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Predicting power-optimal kinematics of
avian wings

Ben Parslew

Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M60 1QD, UK

A theoretical model of avian flight is developed which simulates wing motion

through a class of methods known as predictive simulation. This approach

uses numerical optimization to predict power-optimal kinematics of avian

wings in hover, cruise, climb and descent. The wing dynamics capture both

aerodynamic and inertial loads. The model is used to simulate the flight

of the pigeon, Columba livia, and the results are compared with previous exper-

imental measurements. In cruise, the model unearths a vast range of kinematic

modes that are capable of generating the required forces for flight. The most

efficient mode uses a near-vertical stroke–plane and a flexed-wing upstroke,

similar to kinematics recorded experimentally. In hover, the model predicts

that the power-optimal mode uses an extended-wing upstroke, similar to

hummingbirds. In flexing their wings, pigeons are predicted to consume

20% more power than if they kept their wings full extended, implying that

the typical kinematics used by pigeons in hover are suboptimal. Predictions

of climbing flight suggest that the most energy-efficient way to reach a given

altitude is to climb as steeply as possible, subjected to the availability of power.
1. Introduction
Predictive simulation is a theoretical method that can be used to explore the

evolution of animal locomotion. Rather than analyse the motion of the animals,

predictive methods discover a catalogue of different motions, offering clues

about why certain locomotive modes are selected over others. This strategy is

particularly insightful when there are unresolved hypotheses on the evolution

of a specific locomotive mode. For this reason, avian flight stands out as a

strong candidate for investigation using predictive simulation.

Predictive models have been used extensively to simulate terrestrial bipedal

locomotion, with applications to biomechanics research [1–4], robotics [5–7]

and computer animation [8–10]. These methods lend themselves equally well

to other terrestrial motions, such as jumping [11] and hopping [12], and have

also been applied to synthesize quadrapedal locomotion [4,13,14].

The same approach has been applied to aquatic locomotion. Previous

studies include analytical treatments of rigid and flexible swimming plates

[15], numerical parametric studies of carangiform and anguilliform swimming

[16,17] and numerical optimization of swimming kinematics [18–21]. These

studies demonstrate the capability of predictive methods in simulating loco-

motion driven by fluidic forces, and it is therefore unsurprising that the same

approach has been used to investigate flight. Perhaps the most frequent appli-

cation to flight has been the optimization of kinematics of two-dimensional

aerofoils [22–26]. A commonly cited engineering application of these works

is the design of flapping-wing air vehicles. Consequently, recent predicted

methods have been used to analyse more physically representative cases of

three-dimensional wings, both in hover [27] and in forward flight [28,29].

From a zoological perspective, predictive methods have been used to simulate

insect wing kinematics in hover [30,31]. More recently, forward flight has been

tackled through a model that predicts the amplitude and frequency of planar

models of bird and bat wings [32]. A model of jointed avian wings has also

been developed that encapsulates a broader subset of kinematics, including

wing pronation–supination, flexion–extension and stroke–plane inclination

[33]. However, it has only been applied to hover and cruising flight, and has
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neglected the inertial properties of the wing which influence

the choice of optimal kinematics. The specific contribution of

this paper is to detail a predictive model of avian rectilinear

flight that includes both aerodynamic and inertial loads on

the wings, and can be used to model hover, cruise, climbing

and descending flight conditions. Simulations will be based

on a model of the pigeon, Columba livia, and the results will

be compared against previous experimental data.
(b)

b
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Figure 1. (a) Earth axes (subscript ‘E’) have a fixed position with respect to
the Earth, and are oriented with the zE axis opposing the gravity vector, g,
the xE axis pointing in an arbitrary heading, and the yE axis perpendicular to
xE and zE to form a right-handed set. The freestream wind axes (subscript ‘0’)
translate with the movement of the bird with respect to the Earth; the x0 axis
is aligned with the freestream velocity vector.
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2. Method
2.1. Modelling philosophy
The philosophy adopted here is to develop a holistic model of avian

flight physics, which balances the level of complexity of the aero-

dynamic model, inertia model, wing kinematics and optimization

objective function. As predictive simulation is a relatively new

method of investigating animal flight, the author feels that con-

structing a robust, balanced theoretical model will lay the

appropriate foundations for this field [32]; future work may then

incorporate more advanced models of avian aerodynamics

[34,35] or species-specific wing mass distributions [36], for example.

