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How multicellular life forms evolved from unicellular ones constitutes a major

problem in our understanding of the evolution of our biosphere. A recent set of

experiments involving yeast cell populations have shown that selection for

faster sedimenting cells leads to the appearance of stable aggregates of cells

that are able to split into smaller clusters. It was suggested that the observed

evolutionary patterns could be the result of evolved programmes affecting

cell death. Here, we show, using a simple model of cell–cell interactions and

evolving adhesion rates, that the observed patterns in cluster size and localized

mortality can be easily interpreted in terms of waste accumulation and toxicity-

driven apoptosis. This simple mechanism would have played a key role in the

early evolution of multicellular life forms based on both aggregative and clonal

development. The potential extensions of this work and its implications for

natural and synthetic multicellularity are discussed.
1. Introduction
One of the key major transitions of evolution involved the emergence of multi-

cellular life forms from single-cell systems [1,2]. The standard view is that

groups of cooperating cells are able to take advantage of division of labour in

order to better exploit external resources, avoid predators or improve given adap-

tive traits [3,4]. Yet, the transition multicellularity (MC) encapsulated in this

picture involves an increase in overall complexity [5] and thus increasing costs

for coordinated cooperating behaviour. The main problem is then to understand

what makes the trade-off between these two sides balance out.

Available phylogenetic techniques have shed light on how and when the

roots of MC got established [6–9]. Particularly, comparative analyses of different

clades of multicellular organisms have proven to be very useful in delineating of

the genetic toolkit required for multicellular existence [10]. These studies show

that cell–cell communication and adhesion genes were co-opted from ancestral

functions unrelated to multicellular phenotypes into robust developmental pro-

cesses. In this vein, many unicellular species have the potential to behave (at

least in some circumstances) as cooperative ensembles of cells [11,12].

Two major paths towards MC have been identified [7]. The first is clonal

development [6,8] which involves the evolution of a life cycle that requires all

cells to display adhesion molecules capable of maintaining them together and

for all cells to share the same genotype. The second is aggregative development.

This alternative path does not require clonality and is present in some well-known

but rare systems, such as slime moulds [1]. In this scenario, MC aggregates can

form under some conditions and disaggregate into non-clonal individual cells.

More recently, it has been found that some unicellular species display an MC pat-

tern of development based on aggregative dynamics [13]. These remarkable

findings suggest that non-clonal developmental processes might have played

an important role in the early evolution of multicellular life forms [14].

In a recent set of experiments [15–18], artificial selection of cell clusters under

gravity constraints was performed. The authors took advantage of the fastest sedi-

mentation speed of cell aggregates of increasing size as a shortcut for selecting for
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Figure 1. Modelling evolution of multicellular aggregates. Following the experimental set-up described in Ratcliff et al. [15], we consider a physically embodied
description of aggregates growing and falling under the action of gravity (a). For the sake of simplicity, the spatial domain is confined to a two-dimensional lattice.
In it, yeast cells have a limited number of potential attached cells and, in response to the local concentration of chemical species, cells can divide or die. They can
remain attached to daughter cells owing to failure of separation, thus forming aggregates (b). Such aggregates are modelled in terms of simple repelling particles
connected by springs (c). The physical displacement or breakage of these aggregates is introduced by cell death (see text).
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more complex cell assemblies and potential mutations favour-

ing them. Remarkably, after a relatively short number of

generations, obtained by repeated culture transfers, the so-

called snowflake phenotypes appeared in a predictable way.

These are rounded clusters of cells that appear attached to

each other. The authors also studied the role played by cellular

interactions and cluster structure on the underlying reproduc-

tive processes. It was found that clusters do not reproduce

through events associated with single cells, but instead involved

a cluster-level set of events and—it was argued—a division of

labour resulting from an apparently active control of apoptosis.

The sequence of events as reported from this microcosm exper-

iments has important consequences for our understanding of

the evolution of MC and potential scenarios for recreating the

first steps from single cells to cooperating ensembles and organ-

isms. The claim that evolved apoptotic paths might be at work is

specially appealing.

