,19]. This global network consisted of 4001 nodes and 32 940

edges, and could be represented by an undirected graph G.
2.3. Calculating the global dysregulated score
A GDS was defined to reflect the extent to which genes were

affected by global influence from both internal pathway effects

and crosstalk between pathways. We used the RWR algorithm

[20] to calculate the GDS in the context of the gene expression

data. The RWR algorithm simulates an iterative random walker

that starts from a set of source nodes and travels to its immediate

neighbours, or goes back to the source nodes at each time step in

the graph. This algorithm, which captures global relationships

within a network, can be used to compute the proximity of a

node to a set of source nodes. From a systems-biology perspec-

tive, the genes that are located close to the dysregulated genes

in the gene interaction network may be liable to perturbation.

The properties of the RWR algorithm allow the identification
of candidate perturbed genes in the network when a set of

dysregulated genes is known [21].

In our application, the two-sample t-test was performed to

evaluate the extent of differential expression (t-score) by compar-

ing the expression values between normal and diseased samples.

To reflect the information on specific disease processes, all genes

represented in the expression data were mapped to the global

network as source nodes. We modified the RWR algorithm by

combining the extent of differential expression and the global

network topology; the combination was used to calculate the

GDS, reflecting the global influence of the gene on the source

nodes. The formula for this modified algorithm is given as

ptþ1 ¼ (1� r)M pt þ r p0, (2:1)

where M is the column-normalized adjacency matrix of the

global network graph G; pt ¼ (pt
1, pt

2, . . . , pt
n)0 is the vector of

nodes at time step t, and its ith element pt
i holds the probability
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of being at node i at time step t; n is the number of nodes (genes)

in graph G (the global network).

To start this algorithm, the initial probability vector

p0 ¼ (p0
1, p0

2, . . . , p0
n)0 was constructed by assigning to each node

its jt-scorej (nodes with no t-score were assigned a value of zero),

and normalized to a unit vector with p0
i ¼ jt-scoreji=

P
jt-scoreji.

This is equivalent to letting the random walker begin from a certain

gene i with probability p0
i , which is proportional to its t-score.

A gene i with higher p0
i indicates that this gene possesses a greater

likelihood of perturbing other genes. The parameter r is the restart

probability, which controls the degree to which the random

walker returns to the source nodes at every iteration. Within the

interval (0.1–0.9), r has been demonstrated to have only a slight

effect on the results of the RWR algorithm [21]. The restart prob-

ability r was set at 0.7 in this study. After certain steps, the

probability pt will converge to a unique steady-state p1, which

was obtained by performing iterations until the difference between

pt and p tþ1 fell below 10210. The global influence of genes (GDS)

can be measured by the steady-state p1. When p1
i . p1

j , the

strength of the node (gene) i affected by global influence of internal

pathway effects and pathway crosstalk is larger than node (gene) j.
The GDS for gene i was assigned by the normalized p1

i with:

GDSi ¼ (p1
i �min ( p1))=( max ( p1)�min ( p1)). In this way,

each gene in the global network obtained a GDS. The GDSs for

all other genes in the expression profiles, but not in the global net-

work, were set at zero. The final GDS may reflect the extent to which

genes are affected by both internal pathway effects and crosstalk

between pathways.

2.4. Identifying statistically significant dysregulated
pathways

A gene list L ¼ fg1, g2, . . . ,gng was constructed by ranking all genes

in the expression profiles by t1þGDSj

j , where tj is the jt-scorej of gene

j and GDSj is the GDS of gene j. This ranked gene list reflects both

differential expression between two classes and the influence of

internal pathway effects and pathway crosstalk. Genes located

higher in the list may be more correlated with a given phenotype.