2.2. Flight apparatus
The flight apparatus is required to generate aerodynamic force for

propulsion and weight support. Birds generate this load primarily

using their wings. The drag generated by a bird’s body, referred to

as parasitic drag, is known to have a significant impact on flight

power consumption at high speeds [37,38]. The tail generates

some aerodynamic force [39,40], but its small surface area and flap-

ping speed suggest that it generates significantly less than the

wings; at 6 m s21 cruise a pigeon’s tail, spread at 608 [41], generates

only 5% of the weight support assuming a lift coefficient of 1 [39]. It

is likely that the main role of the tail in cruise is for stability and

control [42]. Therefore, this work will neglect the dynamics of

the tail, and model only the wing dynamics and the body drag;

this will offer a tractable model that captures the most fundamen-

tal aspects of avian flight dynamics necessary for simulating

rectilinear flight.

2.3. Bird dynamics
The axis systems employed are similar to those used in a previous

model [33] (figure 1). The velocity of the bird with respect to the

Earth is given by the freestream velocity vector, V1. In this work,

forces and velocities described as acting ‘horizontally’, ‘laterally’

and ‘vertically’ are defined as acting in the same direction as the

positive xE-, yE- and zE-axes, respectively. ‘Thrust’ and ‘weight sup-

port’ are the horizontal and vertical components of aerodynamic

force generated by the wings, whereas ‘axial’, ‘lateral’ and

‘normal’ components act in the positive x0-, y0- and z0-directions.

The average axial and normal aerodynamic forces on the wings,

and the drag on the body, are shown in figure 1b as �Fx0
, �Fy0

and D0.

The equations of motion describing rectilinear, cruising flight

of the bird are given as

�Fx0
þmg sinb ¼ D0 (2:1)

and

�Fz0
¼ mg cosb, (2:2)

where b is the descent angle (2b is the ‘climb angle’). The body

drag is computed as

D0 ¼
1

2
r V2

1

�� ��SbCDb
, (2:3)

where r is the local air density, Sb is the body reference area and

CDb
is the body drag coefficient.
2.4. Shoulder kinematics
This work models the rotation of the wing about the shoulder joint,

and also wing flexion. The shoulder of most modern birds is a

hemi-sellar (half saddle) joint with three degrees of freedom and

can be modelled as a ball and socket [43]. The degrees of freedom

are represented as three Euler rotations of the form y–x–y,

which define the commonly used terms of stroke–plane angle

(g; figure 2a), wing elevation–depression (þf and 2f, respectively;

figure 2b), and wing pronation–supination (þu and 2u, respecti-

vely; figure 2c). Figure 2d–f illustrates the shoulder rotations

through depictions of three examples of kinematics modes.

Equation (2.4) defines the position on the wing of a point, P,

after being rotated from its initial position, r0, to its current pos-

ition r (measured from the shoulder joint; figure 3a), following

shoulder rotations g, f and u:

r ¼ RgRfRur0, (2:4)

where Rg, Rf and Ru are the alibi rotation matrices

Rg ¼
cos g 0 � sin g

0 1 0
sin g 0 cos g

2
4

3
5; (2:5)

Rf ¼
1 0 0
0 cosf sinf

0 � sinf cosf

2
4

3
5; (2:6)

and Ru ¼
cos u 0 � sin u

0 1 0

sin u 0 cos u

2
64

3
75; (2:7)

these equations are used in formulating the wing inertial and

aerodynamic models.

2.5. Wing flexion kinematics
A key distinction between the biomechanics of insect flight and

bird flight is that birds can actively flex and extend their wings.

Birds’ wings are comprised multiple skeletal segments that can

be rotated around their respective joints to flex the wing towards

the body. The movement of each segment is not completely
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Figure 2. Illustrations of the three shoulder rotation angles: (a) wings beating with a negative stroke – plane angle, 2g; (b) positive values of f represent wing
elevation, whereas negative values represent wing depression; (c) positive values of u represent pronation, whereas negative values represent supination. Example
wing kinematics over a single wingbeat, with the start of the downstroke at phase ¼ 0, mid-downstroke at phase ¼ 0.25, end of downstroke (or start of upstroke)
at phase ¼ 0.5 and mid-upstroke at phase ¼ 0.75: (d ) wing elevation – depression, with zero stroke – plane, no pronation – supination and a fully extended wing;
(e) wing elevation – depression at a constant, negative stroke – plane angle with no pronation – supination and a fully extended wing; ( f ) wing elevation –
depression at a constant, negative stroke – plane angle, with pronation on the downstroke and supination on the upstroke and a fully extended wing;
(g) wing elevation depression at zero stroke – plane, with no pronation – supination, and the wing fully extended on the downstroke and partially flexed on
the upstroke; the angles between individual feathers and the wing chord are proportional to the wing extension, e, such that when the wing is fully flexed
the feathers are aligned with the chord. The body orientation is included for completeness, and is drawn with the major axis normal to the stroke – plane.
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independent; skeletal and muscular mechanisms couple the

rotations about the elbow and wrist joints, providing underactu-

ated flexion and extension. These mechanisms have been

described in detail from a biomechanical perspective through

surgical examination and observation in flight [45,46].

