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Abstract

Despite enormous efforts, cancer remains one of the most lethal diseases in the world. With the 

advancement of high throughput technologies massive amounts of cancer data can be accessed and 

analyzed. Bioinformatics provides a platform to assist biologists in developing minimally invasive 

biomarkers to detect cancer, and in designing effective personalized therapies to treat cancer 

patients. Still, the early diagnosis, prognosis, and treatment of cancer are an open challenge for the 

research community. MicroRNAs (miRNAs) are small non-coding RNAs that serve to regulate 

gene expression. The discovery of deregulated miRNAs in cancer cells and tissues has led many to 

investigate the use of miRNAs as potential biomarkers for early detection, and as a therapeutic 

agent to treat cancer. Here we describe advancements in computational approaches to predict 

miRNAs and their targets, and discuss the role of bioinformatics in studying miRNAs in the 

context of human cancer.
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1 Introduction

Cancer is one of the deadliest diseases with very low survival rate in the world. It is 

characterized by an uncontrolled growth of damaged cells. Scientists have been trying to 

decipher the molecular mechanism of cancer cell formation and the role of onco (cancer 

promoting) and tumor suppressor (cancer preventing) genes in cancer development [1]. 

Despite numerous efforts, the cancer cell formation mechanism is yet to be discovered. The 

discovery of various oncogenes and tumor suppressor genes has provided insight into the 

biology of cancer and the development of drugs to combat these potential targets [2]. The 

small non-coding RNAs including miRNAs have shown the potential to act as biomarkers 

for cancer diagnosis as well as therapeutic agents to cure cancer [3].
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miRNAs are tiny non-coding RNAs that post-transcriptionally regulate the expression of 

target genes by translational repression or mRNA cleavage. Recently, researchers have 

observed the role of miRNAs in apoptosis and cell proliferation that are key biological 

processes in cancer progression and metastasis [4]. The potential role of miRNAs in human 

cancer diagnosis, progression and metastasis has been studied using various molecular 

techniques like northern blots, microarray analysis and RNAseq. These miRNAs are 

expected to provide new insight in cancer research. Recently, the potential role of miRNAs 

as therapeutic agents has been explored in various cancer types. The oncogenic or tumor 

suppressor behavior of miRNAs is being exploited to treat cancer. miRNAs can be used as 

therapeutic agents by either reducing or increasing their expression level or interfering with 

the miRNA-mRNA regulatory interaction.

Bioinformatics provides a new avenue of understanding cancer biology through intelligent 

systems. The NIH working definition of Bioinformatics is “Research, development, or 

application of computational tools and approaches for expanding the use of biological, 

medical, behavioral or health data, including those to acquire, store, organize, archive, 

analyze, or visualize such data” [91].

Bioinformatics approaches have shown considerable potential in biomedical research. 

Computational approaches reduce the search space and provide probabilistic and 

biologically meaningful outcomes. We consider the systems biology view to be the best path 

for diagnosing and developing therapies against cancer [5]. Integrating the existing cancer 

biology knowledge with powerful computational and statistical methods has shown the 

potential to identify miRNAs as novel biomarkers to diagnose cancer and its various sub-

types [6]. Integrating gene and miRNA expression data with computational analysis tools 

has helped to identify the role of miRNAs in cancer progression and metastasis and their 

potential role in acting as therapeutic agents in the treatment and cure for cancer [7].

Our goal here is to summarize various existing computational approaches and potential use 

of bioinformatics in the field of cancer biology. In Section 2, we describe miRNA 

biogenesis and the mechanism of miRNA mediated post-transcriptional regulation. In 

section 3, we summarize the role of miRNAs in human cancer. Here, we briefly described 

the experimental efforts that have been taken to establish the role of miRNA in cancer. In 

Section 4, we summarize the role of miRNAs as oncogenes and tumor suppressors in 

various human cancers by providing specific examples from experimental studies. Section 5, 

we focus on the role of bioinformatics to identify novel miRNAs, their targets and 

involvement in cellular pathways. In Section 6, we summarize the computational studies 

done to establish the role of miRNA as therapeutic agent with pancreatic cancer as a case 

study. Finally, we conclude with the potential of miRNAs as therapeutic agents in human 

cancers.

2 miRNA Biogenesis

Eukaryotic gene regulation is a complex process involving multiple factors such as 

transcription machinery, activators, repressors and chromatin. Chromatin maintains inactive 

genes by guarding them against access by RNA polymerase and other factors. The study of 
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eukaryotic gene regulation has repeatedly shown the regulatory role of the 5’-end of the 

gene during transcription. Both enhancer and repressor transcription factors can enhance or 

decrease gene expression through their interaction at the 5’-end of the gene. Beyond 

chromatin and transcription factors, the discovery of RNA interference (RNAi) has added a 

layer to our understanding of gene regulation and the role of non-coding RNA sequences in 

gene regulation [8, 9].

miRNAs are short ~21–22 nucleotide long non-coding RNAs that have been widely studied 

as regulators of gene expression [10–12]. In 1993, the first miRNA, lin-4, was identified in 

C. elegans [13, 14]. miRNAs have been found in both protein coding, intronic and 

intergenic regions. While the miRNAs located in intronic and protein-coding regions are 

expressed along with their host mRNAs, those found in intergenic regions use their own 

promoter elements for expression [15]. Interestingly, prior to the discovery of miRNAs, 

Mizuno et al. (1984) showed that translation could be repressed by small RNA (~100 

nucleotides) in E. coli [16]. Later, these and other studies helped catalyze the discovery of 

the RNAi process for which Andrew Z. Fire and Craig C. Mello received the Nobel Prize in 

Physiology in 2006 [17].