We used CDFs to calculate a dysregulated score for each pathway,

which reflects the degree to which genes in a pathway are overrepre-

sented at the top of the ranked list. Specifically, the genes in a given

pathway P were mapped to the ranked list L. The CDFs of InP and

NotP are used to evaluate the fraction of genes in P weighted by

their correlation (t1þGDSj

j ), and the fraction of genes not in P present

up to a given position i in L. The formulae are given as follows:

CDFInP(i) ¼
X

gj[P
j�i

t1þGDSj

j

NR
(2:2)

and

CDFNotP(i) ¼
X

gj�P
j�i

1

NNotP
(2:3)

where NR ¼
P

gj[Pt1þGDSj

j ; NNotP represents the number of genes in L
not in P. With the position i walking down the list L, the dysregulated

score of pathway P was calculated by

SP ¼ max
i[L

{CDFInP(i)� CDFNotP(i)}: (2:4)

It can be seen that when the GDSs for all genes are set at zero, the

PAGI will be reduced to the GSEA [2].

To estimate the statistical significance ( p-value) of the observed

score, we performed a gene-based permutation test procedure that

preserved the gene expression profiles in the data structure and per-

mutated gene labels. Specifically, we redistributed the t-scores of

the genes and recomputed the score of each pathway for the permu-

tated data. The background distribution was generated after

performing n permutations. The p-value was computed as
p-value¼ m/n, where m is the number of scores greater than the

observed score in the background distribution. We set n at 5000

times in this study. Because several pathways were involved in

this analysis, it was necessary to perform multiple hypothesis-

testing methods to control the proportion of false positives.

We applied the false discovery rate (FDR) method proposed by

Benjamini & Hochberg [22] to account for false positives.
3. Results
3.1. Evaluating the effect of the global dysregulated

score
The GDS was defined to reflect the extent to which genes

were affected by global influence from both internal pathway

effects and crosstalk between pathways. We used the GDS to

calculate the score of dysregulated pathways. In this study,

we constructed a common global gene–gene network includ-

ing 4001 nodes and 32 940 edges (figure 2a). The RWR

algorithm, which exploits the complete network topology,

was used to calculate the GDS. Each gene in the global net-

work was assigned a GDS. For the breast cancer dataset

(GSE15852), the GDSs across all genes in the global network

ranged from 0 to 1, and the average GDS was 0.08+0.07.

Our results demonstrated that the GDS was able to reveal

the GDS from both internal pathway effects and crosstalk

between pathways. Of the 10 genes with the highest GDSs,

four genes did not have high rank according to the jt-scorej;
however, their functions were associated with roles in cancer

such as signal transduction, apoptosis and the inflammatory

response, according to GO and KEGG annotation (electronic

supplementary material, table S2). These results indicate that

the GDS was not determined exclusively by the extent of

association between genes and phenotype, and the GDS may

thus provide further meaningful biological results.

We further tested the topological properties of the genes

with high GDS values, but low t-score in the global network.

Specifically, we noted that these genes, including the guanine

nucleotide-binding protein G subunit a (GNAL), cadherin-

associated protein (CTNNB1) and retinoid X receptor a

(RXRA), tended to be of high degree in the global network

(figure 2b–d). Moreover, these genes were located close to

the dysregulated genes. For example, the gene with the third

highest GDS, CTNNB1, interacted with up to 50 genes

(figure 2d). Its neighbour genes, insulin-like growth factor

receptor (IGF1R) and epidermal growth factor receptor

(EGFR), obtained high GDSs of 0.24 and 0.33, respectively.

Interestingly, IGF1R and EGFR are implicated in tumour

development through their effects on cell proliferation, angio-

genesis and inflammation, and their crosstalk increases the

metastatic potential of breast tumours [23,24]. These results

indicate that genes with high GDS but low t-score may be

iteratively perturbed by multiple dysregulated genes, both

within and outside the pathway. Although some of these

genes had low t-scores, their functions may be altered by inter-

action and crosstalk during the process of cancer development.