Wing flexion is significant as it alters the aerodynamic and

inertial characteristics of the wing. Flexion reduces the exposed

wing surface area, which may be beneficial for reducing drag.
It also reduces the wing length, which reduces the wing-tip vel-

ocity and angle of attack for typical shoulder kinematics in

forward flight; this may allow useful aerodynamic force to be gen-

erated during the upstroke for weight support and propulsion. It

has also been proposed that wing flexion is beneficial for reducing

the moment of inertia of the wing, and thus the energy consumed,

during the upstroke [36,47]. However, these proposals neglected

the energy consumed in flexing and extending the wing, and
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Figure 3. (a) Wing planform geometry illustration and control point, P, given by position vector r0. (b) Blade-element representation of the wing. (c,d ) Blade-element
model of wing flexion viewed along the 2z0 and 2x0 axes, respectively. (e) Model of two-dimensional aerodynamic force coefficients. (f ) Force coefficients for the full
range of angles of attack, from 21808 to þ1808. Force coefficients in the low angle of attack range (2188 , a , 148) are taken from previous panel method
computations of aerofoil geometries that were constructed from experimental measurements of avian wings [34,44], with data points interpolated using cubic splines.
(g) Zoomed-in graph showing the low angle of attack model. In ( f,g), light red, green and blue are lift coefficients, and dark red, green and blue are drag coefficients at
Reynolds numbers of 1 � 105, 1.5 � 105 and 2 � 105, respectively. Numerical data are included in the electronic supplementary material. (Online version in colour.)
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so this remains an ongoing area of research [48]. This work will

incorporate wing flexion kinematics in both the aerodynamic,

and dynamic models of the wing.

2.6. Wing dynamics
This work uses a parsimonious representation of the wing inertial

effects by modelling the wing as a point mass, m. Even this simple

inertia model overcomes a limitation of a previous predictive

model that considered aerodynamic loads only [33]. Here, inertia

prevents the predictive method from selecting kinematic modes

with unrealistically high frequencies; it is also necessary to make

accurate predictions of mechanical power at low cruise speeds

when the flapping velocity and acceleration tend to be largest.

The point mass wing model implicitly captures the energy required

to flex and extend the wing. A previous experimental study of bat

wings revealed quantitative data on flexion dynamics, but this

information is currently unavailable for birds [48]. Therefore,

this work postulates that the spanwise position of the point mass

is proportional to the degree of wing extension, which is believed

to be the simplest possible representation of wing flexion
dynamics. The point mass position is governed by equation (2.4),

with r0 ¼ [0 rme 0], where rm is the spanwise distance from the

shoulder joint to the centre of mass of the outstretched wing, and

e is the normalized wing extension, which has a value of zero for

a fully flexed wing and one for a fully extended wing. For flight

at a constant freestream velocity, the equation governing the trans-

lation of the point mass in the freestream axes is given by Newton’s

Second Law

Fair þ Fg þ Fact ¼ mr̈, (2:8)

where Fair and Fg are the aerodynamic and gravitational loads, and

Fact is the load applied by the wing actuation system. Preliminary

tests using the present model found the gravitational force on the

wing to be less than 5% of the peak aerodynamic and inertial

forces in cruising flight, and therefore it has been neglected from

the simulations presented here.

The power consumed by the wing actuation system can

be modelled as the product of actuation force and velocity of

the point mass

Pact ¼ _rFact ¼ _r(mr̈� Fair); (2:9)
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an equivalent expression for power consumption of a rotating

wing can be derived as the product of applied torque and angu-

lar velocity [31]. This work assumes that actuation energy is

consumed for both positive and negative power requirements,

and that no elastic energy is stored; previous experiments have

suggested modest energy storage might occur, of up to 8% of

the combined work output of the two major flight muscles

[49]. The mean power consumption is thus given as the integral

of the modulus of the actuation power over a wingbeat

Pact ¼
1

T

ðT

0

jPactjdt, (2:10)

where T is the wingbeat time period.
wings intersecting

flex–twist mode

flex mode

Figure 4. Example kinematic modes predicted from numerical optimization of
the pigeon wing kinematics at the minimum power cruise speed (13.6 m s21).
Numerical data are included in the electronic supplementary material.