The miRNA genes are known to be transcribed in the nucleus by RNA polymerase II or 

RNA polymerase III into primary miRNA transcripts called pri-miRNAs [18, 19]. As shown 

in Figure 1, the pri-miRNA is subsequently processed into mature miRNA through cleavage 

of pri-miRNA by the endonuclease RNA III enzymes — Drosha and Dicer. Cleavage of pri-

miRNA in the nucleus by Drosha produces an approximately seventy nucleotide long pre-

miRNA [20]. This pre-miRNA is then exported to the cytoplasm where Dicer cleaves pre-

miRNA into a 22 nucleotide long duplex containing the mature miRNA (the guide strand) 

and its antisense compliment (the passenger strand). Gene silencing is achieved through the 

RNA-induced silencing complex (RISC), an effector ribonucleo-protein complex. RISC is a 

powerful gene silencing machine controlling gene expression. Pratt and MacRae (2009) 

have previously reviewed the composition and role of RISC in controlling gene expression 

[21]. In general, only the guide strand (which has loose pairing at the 5’ end) survives within 

RISC, while the passenger strand is preferentially degraded [8, 22]. A guide strand of the 

miRNA duplex is incorporated into RISC [23, 24]. RISC identifies target mRNA based on 

complementarity between the guide miRNA and the mRNA and results in either cleavage of 

targeted mRNA or translational repression [25, 26].

The miRNAs are endogenous and evolutionarily conserved across the eukaryotic genomes. 

They are usually clustered on the chromosome [17]. The co-expressed or co-located 

miRNAs have significance in controlling either same set of target genes or set of target 

genes with similar biological function. More than 50% of miRNA genes are located in or 

near cancer-associated genomic regions that represent same chromosomal locations [18]. 

For example, miR-15a and miR-16a genes, involved in B cell lymphocytic leukemia are 

both located on chromosome 13 (13q14) [19].

miRNAs act as post-transcriptional gene regulators by generally binding to the 3’-

untranslated region (UTR) of their target mRNA. The Watson-Crick base pairing between 

miRNA and its target sequence results either in the cleavage of the double stranded mRNA 
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sequence, or translational repression (see Figure 1). There have been some examples of 

miRNA binding to the either 5’-UTR or coding region of mRNA as well. But the significant 

binding has been reported in the 3’-UTR region of the mRNA [14, 28].

The untranslated regions (UTRs) of mRNA play a significant role in controlling the 

behavior of the gene. UTR controls the translation process and its efficiency, stabilizes the 

mRNA molecule and is involved in subcellular localization as well [29]‥ Additionally, the 

5’-UTRs are known to have sequence- and structure- based motifs that control the 

translation process and its efficiency. The sequence-based motifs known to be present at the 

5’-end of the mRNA include iron-responsive elements (IREs). Others include the internal 

ribosome entry sites (IRESs) and motifs like the upstream open reading frame (uORFs) and 

initiation codons. A significant amount (15–50%) of 5’ UTRs are known to have uORFs. 

Furthermore, the 5’ cap or 3’ poly-A tail present in 5’ and 3’ UTR respectively, are known 

to be involved in the stabilization of the mRNA molecule. The 3’-UTR is also capable of 

mRNA localization [29]. Oftentimes, the mRNAs are localized while attached to the 

translational machinery. This ensures that translation will occur while improving the 

efficiency of the process.

Although a single miRNA can bind to the 3'-UTR of multiple mRNA sequences, and a 

single mRNA can be regulated by multiple miRNAs (i.e., many-to-many relations between 

miRNA and mRNA), not all miRNA-mRNA interactions have biological relevance [9]. 

Therefore, identifying relevant regulatory interaction between miRNA and mRNA is critical 

to our understanding of the regulatory role of miRNAs in cellular pathways and to 

determining their roles in disease processes.

3 miRNAs and Human cancer

Cancer is a complex polygenic disease caused by the amplification of oncogenes and the 

mutation of tumor suppressor genes, leading to deregulation of cell proliferation and 

apoptosis. Hence, understanding gene regulation in the context of cancer is crucial to 

develop new therapies. The Cancer Genome Project and the Cancer Genome Atlas research 

efforts represent ongoing attempts to understand the mechanism that underpin tumor 

formation and progression. Importantly, miRNAs are now known to play a role in cancer 

formation, invasion and metastasis. Expression studies demonstrate that miRNA genes are 

deregulated in cancer cells and tissues. Furthermore, more than 50% of miRNA genes have 

been shown to be located in cancer-associated genomic regions or in fragile sites, suggesting 

that miRNAs may play an important role in the pathogenesis of human cancers [30].