3.2. Identifying dysregulated pathways associated with
breast cancer

We first applied PAGI to a breast cancer dataset (GSE15852)

to demonstrate the effectiveness of the method in identifying

dysregulated pathways. We also analysed this dataset using



GDS

(b)(a)(c)

(d )

0 1

Figure 2. Global gene – gene network. (a) Each gene was assigned a global dysregulation score calculated from the breast cancer dataset. The scale of the global scores
ranged from 0 to 1, and genes with larger scores were marked with darker colour. Two blue ellipses correspond to the regions of the insulin signalling pathway and PPAR
signalling pathway, respectively. (b – d ) The zoom-in plots correspond to the regions around GNAL, RXRA and CTNNB1, respectively. (Online version in colour.)
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GSEA for comparison. PAGI identified 21 pathways with

FDR values less than 0.01 after 5000 permutations, of which

85% (18/21) are supported by the existing literature (table

1). The full list of ranked pathways and the GDSs of the

genes in each significant pathway are presented in the elec-

tronic supplementary material, table S3. We also applied

GSEA to the same dataset and identified 10 significant path-

ways (FDR , 0.01). Comparison of the PAGI and GSEA results

showed that these two methods shared five pathways, whereas

PAGI exclusively identified 16 pathways (electronic supplemen-

tary material, figure S1). Interestingly, 13 of the 16 pathways

identified exclusively by PAGI have previously been associated

with the initiation and progression of breast cancer in the litera-

ture (table 1). For example, alterations in the pathway of retinol

metabolism in cells play an important role in the differen-

tial responsiveness to retinoid of normal human mammary

epithelial cells and breast cancer cells [25], whereas the

tryptophan metabolism pathway is linked to tumoral immu-

noresistance and malignant progression in breast cancer [26].

Moreover, most of the pathways identified simultaneously

by both methods were more significant in PAGI than in GSEA

(electronic supplementary material, figure S1). These results

suggest that PAGI was able to identify more pathways associ-

ated with breast cancer than was GSEA. There were also five

pathways, namely spliceosome, ribosome, proteasome, base

excision repair and aminoacyl–tRNA biosynthesis pathways,

that were identified by GSEA, but not by PAGI. This is because

PAGI uses topological information to identify pathways, and

there were very few relationships such as reactions, modifi-

cations or binding between the genes in these pathways.

Moreover, most genes in these pathways were not included in

the global gene–gene network. These results suggest that the
genes in these pathways may not be affected by both

internal pathway effects and pathway crosstalk. Thus,

PAGI may fail to identify pathways if there is incomplete infor-

mation on genes or the topological relationships among genes in

the pathways.

The most significant pathway was the peroxisome prolif-

erator-activated receptor (PPAR) signalling pathway. The

PPAR signalling pathway has recently been found to be

related to cell growth and to induce apoptosis in breast

cancer [27]. We found that most of the genes in this pathway

had high GDSs (right blue ellipse in figure 2a). Moreover,

most of these high GDS genes were associated with breast

cancer development. For example, the PPARg and PPARa
(indicated by blue stars in figure 3) had high GDSs, 0.63

and 0.25, respectively, compared with an average GDS

across all genes in the global network of 0.08. PPARg and

PPARa are ligand-inducible transcription factors that are

implicated in a diverse range of biological processes such as

cancer development [27]. Moreover, the retinoid X receptor

RXRA is bound by PPARg as a heterodimeric partner to

specific DNA sequence elements in this pathway (figure 3).

RXRA, which had a high GDS of 0.48, has been reported to

be a therapeutic target in breast cancer cell lines [28]. In

addition, genes such as ANGPTL4, LPL and PLIN1 that are

affected by PPARg and RXRA also showed high GDSs

(0.47, 0.46 and 0.41, respectively). The large number of

genes with high GDSs indicates significant dysregulation

associated with cancer, and suggests that PAGI, which

weights the genes according to GDS, is a suitable method

for identifying the PPAR signalling pathway.

The insulin signalling pathway was also significant, and

many genes in this pathway also had high GDSs (left blue



Table 1. Pathways identified by PAGI with FDR , 0.01 in the breast cancer dataset.

pathway sizea score FDR reference (PMID)