.Soc.Interface
12:20140953
2.7. Aerodynamics
The key challenge in evaluating equation (2.9) is defining the

aerodynamic load, Fair. As with previous predictive models, a

blade-element model is used which is robust and computatio-

nally inexpensive [30,31,33]. These properties make the model

effective for predictive simulation owing to the large number

of function evaluations that may occur during numerical

optimization. Blade-element theory models a wing as a series of

quasi-two-dimensional aerofoils, or elements [50] (figure 3a,b).

The instantaneous aerodynamic lift, l, and drag, d, are calculated

at the jth aerodynamic control point as

l(j) ¼ 1

2
r V

(j)
4

���
���2

s(j)c(j)
l (2:11)

and

d(j) ¼ 1

2
r V

(j)
4

���
���2

s(j)c(j)
d , (2:12)

where r is the local air density, V4 is the local wind velocity, s is the

element reference area and cl and cd are the local element lift and

drag coefficients. The local wind velocity comprises the freestream

velocity, V1, the control point velocity in the freestream axes,

r(j) and the induced velocity, Vi. The induced velocity is necessary

in the model in order to make plausible predictions of eleva-

tion amplitude in forward flight. Without it, the optimal wing

kinematics tend to minimize the elevation amplitude to unrealisti-

cally small values. The induced velocity is calculated iteratively

using an actuator disc model that predicts uniform flow velocity

normal and tangential to the disc [51]. The actuator disc is aligned

with the stroke–plane, and the disc area is given as the area swept

by the wings. This kind of wake model is less computationally

expensive than those that attempt to resolve the flowfield

[52–54]. The control point velocity is evaluated numerically with

a first-order central differencing scheme, using the control point

position at 400 evenly spaced time points throughout the wingbeat.

A total of 32 spanwise control points were used. A detailed

description of the numerical aerodynamic calculations is given

elsewhere [51]. At the minimum power cruise speed of the

pigeon, doubling the number of time steps or spanwise control

points leads to less than a 0.7% change in mean actuation power,

or 0.04% change in net aerodynamic force.

The lift and drag coefficients are derived from the local

angle of attack, a, defined as the angle between the local wind

velocity vector and the aerofoil chord line. In this work, the aero-

dynamic control points are located at the three-quarter chord line

in order to implicitly capture the effective camber that arises

owing to rotation about the wing major axis [50,55]. This effect

is found to yield around an 11% saving in mechanical power con-

sumption in hover, and this saving diminishes with increasing

cruise speed.

At high angles of attack, lift and drag coefficients are defined

using trigonometric functions (figure 3f ) based on methods

devised for rotary wing aerodynamics [33,50]. In the light of

recent experimental findings, this work also employs a low
angle of attack model to capture the high-lift-to-drag ratios that

can be achieved by avian wing aerofoils [34,44]. The present

model is relatively insensitive to the small fluctuations in the

cl–a and cd–a curves that are seen at a ¼ 2128 and a ¼ 88 in

figure 3f,g; for the minimum power cruise kinematics increasing

the force coefficients at these angles of attack by 10% only causes

a 0.6% change in mechanical power consumption and a 0.5%

change in aerodynamic force. Of greater importance is the

mean lift–curve slope in the pre-stall region, which is close to

2p—the theoretical value predicted by thin aerofoil theory. Simi-

lar values of lift–curve slope were found in another theoretical

analysis of avian aerofoils [56].

The aerodynamic model neglects losses in lifting capability

that would occur owing to the presence of wing-tip and wing-

hinge vortices. To quantify the effect of neglecting tip vortices,

the model was used to simulate a revolving pigeon wing, emu-

lating a previous experiment [57]; wing planform geometry,

root offset and rotation speed were taken from the experimental

data. The simulated revolving wing predicts a maximum vertical

aerodynamic force coefficient of 1.61, in comparison with the

experimentally recorded maximum of 1.5. In terms of predicting

wing kinematics, this means that the model would underpredict

the rotational speed required to generate the same vertical force

as the real wing by around 3.5%.

Wing flexion is modelled primarily as a reduction in overall

wing length, which reduces the blade element areas and moves

each element closer to the shoulder joint (figure 4c,d). Automated

rotation of the hand wing during wing flexion is captured through

the circumduction angle, s [46].

2.8. Species physical parameters
Model physical parameters were taken from previous experimen-

tal measurements of pigeons where available, and the remaining

variables were estimated using allometric scaling equations

(table 1). The wing planform geometry was taken from images

of pigeon wings [60].