3.1 miRNAs and cancer —literature mining

The experimental efforts have identified the role of some of the miRNAs in various human 

cancer types. We performed a computational text mining on the articles related to miRNAs 

in cancer which have been published in PubMed. Pubmed2Ensembl tool was used to 

perform text mining of the PubMed database, which is a publicly available resource that 

consists of more than 23 million citations for biomedical literature from MEDLINE, life 

science journals, and online books [31]. This tool searched for the keywords in the abstracts 

of scientific articles in PubMed, then output a list of genes associated with those keywords. 

Banwait and Bastola Page 4

Adv Drug Deliv Rev. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Finally it used Biomart to extract the gene names and other gene-related information [31]. 

Table 1 summarizes the findings of the text mining. This table also presents information 

regarding various cancer types and the miRNAs known to be involved in each of these 

cancer types, including a number of known miRNA target genes. It is evident from the result 

of the citation count and number of miRNA target genes that the prostate, lung and 

pancreatic cancer are the most studied cancer types after breast cancer. Numerous efforts are 

being made to identify the role of miRNAs in cancer and their target genes, which can act as 

potential therapeutic agents.

3.2 miRNAs as oncogenes

The miRNAs that are up-regulated in cancer can potentially act as oncogenes and are thus 

referred to as “oncomirs”. Oncomirs negatively regulate tumor suppressor genes leading to 

uncontrolled cell proliferation. Medina and Slack reviewed potential oncogenic miRNAs 

and showed that they can play a similar role in several cancer types [32]. A single miRNA 

can act as an oncogene, such as miR-155, which has been implicated in various 

hematopoietic malignancies, lung, pancreatic, and breast cancers [33]. Another example of 

miRNA is the miR-17–92 cluster, whose expression was found to be significantly increased 

in various lymphomas and lung cancers [34]. Notably, the tumor suppressor gene PTEN 

(involved in apoptosis) and RB2 have been computationally predicted as targets of miR-17–

92 [35]. Additionally, two recent studies have identified miR-19 as the key oncogenic 

component of miR-17–92, demonstrating that miR-19 inhibits c-Myc-induced apoptosis and 

promotes c-Myc-mediated lymphomagenesis by repressing the expression of PTEN tumor 

suppressor gene [34, 36]. The miR-372 and miR-373 miRNAs are examples of oncogenic 

miRNAs thought to be involved in human testicular germ cell tumors through the inhibition 

of LATS2 gene expression [37]. Clearly, there are many examples of miRNAs acting as 

oncogenes, demonstrating their importance to cancer diagnostics and progression.

3.3 miRNAs as tumor suppressors

The decreased expression of miRNA genes in cancer cells leads to another category of 

miRNAs that can act as tumor suppressors. These miRNAs prevent tumor development by 

inhibiting oncogenes or genes involved in cell proliferation and apoptosis. The best example 

of a tumor suppressor miRNA is let-7. Work by Takamizawa et al. demonstrated poor 

expression of let-7 in a large cohort of lung cancer patients [38]. Furthermore, their work 

confirmed the role of let-7 as a tumor suppressor by over-expressing let-7 miRNA in A549 

lung adenocarcinoma cells, which inhibited lung cancer cell growth in vitro. The let-7 

miRNA has also been reported to negatively regulate the RAS oncogene by binding to the 3′ 

UTR of RAS mRNA and inducing translational repression [39]. The expression profiling of 

lung tumor tissues showed significant reduction in levels of let-7 and also showed increased 

RAS protein levels relative to normal lung tissue, suggesting the role of let-7 as a tumor 

suppressor gene in lung oncogenesis [39].

4 Role of miRNAs as therapeutics

Given the evidence that miRNAs play a vital role as oncogenes or tumor suppressors, there 

are numerous efforts to develop new therapies based on miRNA activity. Several strategies 
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have been designed to manipulate miRNA activity by targeting miRNAs at two different 

levels: reducing/increasing their expression levels and/or interfering with the miRNA/

mRNA interaction.

Restoring the expression of tumor suppressor miRNAs is a potential therapeutic approach. 

Johnson et al. demonstrated that over-expression of the let-7 tumor suppressor miRNA 

inhibited the growth of lung cancer cells [39]. Also, increasing the expression of miR-26a 

inhibited tumor progression in an animal model of hepato-cellular carcinoma [40]. 

Conversely, miRNAs could be synthesized to down-regulate oncogenes and prevent the 

formation of cancer. Multiple approaches have been designed to down-regulate oncogenic 

miRNAs. These approaches include the use of anti-miRNA oligonucleotides (AMOs), small 

molecule inhibitors, miRNA sponges and miRNA masking. AMOs bind to the target mRNA 

and blocks the miRNA interaction site. In vivo studies have been performed to demonstrate 

the inhibition of MCF-7 cells by designing AMOs against miR-21. Alternatively, artificial 

miRNAs can be designed to inhibit the expression of oncogenes. In a mouse model, 

expressing miR-17–92 in transgenic mice strongly inhibited c-myc-induced apoptosis, and 

resulted in accelerated tumor development [41]. Finally, antisenseRNAs could be used to 

restrict oncomirs. Recently, researchers had transfected 2′-O-methyl-modified antisense 

RNA into different miRNAs and showed sequence-specific inhibition [42, 43]. Similarly, 

modified antisense RNAs known as “antagomirs” have been used to inhibit miRNAs in 

adult mice [44].