PPAR signalling pathwayb 61 0.79 ,0.001 18645617

insulin signalling pathway 128 0.59 ,0.001 —

adipocytokine signalling pathwayb 61 0.61 ,0.001 16436010; 15245384

pathways in cancer 307 0.48 ,0.001 —

thyroid cancer 29 0.75 ,0.001 —

fatty acid metabolismb 39 0.70 ,0.001 17902053

pyruvate metabolism 34 0.69 ,0.001 19826085; 22236875

propanoate metabolism 28 0.73 ,0.001 20831783

focal adhesion 191 0.50 0.0016 21832234

tyrosine metabolism 38 0.68 0.0016 21376233; 22388088

glutathione metabolism 41 0.63 0.0026 22545423; 11414197

retinol metabolism 43 0.63 0.0026 12038710; 9377581

metabolism of xenobiotics by cytochrome P450b 50 0.64 0.0036 9472688

ECM – receptor interaction 80 0.55 0.0045 18177501; 21718500

Fc gamma R-mediated phagocytosis 83 0.55 0.0052 7909275

MAPK signalling pathway 247 0.45 0.0068 14623520; 21258408

cell cycle 115 0.51 0.0068 9652762; 16267837

complement and coagulation cascadesb 66 0.57 0.0068 21718500

progesterone-mediated oocyte maturation 77 0.55 0.0068 20540763

tryptophan metabolism 35 0.63 0.0068 21615916

glycerolipid metabolism 39 0.64 0.0068 18606873
aThe number of genes which were mapped to the pathway from gene expression profiles.
bThe pathways identified by GSEA.
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ellipse in figure 2a); most of them have been associated with

breast cancer in the literature. Specifically, acetyl-CoA carboxy-

lase B (ACACB) and phosphodiesterase 3B (PDE3B; indicated by

blue stars in the electronic supplementary material, figure S2)

both had high GDSs of 0.44, and both have been implicated in

breast cancer progression [29,30]. Other genes such as PCK1,

SORBS1and FOXO1 also had high GDSs, 0.42, 0.41 and 0.31,

respectively. The presence of multiple genes with high GDSs

indicates a significant perturbation in the pathway associated

with breast tumours. Moreover, it was notable that genes in

this pathway (left blue ellipse) had extensive connections with

genes outside the pathway (figure 2a), suggesting that the

genes within this pathway are susceptible to perturbation by

genes in other pathways. Pathway crosstalk may play a major

role in altering the activity of this pathway involved in breast

cancer progression. However, this pathway was not identified

as significant by GSEA, indicating that the consideration of

pathway crosstalk incorporated in PAGI allowed the effective

identification of the insulin signalling pathway.

3.3. Identifying dysregulated pathways associated with
prostate cancer

We also illustrated the effectiveness of PAGI in identifying dys-

regulated pathways in a prostate cancer dataset (GSE3868). In

this dataset, the average GDS across all genes in the network

was 0.09+0.08. PAGI identified nine pathways with FDR

values less than 0.01 (see table 2 and electronic supplementary
material, table S4), whereas GSEA failed to identify any path-

ways. Of the nine significant pathways identified by PAGI,

five are supported by evidence from the existing literature

(table 2). To compare the ability of PAGI and GSEA to identify

dysregulated pathways, we also examined the ranks of the five

pathways associated with prostate cancer in GSEA, and found

that most were ranked more than 25 (table 2). These dysregu-

lated pathways might therefore be ignored by GSEA from a

rank-based perspective.

The most significant pathway identified by PAGI was the

mitogen-activated protein kinase (MAPK) signalling path-

way. In this pathway, a high proportion of genes have

relatively large differential expression level (jt-scorej) and

GDS (electronic supplementary material, table S5). In detail,

up to 62% of genes had higher GDSs than the average

value across all genes in the network (0.09). The fact that

the pathway includes multiple genes with high GDSs indi-

cates that the pathway may tend to be influenced by both

pathway crosstalk and internal pathway effects. Moreover,

these genes with high GDSs had a relatively large amount of

differential expression (jt-scoresj). Interestingly, we found that

the genes in this pathway significantly clustered at the top of

the ranked gene list L (electronic supplementary material,

figure S3). These observations indicate a strong connection

between prostate cancer and the MAPK signalling pathway.

Indeed, it has been demonstrated that activation of this pathway

and increased MAPK levels induce androgen-independent

prostate cancer progression [31].



Figure 3. PPAR signalling pathway. Genes with global dysregulation scores (GDSs) are annotated. The GDSs ranged from 0 to 1, and nodes with higher GDS are
indicated by darker colour. (Online version in colour.)