Table 1. Model physical parameters. Wing mass and centre of mass
position were estimated using allometric scaling equations [36]. An
intermediate value of body drag coefficient was selected based on the
traditional default value of 0.4 [58] and more recent range suggested of
0.09 – 0.38 [59]; however, the model was found to be relatively insensitive
to changes in this value. All other parameters were taken from
experimental measurements of pigeons [37,41].

variable value

mass, m (kg) 0.4

wing mass (kg) 0.0258

body frontal area, S0 (m2) 0.0036

wing length (m) 0.32

wing centre of mass spanwise position, rm (m) 0.0969

body drag coefficient, CDb 0.25

hand : wing length ratio 0.74

Table 2. Constraints on optimization variables for cruising flight simulations.
Constraints on wingbeat frequency are defined using an allometric scaling
prediction for frequency, fs, [36], with the minimum constraint set equal to
0.5fs and maximum constraint set as 1.5fs. Maximum elevation amplitude was
defined according to peak values recorded experimentally for pigeons [37].

variable
minimum
constraint

maximum
constraint

wingbeat frequency,

f (Hz)

3 9

elevation amplitude, F 0 758

pronation amplitude, Q 0 908

stroke – plane angle, g 2908 08

extension amplitude, E 0 1

rsif.royalsocietypublishing.org
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2.9. Optimization objective, variables and constraints
Optimization is used to minimize an undesirable property of a

system, known as a cost or objective. The mean mechanical power

output will be used here as the optimization objective, which

will be minimized by adjusting the wing kinematics. To form a

tractable problem, the kinematics must be defined by a finite set

of variables. Using a greater number of optimization variables

leads to a more sophisticated model that can capture a wider

variety of movements. The penalty for this is a more complex

numerical optimization problem to solve, which requires greater

computational cost. A phenomenological approach is taken here,

using the minimum number of kinematic variables that allow

the model to capture typical flight conditions. This includes

cruising at varying speed, hovering, climbing and descending.

The shoulder elevation and pronation angles are defined as

f ¼ F cos (2pft)þF0 (2:13)

and

u ¼ Q cos (2pftþ j)þQ0, (2:14)

where F and Q are amplitudes and F0 and Q0 are the offsets

of elevation and pronation angle, respectively. j is the pronation

phase lag and f is the wingbeat frequency. A pronation phase

lag of p/2 radians is used here to ensure the maximum pronation

angle is concurrent with the maximum wing flapping velocity at

the mid-downstroke. Angle offsets are assumed to be zero, so

the wings elevate and depress by equal amounts, and pronate

and supinate by equal amounts, during a wingbeat. This reduces

the subspace of possible kinematic modes, but still allows predic-

tions to be made for hovering and forward flight conditions. These

conditions can be achieved only by varying the stroke–plane

angle, g, which is modelled here as a constant value throughout

the wingbeat. Previous predictive simulations of cruising pigeons

found that with a constant stroke–plane the simulated wing-tip

paths closely resemble those measured experimentally, and

that nonlinearities in wing-tip paths are mainly owing to

combinations or wing flexion and pronation–supination rather

than changes in stroke–plane [51]. Thus, the optimization vari-

ables that describe the shoulder kinematics are the elevation

amplitude, F, pronation amplitude, Q, wingbeat frequency, f
and stroke–plane angle, g.

The normalized wing extension is defined as

e ¼ 1

2
(1� E) cos (2pftþ z)þ 1

2
(1þ E), (2:15)
where E is the extension amplitude, defined as the ratio of the wing

length on the mid-upstroke to the maximum wing length. z is the

extension ratio phase lag, and is set equal to p/2 radians, so that

the wing is fully extended at the mid-downstroke. As examples

of wing extension, amplitudes of E ¼ 0, E ¼ 0.5 or E ¼ 1 mean

that at the mid-upstroke the wing is fully flexed (e ¼ 0), 50%

flexed (e ¼ 0.5) or fully extended (e ¼ 1), respectively.

The key optimization constraint in the model is that the net

axial and normal aerodynamic force generated by the wings

must balance the body drag and gravitational forces, as given

by equations (2.1) and (2.2). Additional constraints are used to

limit the wing joint ranges of motion and wingbeat frequency

to plausible values (table 2). In hover and low-speed cruise, the

simulations tend towards the maximum constrained value of

wing elevation amplitude to reduce the power consumption by

lowering the induced drag and inertial loads. Interestingly, this

even occurs when the elevation amplitude constraint is increased

beyond 908, meaning that the power-optimal mode tends

towards a rotary wing solution.

A gradient-based numerical optimizer (sequential quadratic

programming algorithm) is used to find kinematic modes which

satisfy the constraints while minimizing mechanical power. For

each flight condition, the optimizer was initiated with multiple

starting locations for the optimization variables in order to resolve

the local and global solutions. Starting locations were defined at

the minimum and maximum constraint values for each variable,

and also at the mid-interval value of these constraints; these

three starting locations from each of the five variables led to a

total of 243 (35) starting locations. A further increase in the

number of defined starting locations, or the introduction of

random starting locations, did not alter the minimum power

solutions that are presented here.