5 Computational study of post-transcriptional regulation by miRNAs

After the discovery of miRNA, researchers tried to identify miRNAs based on the sequence, 

structure and thermodynamic information in the nucleic acid sequence data. Both 

experimental and computational approaches have been applied to identify miRNAs. As the 

experimental identification is a time consuming and resource intensive process, this has led 

researchers to use computational prediction of miRNAs based on genomic sequence 

information. A detailed review of computational tools in miRNA discovery was previously 

done by Gomes et al. [45]. The section below provides a brief summary of computational 

tools categorized into four major computational approaches that have been used in the 

identification of miRNAs [46–49].

5.1 Computational approaches to predict miRNAs

5.1.1 Sequence- or structure-based approaches—As noted above, the earliest 

computational approaches to identify miRNAs were based only on sequence or structure 

conservation. This proved to be a powerful approach to predict miRNAs [50, 51]. The 

miRNA gene identification primarily focused on locating the origin of miRNA in a genome. 

The next-generation sequencing (NGS) technology now allows less abundant miRNAs to be 

identified as well [52]. This requires a use of strong and robust prediction algorithm to 

identify miRNAs from NGS data. The use of cross-species conservation of sequence and 

structure has been more recently adopted in many prediction algorithms to identify miRNAs. 

MiRScan, miRseeker and srnaloop use secondary structure of RNA and conserved stem-

loop structure across closely related species in miRNA prediction. The MiRscan identifies 

RNA secondary structure and then looks for conservation across species, whereas 
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miRseeker identifies hairpin structures in the conserved regions of RNA sequences. 

However, many non-conserved miRNAs were missed, even among related species. The lack 

of sufficient data from related species is another weakness of this comparative approach.

5.1.2 Machine learning-based approaches—A number of machine learning tools 

such as Support Vector Machines, neural networks, Hidden Markov Model and Naive 

Bayesian techniques have been widely used to predict miRNAs.

The machine learning methods group similar elements based on their features or attributes. 

These are artificial intelligence based methods which learn from training data and make 

predictions based on past observations. For example, to distinguish between normal and 

cancer patients machine learning system has to learn by training itself on cancer data 

attributes. Machine learning approach has been successfully used in various other 

applications outside of the life sciences domain such as spam filtering, face recognition and 

fraud detection.

The machine learning based computational tools which identify miRNAs using features such 

as sequence conservation, structure, and folding energy of sequences as their training data. 

An early example of this approach attempted to identify pre-miRNAs and to predict 

unknown miRNAs using positive and negative datasets during model training [46–49]. The 

MiRFinder is an example of computational tool that uses Support Vector Machine with 18 

parameters to predict pre-miRNAs [53]. A major limitation of this approach is in the 

construction of a reliable negative dataset, which can potentially affect the overall efficiency 

of the prediction method.

5.1.3 Expression data-based approaches—With the advancement of the microarray 

and the RNAseq technologies, many gene expression studies have been performed in recent 

years. Gene expression data has shown significant promise in unveiling gene behavior under 

varying biological conditions. The mRNA or gene expression data has been intensively 

studied to identify the effect of miRNAs under multiple biological conditions [54].

Research has previously focused primarily on mRNA expression data to develop more 

robust miRNA identification methods. MiRDeep used a probabilistic model of miRNA 

biogenesis, which calculated a score of compatibility of position and frequency of sequenced 

RNA with the secondary structure of precursor miRNA [55]. The score predicted whether 

the detected RNA was a mature miRNA. By analyzing deep-sequencing data of small RNA 

molecules, another tool (MiRanalyzer) identified novel miRNAs using a random forest-

based machine learning technique. Compared to sequence-based approaches, the use of gene 

expression data helps to increase the chances to identify more novel miRNAs. However, the 

major limitation of using gene expression data alone with stringent fold-change threshold is 

in potentially excluding the genes that are expressed at low levels. The fold change is the 

measure of amount of gene differentially expressed in a given biological condition.

5.1.4 Integrated approaches—Integrating miRNA and target mRNA expression 

information has proved to be a valuable approach to miRNA identification. Chang et al. 

developed a reverse prediction tool to predict novel miRNAs [56]. The tool identified 
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mRNAs expressed at low levels in microarray and expressed sequence tag data. The result 

was then used to identify the 7-mer motif in the 3’-UTR of the mRNAs. The 7-mer motif is 

the seed sequence in a mature miRNA that complimentarily binds to the 3’-UTR of mRNA. 

The 7-mer identified using the tool developed by Chang et al. was then compared to existing 

human miRNA sequences to identify novel miRNAs. As a further advancement to this 

approach, van Dongen and his colleagues used a ranked gene list to identify the mRNA 7-

mer motif [57]. The ranked gene list was obtained by the differential gene expression 

analysis and the miRNA interference experiments, where the genes identified as highly up 

or down regulated were ranked based on their p-value [57]. Table 2 summarizes the existing 

computational tools to predict miRNA genes and their main characteristics.