Table 2. Pathways identified by PAGI with FDR , 0.01 in the prostate cancer dataset.

pathway PAGI FDR GSEA FDR PAGI rank GSEA rank reference (PMID)

MAPK signalling pathway ,0.001 0.88 1 96 9927031;12466969

focal adhesion ,0.001 0.47 2 26 20160039;18922979

ECM – receptor interaction ,0.001 0.15 3 6 18792917;14711377

protein digestion and absorption ,0.001 0.14 4 5 —

amoebiasis ,0.001 0.79 5 76 —

pathways in cancer ,0.001 0.79 6 77 —

Wnt signalling pathway 0.005 0.70 7 42 15809669;18673243

Jak – STAT signalling pathway 0.007 0.73 8 59 11948098;10728680

aldosterone-regulated sodium reabsorption 0.007 0.63 9 31 —
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We further tested the effect of crosstalk between significant

pathways (electronic supplementary material, figure S4) and

found that the MAPK signalling pathway and focal adhesion

pathway shared a relatively high number of genes, particularly

genes encoding members of the MAPK family, such as

MAPK1, MAPK2 and MAPK10. These genes had significantly

high GDSs (0.41, 0.40 and 0.27, respectively). Interestingly,

MAPKs play a prominent role in regulating focal adhesion
signalling proteins in prostate cancer cells, and crosstalk

between the MAPK signalling pathway and the focal adhesion

pathway might control invasive and clonogenic phenotypes

in androgen-independent prostate cancer [32]. Moreover,

the focal adhesion pathway and extracellular matrix

(ECM)–receptor interaction pathway also shared a significant

number of genes (electronic supplementary material, figure

S4), most of which, such as integrin a6 (ITGA6), collagen 1A1



Table 3. Pathways identified by seven methods (hypergeometric test, GSEA, SPIA, PWEA, LPIA, PathNet, PAGI) with FDR , 0.01 in the prostate cancer dataset.

pathway hypergeometric testa GSEA SPIA PWEA LPIA PathNet PAGI

MAPK signalling pathway
p

focal adhesion
p p p

ECM – receptor interaction
p p p

protein digestion and absorption
p p

amoebiasis
p p p

pathways in cancer
p p

Wnt signalling pathway
p

Jak – STAT signalling pathway
p

aldosterone-regulated sodium reabsorption
p

melanoma
p

NF-kappa B signalling pathway
p

osteoclast differentiation
p

cell adhesion molecules (CAMs)
p

leucocyte transendothelial migration
p

ribosome
p

tight junction
p

aThe t-test was used to perform differential expression analysis and genes with FDR , 0.05 were used in the hypergeometric test.
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(COL1A1) and collagen 1A2 (COL1A2), had significantly

high GDSs (0.32, 0.22 and 0.32, respectively) and have been

implicated in the metastasis of prostate cancer [33,34]. Interest-

ingly, the crosstalk between these two pathways may play an

important role in the regulation of prostate tumour cell

migration [35].

3.4. Comparison of pathway analysis based on global
influence with other methods

To confirm the power of PAGI in identifying dysregulated

pathways, we also applied hypergeometric tests, GSEA,

SPIA, PWEA, LPIA and PathNet to the prostate cancer data-

set (GSE3868) and breast cancer dataset (GSE15852). With

FDR , 0.01 as the pathway significance threshold, 16 statisti-

cally significant pathways were identified by all the above

methods in the prostate cancer dataset (table 3). In detail, the

hypergeometric test identified four significant pathways, all of

which were also identified by PAGI. GSEA and PWEA did

not identify any statistically significant pathways. However,

PAGI identified nine significant pathways. PAGI, which inte-

grates both internal pathway effects and pathway crosstalk,

may improve the power for the identification of dysregulated

pathways. Meanwhile, SPIA identified six significant pathways,

three of which were identified by PAGI; however, PAGI

identified an additional six pathways not identified by SPIA.

The power of LPIA and PathNet also seemed to be limited.