Performing actual experiments involving physical aggre-

gates is a necessary step towards reconstructing the events

that pervaded the rise of MC. Most theoretical models consider

genetic traits, but typically ignore embodiment: both individ-

ual cells and aggregates are mapped into non-dimensional,

point objects, but including the actual embodiment makes a

difference [19]. In this paper, we present a computational

model of the experiments of Ratcliff et al., by dealing with a

simple set of assumptions that support an alternative interpret-

ation, based on the accumulation of toxic products—such as

acetic acid or ammonia—inherent to yeast metabolism

[20,21], which could take place inside a large cluster instead

of programmed cell death [22]. The model involves a physical,

embodied implementation of cellular aggregates falling in a

given medium. Our model enables reproduction of the basic

experimental results and provides a computational framework

to analyse alternative scenarios for the emergence of MC.
2. Methods
The above-summarized experiments include a selection process

obtained by sequentially growing yeast in a well-mixed

medium and selecting for the cells displaying faster sedimen-

tation. This approach immediately makes larger clusters of cells

to be preferentially selected as in reference [15]. Here, we exam-

ine these results under the light of a simple, embodied

computational model using the NETLOGO programming
language, which enables simulation of Newtonian physics [23]

on groups of interacting particles. Here, cells are represented as

objects having a given position and velocity. Cell–cell inter-

actions are modelled by simple, but physically meaningful

spring-like interactions. Similarly, the interaction between cells

and the fluid environment within which they move (essentially

under free fall) is also introduced in a realistic manner.

Additional rules related to nutrient and waste diffusion and con-

sumption are also introduced.
2.1. Computational model
Our model considers a spatially extended description of the indi-

viduals and their interactions (figure 1a–c). For the sake of

simplicity, we assume a two-dimensional spatial domain G. In

this area, cells are described as point physical objects interacting

(figure 1b), when attached to each other, through springs

(figure 1c). Moreover, these objects are subjected to gravitation

fields when appropriate, or display a random walk otherwise

(see §2.3).

The experiment starts with a population of single cells

located on random positions along G. Cells increase in biomass

through the consumption of the nutrients available to them

and, if a particular threshold is surpassed, a cell can divide

and asymmetrically split the resources between the two resulting

cells (see figure 2). Stochastically, these two new cells can fail to

separate correctly and become an aggregate, which, in turn,

determines some of the individual properties of the cells

(namely the sedimentation speed). Yeast cells are considered to

have a limited number of potential attached cells owing to geo-

metrical constraints. As such, aggregates in the simulation are,

in essence, Bethe lattices with kn neighbours (we consider kn ¼

4 as the upper limit owing to physical constraints).

Following the original set-up [15], the simulated experiments

include two distinct phases: growth and sedimentation. In the

former, cells are grown in a well-mixed tank until a certain

number is reached. In this phase, cells move by random walking

through G, consume nutrients in order not only to grow and multi-

ply, but also generate generic waste by-products that can cause their

death. In the second stage, cells fall under the action of a gravita-

tional field, modelled by a biased random walk using Stoke’s law

for the vertical component of the bias. This selection step is con-

sidered sufficiently short, so that cells neither divide nor die. After

a given time—the settling time—those aggregates collected at the

lower part of G are used to seed back the next round of the process,

to be located again randomly all over the spatial domain.

The basic components of the models presented here are cells or

clusters of cells resulting from birth and death processes. At any
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Figure 2. The basic set of rules used in our model approach to the evolution experiments. The model introduces a cellular death mechanism based on metabolic
by-product accumulation. A given aggregate Ai, here composed by just three cells, is shown in (a). It can experience three different types of processes: cell division
without (b) and with (c) an increase of aggregate size and (d ) cell death. The last scenario takes place if the waste concentration of—say—the third cell C3i is above a
critical threshold dc. If the first cell, C1i, has a mass larger than another threshold Mc and has fewer than four spring-connected relatives, it will split generating an
additional cell. This new cell can leave the aggregate (b) or remain attached (c) with probabilities 1 2 p1i and p1i, respectively. (Online version in colour.)
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time t in a given simulation, the total population will be composed

by a set A of n(t) aggregates, namely

A ¼ {A1, . . . , An(t)}: (2:1)

Each aggregate Ai is formed by a set of linked cells, i.e.

Ai ¼ {C1i, C2i, . . . , Cni ,i}: (2:2)

Let us label as jAij the size of the ith aggregate. The mass of each

(i) cell within a given ( j) aggregate will be indicated as Mij. Cells in

the model have a constant uptake of resources from their

immediate surroundings. At the same time, nutrient diffuses

and is homogeneously replenished in G. To take into account

these processes, nutrient concentration change in the finite-

element fij is given by the following partial differential equation

@fij

@t
¼ Dfr2fij � rQijfij þ dff0 � dffij: (2:3)

The Heaviside function Qij is used to indicate the presence or

absence of cells in that particular patch of the lattice (so we have

Qij¼ 1 if a cell is present and zero otherwise). In this same term,

the parameter r represents the intake rate of nutrients from the cul-

ture medium. The last two terms of the equation are introduced as

a replenishment process to ensure that, in the absence of cells, the

nutrient field recovers its initial valuef0. Here, the diffusion operator

r2fij is numerically computed (using the NETLOGO libraries) by

means of a standard discretization form

Dfr2fij ¼ Df fij �
1

4

X
kl

fkl

" #
, (2:4)

where Df accounts for the diffusion coefficient. The energy change

for ith cell in the jth aggregate is

@Mij

@t
¼ rfij � bcMij(1þ kDij): (2:5)