A sensitivity analysis was performed to explore the region in

the optimization space that surrounded the global solution. For

minimum power cruising flight, the optimized kinematics vari-

ables were incremented and decremented, and the change in

objective value was examined. The objective function was found

to be most sensitive to a combined increase in frequency, elevation

amplitude, pronation amplitude and extension amplitude, and a

decrease in stroke–plane angle; a 1% change in these variables

led to a 5% change in objective function.
3. Results and discussion
3.1. The range of flight modes
A striking feature of the results is that a diverse range of

possible wing kinematics was discovered for a given flight
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condition, exemplifying many possible modes of flying.

This parallels findings from optimization studies of human

walking where different gait patterns were found to achieve

stable locomotion [61]. At the minimum power cruise speed,

a ‘stiff-wing mode’ was discovered (figure 4), in which the

wing remains fully extended and flaps with a low frequency

of 5.1 Hz and an elevation amplitude of 368. At the same

speed, a ‘flex mode’ was found, where the wing flexes to

around half its outstretched length at the mid-upstroke, but

uses a much higher frequency of more than 8 Hz. And a

‘flex–twist mode’ was also found, which used significant

wing flexion, shoulder pronation–supination, and a steeply

inclined stroke–plane. This particular mode highlights that

the model does not prevent the wings from intersecting,

which can occur when the wings are depressed, and the supi-

nation angle or hand circumduction angle is large. Other

intermediate modes were discovered that used combinations

of the kinematic features discussed here.
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3.2. Kinematics with varying cruise speed
With varying cruise speed, the model again discovers various

kinematic solutions that satisfy the optimization constraints

(figure 5). The following discussion focuses mainly on the

minimum power, or ‘global’, solutions, at each cruise speed.

‘Near-global’ solutions are included in figure 5a– f that fall

within 5% of the minimum power solution for a given cruise

speed. Local minima are also included for completeness, to

illustrate the broad range of kinematics that could potentially

be used for cruising flight at various speeds.

In low-speed flight, the predicted power (figure 5a) is

greater than in previous theoretical models. For example, at

6 m s21 cruise, the present model predicts a power consump-

tion of more than 34 W, whereas a previous aerodynamic

model predicted less than 7 W [62]. This is largely owing to

the inclusion of inertial effects here; in the present model, if

the wing mass is neglected, the predicted power at 6 m s21

decreases to 8.7 W. At low-cruise speeds, the predicted fre-

quency and elevation amplitude, and therefore, the wing

flapping velocities, are greater than the experimental values

(figure 5b,c). The high frequencies also mean high wing accel-

erations and inertial loads. So while including inertial effects is

important for making accurate predictions of power, the com-

bined overprediction of flapping velocity and acceleration

leads to excessive predictions of power (equation (2.9)). For

real pigeons, the power consumption in low-speed cruise is

expected to lie between the values predicted by conventional

aerodynamics models that neglect inertial effects, and the

values predicted here that overestimate inertial effects.

At cruise speeds above the minimum power speed, the

simulated and experimental flapping velocities are similar, so

in these conditions, the inertial effects and power consumption

are not believed to be overestimated. The minimum power

consumption is predicted here to be 5 W, which is similar to

previous theoretical predictions of 4.8 W [62]; the correspond-

ing predictions of minimum power cruise speed are also

similar, being predicted as 13.6 m s21 in the present work

and 12 m s21 in the previous model.

Discontinuities in the power curve correspond to abrupt

changes in optimal kinematics with changes in cruise speed.

These abrupt changes highlight five kinematic modes of flight

(figure 5a,g); for terrestrial locomotion, these could be con-

sidered as gaits, but the term is avoided here owing to the
historical use of ‘gaits’ for descriptions of wakes of flying

animals. As with terrestrial locomotion, the results here

illustrate the energetic benefits of switching between different

kinematic modes at different speeds. Figure 5a includes the

power consumption data for a control case where the exten-

sion amplitude was constrained to a value of 0.25, which

is the optimal value at 17–18 m s21 cruise in mode 5. At

lower cruise speeds, the optimal solution switches to fully

extended wing kinematics in mode 4, which reduces power

consumption by up to 55% compared with the control case.

A similar test can be performed at low cruise speeds with a

constrained fully extended upstroke (E ¼ 1): in moving from

mode 1 to mode 2, the optimal kinematics switch to a flexed

upstroke, which consumes up to 25% less power than a fully

extended upstroke.