5.2 Computational approaches to predict miRNA target genes

To decipher the mechanism of miRNA-triggered gene regulation, several attempts have 

been made to identify potential mRNA targets based on prior knowledge of interaction 

between the miRNA and its target gene [58]. Web-based solutions that are developed allow 

researchers to search for targets for a given set of miRNAs. However, web-based approaches 

inherently limit the tool’s use to process high throughput data. The tool such as the miRanda 

aligns miRNA and mRNA sequences, filters the high scoring pairs, and checks for the 

thermodynamic stability of potential target site [59]. Alternatively, TargetScan, another 

web-based tool, uses cross species conservation of target site sequence to predict the 

mRNAs that are potential miRNA targets [60].

These computational approaches mainly focus on the presence of complementary sequences 

in the 5’-end of the miRNA and the 3’-UTR of the target mRNA. In plants, target site 

prediction is based on a perfect complement of the 5’-end of miRNA and 3’-UTR of the 

target gene. Some of the computational tools for target site prediction in plants include find-

miRNA, miRCheck and PatScan [61–63]. Animal miRNAs, on the other hand, bind to their 

targets by as little as 6–8 nucleotides. These binding sites are also referred as the seed 

regions. Thus, an alternative to the presence of perfect complementary sequence-based 

approach is the seed sequence matching. The tool called PicTar uses this seed-sequence 

based approach and filters the potential target sites on the basis of free energy calculation 

and species conservation [64]. The software is not available for download. However, it has 

value for use in miRNA target prediction in organisms other than plants.

A neural network-based target prediction tool, MTar, first used Smith-Waterman alignment 

to align miRNA to mRNA sequences followed by artificial neural network (ANN) 

classification into three different target candidate sets [65]. The major limitation of these 

sequence-based methods is in the loss of potential targets. To overcome this limitation, 

expression profiles have been integrated together with the sequence complement approach. 

Integrating expression profile information may be useful in identifying miRNA targets 

missed by the sequence complement approach [66]. A method that integrates both 

expression profiles and sequence information was developed by Joung and Fei [67]. In this 

method, expression values are a feature vector for a Support Vector Machine classifier. 

Target sites are classified based on expression values and the alignment score between a 

miRNA-mRNA pair [67]. Overall, both mRNA and miRNA expression profiles can improve 
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the target identification [68]. Table 3 summarizes the existing computational tools to predict 

miRNA target genes and their main characteristics.

6 Insilico approaches to study the role of miRNA in human cancer

A multitude of factors contribute to the poor diagnosis and treatment of cancer, including 

severity of disease, resistance to drugs, tumor location and variations in cancer types. 

Probing cancer mechanisms from a systems biology perspective promises a better 

understanding of the disease. Hence, it is important to integrate systems biology, cancer 

research and bioinformatics to gain a more complete and accurate picture of cancer. This 

integrated approach will lead to advancements in the diagnosis, prognosis and treatment of 

cancer.

Cancer bioinformatics is an emergent field that integrates the existing knowledge from 

cancer biologists, information technology and mathematics. Its goal is to develop 

bioinformatics models and tools to answer cancer-related questions. Existing cancer 

therapies are often only effective in a subset of cancer patients. Hence, personalized cancer 

therapy is a promising alternate approach. Integrating different omics research efforts is 

expected to lead to a customized therapy based on the subtype, severity and sensitivity of the 

cancer in a patient.

Recent reports have shown the potential of integrating bioinformatics tools in answering 

cancer-specific questions. In silico work can act as an exploratory tool to reduce the search 

space and guide cancer biologists to perform focused experiments. This view is supported 

by Materi et al., who indicated that computational systems modeling can be a useful tool for 

biologists if they produce biologically sound results which facilitate experiments [69]. 

Computational modeling can assist biologists to run experiments in silico to conserve 

resources and speed the process of cancer diagnosis and therapies.

With high-throughput technologies, tremendous volumes of experimental data are being 

generated. Managing and maintaining these enormous amounts of data is a persistent issue. 

Computer science has contributed greatly to the field of data management. Multiple web-

based databases have been developed for the storage and retrieval of genome-scale data 

including genomic sequences, genome annotations, promoter sequences, transcriptomics, 

proteomics and structural information [7]. Databases help in efficiently maintaining, 

distributing and accessing experimental data. This has enabled data sharing among peers and 

the integration of knowledge to address some of the fundamental issues in cancer research.

6.1 Computational models to identify miRNA-target pairs

Computational approaches help identify miRNAs and their potential targets using features 

such as sequence complementation, miRNA-mRNA duplex structure, binding energy 

between miRNA-mRNA duplex and properties of flanking regions around miRNA-mRNA 

interaction sites. In our previous work, we developed a framework to identify potential 

targets of miRNAs by optimizing and using the miRNA-mRNA relationship [70]. Our 

approach is generic and can be applied to identify a potential set of miRNA-mRNA pairs 

involved in various human cancer types. This smaller potential set of target genes can be 
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later validated experimentally, thereby reducing the resources required to validate all 

potential miRNA targets in a wet-lab setting.