Here, bc represents the maintenance costs and Dij accounts for the

number of divisions this particular cell has undergone, causing
cells to increasingly spread their divisions. If the energy value of a

particular cell reaches its division threshold, a new cell is created

and the original energy value is split asymmetrically between the

cells. Conversely, cells also generate generic waste as a by-product

of their metabolic activity. The change in finite-element Wij is

@Wij

@t
¼ DWr2Wij þ gQijMij � dW Wij: (2:6)

Similar to the nutrient concentration, waste is created in those

positions of the lattice occupied by cells (Heaviside function Qij), in

a quantity proportional to the maintenance costs of the cell (gMij).

Waste is also subjected to diffusion and decays proportionally to

the current amount. Cells initiate apoptosis if the following threshold

condition is met: Wij � dc, where dc is the upper bound that cells can

withstand.

In figure 3, we show an example of how aggregates grow in

size, with increasing levels of waste until some cells meet this

threshold and die. As a result, a few smaller aggregates are cre-

ated, which can export—through passive diffusion—enough

waste to avoid death. This pattern of growth until a critical size

has been reached appeared quite robust to parameter changes

(listed in the caption of figure 3), which were arbitrarily chosen

and have arbitrary units.

2.2. Mutation
Little is known about the genetic changes behind the establish-

ment of the snowflake phenotype reported by Ratcliff et al.
Whether it involved extensive rewiring of basic adhesion toolkit

genes or slight tuning of interactions in gene networks we do

not know, but experiments involving different sedimentation

times clearly show that correct separation between cells is not a

binary, all or nothing, process.

In order to make less assumptions about the genetic changes

taking place in Ratcliff et al., our model enables evolution of only

one cell parameter: pij, which stands for the probability of

remaining attached to the offspring in the event of a division,
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Figure 3. Growth and sequential splitting of an aggregate owing to cell death. (a – e) Here, five spatial snapshots are shown at different times within the in silico
growth phase. Living and apoptotic cells are shown as blue and red circles, respectively. After a fixed number of algorithm cycles, apoptotic cells disappear with their
springs, causing the breakage of the aggregate into smaller clusters (b,c and e). The waste field appears as a continuously shaded gradient, darker areas indicating
higher concentration levels. As expected, the core of the aggregate is highly enriched in by-products, eventually causing the death of cells when it surpasses a
certain threshold. A different view of the waste field of snapshot e is given in ( f ). The simulation times in algorithm cycles for the snapshots are: 200, 250, 300, 350
and 400. The parameter’s values used in this simulation are: DF ¼ 0.1, DW ¼ 0.1, r ¼ 0.1, bc ¼ 0.01, Mc ¼ 80, k ¼ 0.25, g ¼ 0.2, dc ¼ 4.5, dF ¼ 0.1,
dW ¼ 0.01, initial concentrations F0 ¼ 20 and W0 ¼ 0, and a non-evolving adhesion probability p ¼ 1. (Online version in colour.)
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and condenses the effect of multiple genes related to adhesion

mutating independently. As such, pij is a continuous variable con-

strained between 0 and 1. This parameter is inherited by daughter

cells with very small variations, namely a flat distribution +0.05

is applied at each division event.

2.3. Selection process
In Ratcliff et al.’s [15] paper, the researchers made use of gravity

as the external force facilitating the differential deposition of cell

aggregates. Physically, this corresponds to a simple property of

increasingly large objects falling within a fluid medium with a

given friction and a fixed gravity field. In our model, we have

used a simplified, two-step process to emulate the experimental

set-up used by Ratcliff et al.
At the beginning of each simulation, a set of cells were cre-

ated with random positions in the virtual space, and were

grown until 500 cells were obtained under agitation conditions

(no sedimentation). Afterwards, we let the cells/aggregates fall

until a fixed number simulation cycles had passed, the aforemen-

tioned settling time. Then, individuals located at the bottom,

below a given critical height hc, were uplifted to new random

positions leaving intact their history and traits. Moreover, the vir-

tual medium was refreshed to homogeneous nutrient (f0) and

waste (W0) levels.