In modes 1–3, large frequency and elevation amplitude

yield large flapping velocities. This compensates for the low

freestream velocity, allowing sufficient aerodynamic force to

be generated for weight support in slow cruise. Conversely,

at higher cruise speeds, a low flapping velocity is needed,

and frequency and elevation amplitude are lower in modes

4 and 5. From examining the local minima solutions, a clear

trade-off was found between elevation amplitude and fre-

quency. Solutions with high elevation amplitudes and low

frequencies benefit from low induced drag and low inertial

force on the wing. But in cruising flight, large wing elevation

angles cause a greater component of the aerodynamic force to

be vectored laterally, which is essentially wasted as it is can-

celled by the force on the other wing. So while solutions were

found for cruise with both high and low elevation ampli-

tudes, those with intermediate values consumed less power.

With increasing cruise speed the wings must generate a

greater axial component of aerodynamic force to overcome

increasing drag on the body. The aerodynamic force is vectored

axially by increasing the stroke–plane angle (figure 5e). In

modes 1 and 2, the stroke–plane angle increases with increas-

ing cruise speed, up to around 2458 at around 7 m s21 cruise.

The main discrepancy between the predicted stroke–plane and

the experimental measurements is the sudden reduction in

stroke–plane angle in mode 3, which is coupled with an

increase in pronation angle. From around 5 to 15 m s21, the

local minima fall into two distinct groups, which use a

combination of low stroke–plane and high pronation, or high

stroke–plane and low pronation (figure 5d,e); equal changes

in these two variables cancel out to yield the same wing orien-

tation at the mid-downstroke. As with the flex–twist mode

discussed previously, the combination of wing depression,

supination and hand circumduction causes the wings to inter-

sect (figure 5g) making this an implausible solution. If the

intersection of the wings were included as a model constraint,

the group of solutions with low stroke–plane and high prona-

tion would violate this constraint. Modes with lower pronation

amplitudes and higher stroke–plane angles then prevail as the

power-optimal solutions, and the simulated stroke–plane

angles follow the experimental trend mode closely.

Previous experiments found that at high cruise speeds

birds tend to flex their wings on the upstroke [63]. Modes 4

and 5 capture this trend, with all local and global solutions

tending towards lower wing extension amplitudes at high

cruise speed (figure 5f ). The experimental data for pigeons

show a smooth reduction in wing extension from around

7.5 to 20 m s21. The model also shows a reduction in wing

extension, but from 0 to 10 m s21. Unlike the experiments,
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the model repeats this trend at higher cruise speeds. This

yields two modes—mode 1 and mode 4—where the wing

is almost fully extended on the upstroke.
Here, the optimal power solution reverts to a fully extended

wing mode at low cruise speeds and in hover. This flight mode

reflects the kinematics used by hummingbirds, which can be
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expected to be optimized for efficient hovering flight [63].

However, other species, including pigeons are known to flex

their wings on the upstroke during hover. No flexing-wing sol-

utions were found at all in hover, highlighting a limitation

of the model. The imposed constraints on frequency and

elevation amplitude limit the flapping velocity, and thus the

aerodynamic force that can be generated on the downstroke.

This means that a significant proportion of the force must be

generated on the upstroke, and this is achieved by keeping

the wing fully extended.

If the wing were able to move faster on the downstroke less

force would be required on the upstroke and the wing could be

flexed. To test this hypothesis, the maximum constraint on fre-

quency was removed, and the optimal kinematics were

determined in hover. Under these conditions, solutions were

obtained that used flexed wings on the upstroke. These sol-

utions generated more than 95% of the weight support on the

downstroke alone. To achieve this, the wingbeat frequency

was greater than 12 Hz, which is much higher than in exper-

imental measurements of pigeons; a similar flexing-wing

upstroke can be achieved with a lower frequency by using a

faster downstroke and a slower upstroke. The key finding

here is that the flexed-wing upstroke consumes around 20%

more power in hover than the global solution, and the

power-optimal mode is still the extended-wing upstroke

shown in figure 5.
Figure 6. Wing kinematics predicted for the pigeon for a climb angle range
of 2608 to 608 with a flight speed of 4 m s21, an intermediate speed
between the upper and lower limits seen in experiments on climbing pigeons
[64]. The same model physical parameters were used as in the cruising flight
simulations. Upper constraint on frequency was increased to 9.4 Hz here to
capture the frequency range that has been observed in the climbing exper-
iments. Numerical data are included in the electronic supplementary material.
3.3. Wing kinematics in climb and descent
Wing kinematics were predicted for the pigeon for a climb

angle range of 2608 to 608, at 4 m s21, to emulate flight con-

ditions observed in previous experiments on pigeons [64].

With varying climb angle, the predicted wing kinematics

only changed in terms of the stroke–plane, frequency and

pronation amplitude, whereas the wing remained fully

extended with maximum elevation amplitude (figure 6).