LPIA and PathNet found only one and four significant

pathways, respectively. By comparing the results of PAGI

with other methods in the prostate cancer dataset, we found

that PAGI identified four statistically significant pathways

with FDR , 0.01, which were simultaneously missed by other

methods (table 3). Surprisingly, most of these pathways, such

as the MAPK signalling pathway, Wnt signalling pathway

and Jak–STAT signalling pathway, have been well reported to
be associated with prostate cancer [31,36,37]. Similarly, in the

breast cancer dataset, PAGI identified six statistically significant

pathways which were simultaneously missed by the other

methods (electronic supplementary material, table S6).

3.5. Reproducibility of the pathway analysis based on
global influence method

To test the reproducibility of the results across different data-

sets, we applied the PAGI method to three independent lung

cancer datasets (GSE7670, GSE10072 and GSE2514). With

FDR , 0.01 as the pathway significance threshold, PAGI

identified 29, 33 and 26 significant pathways, respectively,

15 of which were reproducible across these results (electronic

supplementary material, table S7). Most of these reproducible

pathways have been reported to be associated with the occur-

rence and development of lung cancer. For example, Soini

et al. [38] proposed that tight junctions and their proteins

may influence lung tumour spread, and Hembruff & Cheng

[39] explained that the chemokine signalling pathway plays

an important role in regulating the cancer microenvironment

and cancer progression. We further calculated the ratio of

reproducible pathways to statistically significant pathways

for each dataset, and the results showed that the average

ratio for PAGI was up to 52%. Moreover, we compared the

reproducibility of PAGI with that of the other methods

(GSEA, SPIA, PWEA, LPIA and PathNet). We applied each

of these methods to the three lung cancer datasets, and the

top 30 pathways from each lung dataset were used to test

how many pathways were reproducible. PAGI identified

16 reproducible pathways across the three lung cancer

datasets, more than the other methods (electronic sup-

plementary material, figure S5). We also compared the

reproducibility of PAGI with that of the other methods in

three breast cancer datasets (GSE15852, GSE29431 and
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GSE42568) and three prostate cancer datasets (GSE3868,

GSE3325 and GSE26910). The results showed that PAGI had

greater reproducibility than the other methods (electronic

supplementary material, figure S5).

3.6. Robustness of the pathway analysis based on
global influence method

We tested the robustness of the PAGI method by performing

data removal tests using the prostate cancer dataset

(GSE3868), breast cancer dataset (GSE15852) and lung

cancer dataset (GSE7670). For each set of gene expression

data, we removed the gene expression values from 5% to

30%, at 5% intervals, and repeated the PAGI method

20 times for each removal (electronic supplementary material,

figure S6). In the prostate cancer dataset, the number of over-

lapped significant pathways (FDR , 0.01) fell slowly

compared with the original data, and the ratio of overlapped

pathways to original significant pathways remained above

75%, even after removal of up to 30% of the expression

data (electronic supplementary material, figure S6a). These

results indicate that the PAGI method is robust to data

removal. We also performed the same operation using the

other methods (GSEA, SPIA, PWEA, LPIA and PathNet) in

the prostate cancer dataset. Although some of these methods

also seemed to be robust, the number of overlapped signifi-

cant pathways tended to zero when the percentage of

removed gene expression values tended to 30% (electronic

supplementary material, figure S6a). Moreover, we tested

the robustness of the PAGI and other methods in the breast

cancer and lung cancer datasets, and obtained similar results

(electronic supplementary material, figure S6b,c).
4. Discussion
Complex diseases are currently thought to arise from

multiple dysregulated genes rather from than individual

genes, and these dysregulated genes may jointly alter some

biological functions of pathways. Network-based methods

have been demonstrated to be effective in detecting the corre-

lations between pathways (or genes) and disease phenotypes

from high-throughput experimental data [40,41]. We propose

a novel network-based approach, PAGI, to detect latent dys-

regulated pathways by considering the global influence of

both the internal effects of pathways and crosstalk between

pathways. In this study, considering the dysregulated genes

result in the occurrence and development of complex dis-

eases, we performed the two-sample t-test to evaluate the

extent of differential expression (t-score). We then produced

a global gene–gene network by collecting the inherent

relationships among genes embedded in all the pathways

and the genes that overlap between pathways. This global

network can reflect the inter- and intrapathway relationships.