When growing, cells move in a random-walk fashion, which is

an approximation to continuously shaken media. Because they

have no preferential direction of movement, they tend to be homo-

geneously distributed through the simulation space. When

settling, we use a biased random walk as an approximation of a

sedimentation process. The bias introduced is computed using

Stoke’s law. During this phase, all cells/clusters tend to go

towards the bottom, eventually reaching the selection zone.
3. Results
Several traits of the multicellular aggregates emerging

through the simulation can be measured with the above-
discussed experimental results. In our study, we have

followed both average values of aggregate size over generations

as well as those selected traits (such as cell–cell adhesion)

favouring the selection process towards larger aggregates. We

can estimate the probability of finding aggregates of a given

size jAij, given by

P(jAij; t) ¼ N(jAij; t)PM
m¼1 N(jAmj; t)

: (3:1)

In figure 4a, we display the evolution of the mean aggregate

size as a function of time, calculated from

kjAj(t)l ¼
PM

m¼1 jAijN(jAmj; t)PM
m¼1 N(jAmj; t)

: (3:2)

We can appreciate a logistic-like growth pattern, thus exhi-

biting attrition after a given number of steps. The standard

deviation is also displayed as a shaded envelope around the

mean. Two snapshots of the aggregate spatial distribution at

the end of two selection phases are shown. These

correspond to transfers 100 and 150, marked by arrows in

figure 4a. In these particular transfers, kpl had reached 0.25

(figure 4b) and 0.75 (figure 4c). A yellow region is included

as a visual help to differentiate the selected region. In figure

4d, we display the size distribution of aggregate sizes above

(black) and below (red) the hc for T ¼ 150 and kpl ¼ 0:75. It

is possible to appreciate the progressive displacement

towards higher aggregate sizes in the selected region

(yellow) as a result of the sedimentation process.

A specially relevant result seems to support our view. In

Ratcliff’s paper, it was shown that a highly nonlinear correlation

exists between the size of the aggregate and the fraction of cells

undergoing death within them (figure 5a, inset). In a nutshell,

what is observed is that little death is found in a given aggregate

size, whereas it rapidly grows once we cross this threshold.

However, similar nonlinearity is obtained in our evolution
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model, as shown in figure 5a (main plot), where we display the

statistics of cell death against the size of the aggregates. A non-

linear relationship is also found in our model, which is due to

the nonlinearities associated with the thresholds of survival as

well as the nonlinear relationships owing to the geometric

constraints imposed by our system.
4. Discussion
Unravelling the mechanisms responsible for the emergence

of multicellular life forms from single-cell systems represents

a major challenge for our understanding of biological com-

plexity. The traditional approach to this problem was based

either on data-driven, experimental and phylogenetic

analysis or on mathematical and computer models of
simple cell-like units and their emerging interactions [24].

The experimental work described in reference [15] provides a

novel way of addressing this problem through a simple and

elegant design of a selection-driven experimental set-up.

Despite the differences existing between wild and laboratory

microorganisms [25], we can safely conjecture that the mech-

anisms responsible for generating and disaggregating cell

clusters should be universal.

Although the experimental results suggested an interpret-

ation of the evolutionary dynamics in terms of an evolved,

regulated response, the results reported here suggest a sim-

pler, alternative interpretation in terms of a diffusion-limited

process of aggregate growth where the cluster of cells keeps

growing provided that enough waste is excreted passively into

the medium. Once its size is large enough though, cells occupy-

ing the inner layers of the aggregate will start to trigger apoptotic
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mechanisms shown to occur in natural strains owing to the

accumulation of endogenous chemical cues, such as acetic acid

or ammonia. This alternative view does not disprove that

the observed apoptotic rates are a consequence of adaptation,

but offers a clear substrate from which evolution could act,

increasing the prevalence of an already existing mechanism.

Accordingly, our interpretation does not diminish the

relevance and implications of the experimental evolution

experiments. On the contrary, we think that this interpretation

suggests a potentially interesting framework concerning the

steps followed by primitive aggregates predating the first mul-

ticellular life forms. Aggregates breaking up owing to internal

cell death through toxicity results in a mechanism of splitting

that clearly goes beyond the single-cell level, but is based

on physical (or physico-chemical) constraints instead of actively

operating regulatory mechanisms and signals. This role played

by physics over the cell’s molecular machinery is consistent

with a view of evolving MC based on an early dominance of

physical mechanisms over genetic ones [18,26–28].

Our model provides a simple computational framework

that can be expanded in different ways. It also provides a
useful system to design new forms of evolving multicellular

aggregates. In this context, an interesting avenue can be con-

sidered here involving the use of synthetic biology, where

specific engineered circuits for population size control or pro-

grammed cell death have been designed using microbial

models. As a result of such work, it is fair to talk about

designing cell–cell interactions in order to provide new, con-

trolled scenarios of multicellular evolution [29]. In this

context, we could take advantage of new engineered forms

of cellular aggregation that can then be evolved over time.

Such a synthetic multicellular approach will offer a whole

pathway of inquiry into the problem of how complex life

might evolve or how we can evolve it.
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