The predicted wingbeat frequencies at steep descent and

climb angles are similar to experimental measurements, but,

at shallow angles, the model tends to overpredict frequency

(figure 7a). The stroke–plane angle predictions capture the

experimental findings more closely over the full range of

climb angles, showing an almost linear increase with climb

angle (figure 7b). To understand better the reasons behind

the change in stroke–plane angle, it is more intuitive to con-

sider stroke–plane measured with respect to an Earth-fixed

reference, such as the horizontal plane (figure 7c). Both the

simulations and the experiments found that as the angle of

climb or descent increases the stroke–plane is oriented at a

shallower angle with respect to the horizontal plane. Previous

discussions proposed that this variation in stroke–plane was

related to the reductions in flight speed seen in climbing and

descending flight [64]. However, the present model assumes

a fixed flight speed for all climb angles, but still captures the

trend in stroke–plane.

The rotation of the stroke–plane can be explained by con-

sidering the orientation of the lift force vector on the wing. At

low flight speeds, the majority of the lift acts normal to the

stroke–plane. So, in horizontal flight, the stroke–plane is

inclined to generate a horizontal component of lift to over-

come drag on the body and wings. Conversely, in steep

climb, the stroke–plane is closer to the horizontal, as only a

small horizontal component of lift is needed. In the extreme

case of vertical climb or descent, no horizontal component
of lift is needed, so a horizontal stroke–plane can be used

just as it is in hover.
3.4. The cost of climbing
This section takes a new approach to examining climbing

flight by attempting to identify the optimum climb angle

and flight speed. It is postulated here that optimum climbing

flight is that which reduces the amount of energy consumed

to reach a given altitude, i.e. the cost of vertical transport,

given by the ratio of power consumed to vertical flight vel-

ocity, k Pact k =VzE
. This metric is equivalent to the ‘cost of

transport’, which is commonly used in assessing optimum

horizontal cruising flight conditions.

Optimal wing kinematics were predicted for the pigeon,

varying both the flight speed and the climb angle. At each

climb angle, the flight speed was identified at which the

cost of vertical transport is minimum. Figure 8a shows how

the predicted minimum cost of vertical transport reduces

with increasing climb angle. These predictions suggest that

it is favourable to climb at steeper angles to reduce the

mechanical energy needed to reach a given altitude.
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The penalty for climbing more steeply is greater power

requirements: while the energy expenditure reduces with

climb angle at a diminishing rate, power continues to increase

at an approximately linear rate (figure 8b). Climbing at 608
requires the actuation system to generate over five times the

amount of power needed for minimum power cruise

(figure 5). For real birds, this demand on the flight muscles

to operate away from optimal conditions would most likely

lead to a drop in performance. Moreover, high power con-

sumption would indicate a requirement of having larger

muscles. Carrying this additional muscle mass would be det-

rimental to flight performance in cruise and other flight

conditions and would only benefit birds whose behavioural

repertoire was dominated by climbing.
4. Conclusion
The predictive model presented here provides insights into

why nature selects certain kinematic modes for flight, and

why others get left behind. Avian cruising flight is typified

by a near-vertical stroke–plane and flexion of the wing on

the upstroke, and the predictive model captured this mode,

illustrating that it is power-optimal. But, in addition to this,

numerous other modes of flight were discovered. Although

less efficient, these modes represent plausible methods of

flying that may have once been used. So when considering
the evolution of flight, commonality in kinematics should

not be assumed between extinct and extant flying birds.

Some instances where the simulations did not capture

experimental observations highlight limitations of the exist-

ing model. For example, if the model prevented wing

intersection, the results would match more closely the exper-

imental measurements at intermediate cruise speeds. In other

instances where the predictions did not match the exper-

iments, some useful lessons can be learnt about the role

that evolution has played in selecting wing kinematics. For

example, the model showed that in hover the power-optimal

kinematic mode for a pigeon maintains an extended wing on

the upstroke, as used by hummingbirds. The fact that real

pigeons use a suboptimal hovering mode by flexing their

wings implies that other evolutionary pressures overshadow

the desire to minimize power in hover. It is likely that the

flight apparatus of pigeons, and other birds, has evolved to

be optimal in their more common flight condition of cruise;

the wings may be incapable of being fully extended on the

upstroke owing to limitations on structural strength or power

availability for example, and hence more efficient flight

modes cannot be taken advantage of in hover. Similarly, in

climbing flight, the wing actuation system may not be able to

generate sufficient instantaneous power to climb steeply,

which pushes the more energy-efficient steep climb modes

outside of the flight envelope for birds.
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