To reflect the information on specific disease processes, we

mapped all genes represented in the expression data to the

global network. In biology, the dysregulated genes will itera-

tively influence the status of other genes in and out of the

pathways through both the internal effects of pathways and

crosstalk between pathways. And the genes with a larger

differential expression level will more strongly influence

other genes. The modified RWR algorithm, which combines

the global network topology and the extent of differential
gene expression, was used to calculate the extent to which

genes were affected by the global influence (internal effects

of pathways and pathway crosstalk). The fact that a pathway

includes multiple genes with a large differential expression

level and global influence extent indicates that the pathway

may tend to be correlated with a given phenotype. The

CDFs, deemed to be a modification of GSEA, were used to

determine the significance of the pathways (see Material

and methods).

From the biological-systems perspective, pathways are

not isolated and usually interact with each other [3]. Pathway

crosstalk, which refers to the phenomenon of interaction or

cooperation between pathways, provides the necessary

insights into linked cellular processes and can further our

understanding of alterations of biological states [7,8]. To

study pathway crosstalk, we used a more direct strategy,

which was based on the genes that overlap between path-

ways, to connect each pair of pathways. The overlapped

genes were used as media for propagating the influence of

the dysregulated genes from one pathway to another path-

way. Although the overlapped genes were shared by

different pathways, they would perform a different biological

function with other genes in different pathways. The RWR

algorithm simulates a random walk that starts from a set of

source nodes, and iteratively propagates to other nodes in

the global network. We used this algorithm to evaluate the

GDS, which reflects the extent to which genes were affected

by both pathway crosstalk and internal pathway effects.

Although the pathway crosstalk can also be evaluated by

the interactions among genes/proteins from different path-

ways, the RWR algorithm is able to evaluate this kind of

pathway crosstalk effect on the basis of the propagation of

dysregulated genes in the global network.

Recent pathway-identification methods, such as PWEA

[5] and SPIA [6], have proven useful and efficient in identify-

ing dysregulated pathways; however, most of these focus on

the internal effects of a single pathway and fail to take

account of crosstalk (interaction or cooperation) between

pathways. Although LPIA [8] and PathNet [9] consider

the relationships between pathways in identifying dys-

regulated pathways, LPIA does not consider pathway

topology within the pathways and PathNet considers only

the association between genes based on their direct pathway

neighbours and neglects the effect of other genes. PAGI,

which combines internal pathway effects and pathway cross-

talk, is able to recall dysregulated pathways associated

with complex diseases effectively, with strong reproducibility

and robustness. By comparing the results of PAGI and other

methods (the hypergeometric test, GSEA, PWEA, SPIA, LPIA

and PathNet) in prostate cancer and breast cancer datasets

(table 3 and electronic supplementary material, table S6),

we showed that PAGI possessed greater power to identify

dysregulated pathways. PAGI may thus complement existi-

ng pathway-identification methods, and may help to

characterize the comprehensive alterations occurring during

disease progression.

PAGI identifies dysregulated pathways using pathway

topological information. Pathway topologies can help to pro-

vide more detailed and comprehensive biological insights.

However, we also found that, although most pathways in

the pathway database have good topological information, a

few pathways, such as the spliceosome, ribosome and protea-

some pathways, still lack information on the relationships
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among genes. PAGI may therefore fail to identify these path-

ways effectively because of incomplete information on

pathway topologies. This is similar to the challenge faced by

other pathway-identification methods that apply topological

pathway information [5]. Improved ways to use pathway

topologies to identify dysregulated pathways have become a

major focus of research, and the sensitivity of PAGI will be

further improved by the addition of new pathway topological

information. We have implemented our method as an R-based

package, which is publicly available on CRAN (http://cran.

r-project.org/web/packages/PAGI), and as a Web-based

tool (http://bioinfo.hrbmu.edu.cn/PAGI). Input of expression
profiles with two biological states can produce information on

dysregulated pathways within a few minutes. PAGI based on

the internal effect of pathways and crosstalk between path-

ways will be a valuable tool to help biologists identify

dysregulated pathways associated with complex diseases.
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