Several other attempts have been made to identify miRNA-mRNA pairs based on prior 

knowledge of interaction that exist between the miRNA and its target genes. Some of the 

previously described miRNA target prediction tools in Section 5.2 can be used to identify 

miRNA-mRNA pairs. There have been attempts to integrate a number of different genomic 

and proteomic data to better predict the miRNA-mRNA relationships [52, 53, 71–76]. The 

methods based on sequence complementarity and integrating miRNA and mRNA expression 

data to identify miRNA-mRNA relationship are mainly statistical models, which provide a 

significance value for a miRNA-mRNA pair to be a potential expression regulation site. 

However, due to heterogeneous nature of genomic and proteomic data, such integration is a 

big challenge and is expected to lead to high false positive results.

6.2 Differential gene expression analysis

Microarray expression profiling is a common approach to identify up- and down-regulated 

genes and miRNAs in cancer cells. The identification of deregulated miRNAs helps to 

identify the role of miRNA in the cancer cell. For instance, differential analysis of miRNA 

gene expression levels in normal versus cancer cells/tissues can yield clues as to whether the 

miRNA is likely to act as an oncomir or tumor suppressor. Bioinformatics plays an 

important role in designing robust and efficient statistical models to analyze the miRNA 

expression data. Expression data obtained using microarray techniques suffer from missing 

and low quality data problems due to experimental artifacts. Analyzing this low quality data 

might lead to inaccurate conclusions. More robust analysis models are required to mitigate 

the effect of errors that can occur during microarray experiments and to ensure the reliability 

of the results. Mathematical approaches, such as background correction and normalization, 

can be applied to raw expression data to increase the robustness of data as well as to 

accurately analyze the expression profiling data. The deterministic or probabilistic models 

model the progression of tumor in a cell or tissue and classify different cancer types and sub 

types. The deterministic model requires the knowledge of data beforehand whereas 

probabilistic models are based on probability of the event to occur based on the 

observations. With limited knowledge about the different cancers and their sub-types, it is 

very challenging to predict each cancer type and its subtype with high accuracy. The 

probabilistic methods have been very productive in differentiating cancer subtypes with 

comfortable accuracy values.

Both supervised and un-supervised classifiers have been developed to classify the cancer 

types and sub-types accurately. The supervised classifier models based on support vector 

machine, artificial neural networks, and random forest have been developed to address the 

cancer sub-type classification problem [70–75]. The unsupervised classifiers based on 

hierarchical clustering and k-means clustering have also been developed to produce accurate 

classification results with limited knowledge about the cancer sub-types [7]. Table 4 

summarizes the existing computational approaches that use the gene expression data in 

cancer diagnostics, classifying cancer subtypes and in functional enrichment of differentially 

expressed genes in various tumor conditions.
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6.3 Pathway enrichment models

Pathway enrichment analysis is the process of mapping genes identified by high-throughput 

technologies to known pathways or Gene Ontology terms [76]. The human genome project 

has made substantial contributions toward annotating human genes and the associations 

among genes. Curated databases like KEGG, Reactome and Gene Ontology have been 

developed to categorize genes into functional modules [76–79]. Pathway enrichment of 

genes identifies enriched biological processes and cancer pathways. Choosing specific and 

selective miRNA target(s) is a crucial step in using miRNA as a therapeutic agent in cancer 

treatment. Computational approaches can help to identify the pool of cancer-related 

biological processes that involve genes targeted by a therapeutic miRNA. This can in turn 

help in targeting those miRNA target genes that are involved in cancer pathways but not in 

cellular processes that are essential for the survival of the cell. Table 4 summarizes the 

existing computational approaches that apply pathway enrichment approach to identify 

pathways and biological processes involved in cancer. It also summarizes the tools that use 

gene co-expression data to identify similarly behaving genes in tumor conditions.

6.4 Case Study: Pancreatic cancer and miRNAs

Pancreatic cancer, or pancreatic adenocarcinoma, is the most common cause of cancer-

related deaths in the United States. The current 5-year survival rate for pancreatic cancer 

patients treated with state-of-the art therapies is 5% [93]. The high mortality rate of 

pancreatic cancer patients is due in large part because of the inability to detect pancreatic 

cancer in its early stages. Patients diagnosed with advanced stage pancreatic cancer are not 

candidates for surgical resection, and respond poorly to chemotherapy and radiation. Thus, 

research has focused on identifying minimally invasive diagnostic markers. Currently, the 

CA19-9 tumor marker is the most reliable diagnostic serum marker for pancreatic cancer; 

however, even CA19-9 is limited in its ability to detect early/small tumors [94]. Given that 

several miRNAs are deregulated in pancreatic cancer tissues, their utility as potential 

biomarkers is currently being explored. Wang et al. summarized a list of miRNAs identified 

as up- and down-regulated in several pancreatic cancer tissue expression studies. Table 5 is 

the updated version of table published by [95].

The expression patterns of miRNAs can help to distinguish pancreatic cancer cells from 

normal tissues. Indeed, researchers were successfully able to distinguish between pancreatic 

cancer, chronic pancreatitis and normal pancreas [101]. Furthermore, a number of studies 

suggest that miR-155, miR-203, miR-210 and miR-222 are associated with poor survival of 

pancreatic cancer patients [96, 102, 103]. Although there seems to be a trend to identify up-

regulated miRNAs in pancreatic cancer (as shown in Table 5), but down-regulated miRNAs 

can also serve as potential biomarkers in pancreatic cancer diagnosis. Expression of the 

down-regulated miRNAs could be restored through construction of artificial miRNAs, 

which may in turn inhibit oncogenes. Overall, such expression studies clearly indicate that 

miRNAs are functionally involved in the underlying mechanisms of pancreatic cancer 

development and progression. Ongoing attempts to target these deregulated miRNAs 

through antisense oligonucleotides or artificial miRNAs hold promise for pancreatic cancer.
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Bioinformatics continues to play an important role in the study of pancreatic cancer. 

Computational approaches have helped biologists to rapidly identify potential biomarkers 

and design therapies to treat pancreatic cancer. The focus must now be turned to expediting 

the detection and diagnosis of early stage pancreatic cancer. Bioinformatics approaches have 

been developed to analyze gene expression profiles in pancreatic cancer to identify the role 

of miRNAs in early diagnosis and treatment [104].Similar strategy was developed to analyze 

gene expression profile in chronic pancreatitis and identify the role of miRNAs in early 

diagnosis and treatment [105]. The gene expression data was downloaded from Gene 

Expression Omnibus and differential gene expression analysis was performed to identify 

differentially expressed genes in mice. The miRNAs targeting the differentially regulated 

genes were identified based on regulatory relationship between miRNAs and genes. The 

authors identified miR-124a as a potential target for the diagnosis and treatment of chronic 

pancreatitis [105]. The differential gene expression studies were also able to distinguish 

between pancreatic adenocarcinoma from normal and chronic pancreatitis [106]. The 

statistical analysis was performed to identify the most differentially regulated miRNAs in 

pancreatic adenocarcinoma samples.

The computational studies can also identify potential biological pathways involved in 

pancreatic cancer. Various approaches have been developed to identify pathways, especially 

immune-related, involved in pancreatic cancer [107, 108]. These research efforts include the 

use of gene expression profiling data to identify dysregulated genes in pancreatic cancer and 

then performing functional enrichment of differentially expressed genes. The differentially 

expressed genes were found to be highly enriched in immune related pathways. This implies 

that dysregulated pathways in pancreatic cancer are associated with the immune system, 

which can provide useful information for potential treatment of pancreatic cancer [107]. 

Apart from identification of immune related pathways involved in pancreatic cancer, 

researchers have also identified activation of mTOR signaling pathway and renal cell 

carcinoma pathway to be associated with pancreatic cancer [108].As described earlier, these 

computational efforts can help researchers to identify potential miRNA targets by analyzing 

miRNA and mRNA expression data. Such approaches can greatly reduce the search space 

allowing molecular biologists to validate a much smaller pool of miRNAs which can serve 

as true biomarkers.

Systems biology approach to study the significant contribution of miRNA in cancer biology 

can help research community to decipher the role of miRNA in regulating onco-or tumor 

suppressor genes. Network-based studies have also been performed to identify miRNAs that 

can influence cancer. Previous work has developed a miRNA network that influence cancer 

[86]. In these studies, statistical models were used to identify miRNAs that play a significant 

role in cancer. An integrated framework was developed to infer gene co-expression 

networks by integrating statistical models and visualization tools [5, 109]. Also, the 

network-based strategies were applied in the analysis of two immune related pathways: the 

B-cell receptor and Nod-like receptor signaling pathways [86]. The gene sub-network 

identified by this strategy offers new insights and potential targets for development of 

prognostic and therapeutic treatments. Similar approaches can certainly be applied and will 

likely benefit the study of pancreatic cancer [85, 86, 95, 110].
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7 Conclusions

In this review, we have discussed the potential role of miRNA in cancer propagation and its 

use as a therapeutic agent. Understanding the detailed mechanism behind miRNA acting as 

oncomiRs or tumor suppressors has not yet been achieved. It is estimated that human 

genome has more miRNAs to be discovered. The functional association of known miRNAs 

is still an open-ended question. Despite the relentless efforts by cancer biologists to predict 

miRNAs and its potential mRNA targets, the miRNAs has been seldom used as biomarkers 

to diagnose cancers or as therapeutic agents to treat cancer patients. Experimentally 

validating the role of every human miRNA as a potential biomarker or therapeutic agent is 

very resource-intensive and time-consuming. Innovative multi-disciplinary approaches need 

to be designed to achieve rapid progress in cancer therapeutics. Bioinformatics can be 

considered as an integrated, multidisciplinary science that has the potential to deliver new 

ways of effectively treat cancer patients. The use of computational approaches not only 

speeds up the process in identifying miRNAs with a potential role in cancer biology but also 

reduces the search space to more likely miRNAs that can be experimentally validated by 

biologists in a lab.
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Figure 1. 
miRNA biogenesis: miRNA genes are transcribed in the nucleus, and undergo subsequent 

processing by the endonucleases Drosha and Dicer to produce a duplex comprised of mature 

miRNA and its antisense strand (miRNA*). The mature miRNA strand is incorporated into 

the ribonucleoprotein complex (RISC), which mediates interaction with the target mRNA 

and mRNA silencing, either through mRNA (messenger RNA) cleavage or translational 

repression (Adopted from [27]).
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Table 1

Text-mining of different cancer types, cancer-related miRNAs and their potential target genes with number of 

citations in PubMed

Type of cancer
miRNAs known to

be involved in
cancer type

Number of
genes involved
in cancer type

Number of
PubMed

references

Colorectal cancer miR-143, miR-145 236 177

Pancreatic cancer miR-21, miR-34,
miR-107 512 442

Breast cancer miR-125b, miR-145,
miR-21, miR-155 1142 1577

Thyroid cancer miR-221, miR-222,
miR-146, miR-181 249 177

Acute myeloid leukemia miR-29b, miR-191,
miR-199a, miR-181a 391 439

Chronic lymphocytic
Leukemia miR-15a, miR-16-1 119 74

Basal cell carcinoma miR-184, miR-10b,
miR-98, miR-200 161 96

Melanoma let-7b, miR-121/122,
miR-137 432 345

Renal cell carcinoma miR-141, mir-200c 209 164

Bladder cancer
miR-126, mir-182,
mir-129, mir-143,

miR-127, mir-125b
190 147

Prostate cancer mir-34a, miR-21, 692 711

Endometrial cancer miR-129-2, miR-194,
miR-204 166 119

Lung cancer Let-7, miR-17-92 691 652
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Table 3

Comparison of computational tools for miRNA target prediction and their main characteristics

Tools Strengths Websites Weakness

TargetScan Seed match
and
conservation

Uses conservation as
a filter. This misses
some of the non-
conserved miRNA
sites.

http://www.targetscan.org/

Diana-MicroT Seed match,
conservation,
free energy,
site
accessibility
and target-site
abundance

Currently hosts
miRNA target
predictions for
Homo sapiens,
Musmusculus,
Drosophila
melanogaster and
Caenorhabditis
elegans only

http://diana.cslab.ece.ntua.gr/microT/

PicTar Seed match,
free energy and
thermodynami
cs.

The predictions are
based on very old
dataset missing
newly identified
miRNAs.

http://pictar.mdc-berlin.de/

MirTarget2 Seed match,
conservation,
free energy,
site
accessibility
and others
(SVM based)

Only predicts
miRNA targets for
five species: human,
mouse, rat, dog and
chicken. It is a
SVM-based
approach that lacks
the extensive
positive and
negative training
datasets.

http://mirdb.org/miRDB/

MiRanda Seed match,
conservation,
and free energy

It needs to be
downloaded and
doesn’t provide any
scores associated
with the predictions.

http://www.microrna.org/microrna/home.do

RNAhybrid Seed match,
free energy,
and target-site
abundance

Meant for advanced
users only as it
requires user input
and adjusting the
complex settings,
Not a user friendly
tool for novice users.

http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/
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Table 4

Summary of existing computational tools and approaches in establishing the role of miRNA in cancer

Insilico
models

Categories Dataset used Features References

Statistical
/Gene

Expression
Models

Cancer
Diagnosis

Transcriptomics
data i.e.gene and
miRNA expression
profiling data

Identifies, if the
behavior of the
gene involved
in a tumor
diverges from
the normal.

[74, 75, 80]

Cancer types
and Subtypes

Transcriptomics
data i.e.gene and
miRNA expression
profiling data

Classifies the
cancer types
and its sub
types based on
the differential
gene expression
in a given
condition

[71, 73–75,81–84]

Cancer gene
predictions

Transcriptomics
data i.e.gene and
miRNA expression
profiling data

Identifies
potential set of
genes that
might be
involved in
various tumors
based on their
change in
expression
pattern in tumor
condition as
compared to
normal.

[74, 75]

Network-based
Models

Functional
enrichment

analysis

List of
differentially
expressed genes in
tumor condition

Gene set
enrichment
analysis to
identify
enriched
pathways in
cancer

[85–87]

Gene co-
expression
networks

Integrated gene
coexpression,
transcriptional and
posttranscriptional
regulation network.

Cancer
diagnosis and
prognosis. Also
helps to
associate
various
regulatory
elements in
cancer

[88–91]

Biochemical
Reaction
Modeling

Modeling
metabolic
pathways

Metabolic
reactions data and
enzyme kinetics
data

Simulates the
behavior of
genes or a
system in
cancer
conditionsthus
helps to
understand the
cancer biology
at systems level

[5, 92]

Adv Drug Deliv Rev. Author manuscript; available in PMC 2016 January 01.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Banwait and Bastola Page 26

Table 5

Deregulated miRNAs in Pancreatic Cancer—up and down-regulated miRNA in pancreatic cancer and their 

respective reference are provided below. Additionally, the table also includes the recently identified 

deregulated miRNAs in pancreatic cancer studies.

miRNAs Expression Profile References

miR-132 Up Park et al 2011 [96]

miR-18a Up Morimura et al 2011[97]

miR-185 Up Liu et al 2012 [80]

miR-191 Up Liu et al 2012 [80]

miR-20a Up Liu et al 2012 [80]

miR-211 Up Giovannettiet al 2012 [98]

miR-25 Up Liu et al 2012 [80]

miR-34b Up Liu et al 2013 [99]

miR-141 Down Zhao et al 2013[100]

Adv Drug Deliv Rev. Author manuscript; available in PMC 2016 January 01.


