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Compression of a stiff film on a soft substrate may
lead to surface wrinkling when the compressive
strain reaches a critical value. Further compression
may cause a wrinkling–folding transition, and the
sinusoidal wrinkling mode can then give way to
a period-doubling bifurcation. The onset of the
primary bifurcation has been well understood,
but a quantitative understanding of the secondary
bifurcation remains elusive. Our theoretical analysis
of the branching of surface patterns reveals that
the wrinkling–folding transition depends on the
wrinkling strain and the prestrain in the substrate.
A characteristic strain in the substrate is adopted to
determine the correlation among the critical strain
of the period-doubling mode, the wrinkling strain
and the prestrain in an explicit form. A careful
examination of the total potential energy of the system
reveals that beyond the critical strain of period-
doubling, the sinusoidal wrinkling mode has a higher
potential energy in comparison with the period-
doubling mode. The critical strain of the period-
doubling mode strongly depends on the deformation
state of the hyperelastic solid, indicating that the
nonlinear deformation behaviour of the substrate
plays a key role here. The results reported here on the
one hand provide a quantitative understanding of the
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wrinkling–folding transition observed in natural and synthetic material systems and on the
other hand pave the way to control the wrinkling mode transition by regulating the strain
state in the substrate.

1. Introduction
Surface instability is frequently observed in squeezed soft materials [1–6]. The physics of this
nonlinear phenomenon could be harnessed to create tuneable patterns, to fabricate functional
surfaces and to understand the correlation between growth and morphogenesis in some natural
systems. Therefore, it has received considerable attention of many scientists and engineers
[7–14]. Biot [15] made a pioneering effort to understand surface instability of a neo-Hookean
solid subject to plane strain compression. His linear perturbation analysis leads to a critical
compressive (nominal) strain of 45.6% for the onset of surface instability. Recent analysis [11]
based on Koiter’s elastic stability theory reveals that surface wrinkling of a neo-Hookean solid
is highly unstable because of the nonlinear interaction among the multiple modes associated
with the critical compressive state. Concomitantly, wrinkling is sensitive to exceedingly small
initial imperfections and spontaneously collapses into a local crease. The nonlinear analysis of
Hohlfeld & Mahadevan [7,10] and Hong et al. [8] indicates that a crease/sulcus represents a
subcritical instability mode, which is energetically favourable when the nominal compressive
strain is beyond 35.4%. The surface instability of a stiff film resting on a soft substrate (bilayer
system) is usually believed to be fundamentally different from that of a hyperelastic solid. In
the former, surface wrinkles are rather stable, especially when the modular ratio of the film
to substrate is large, and could be reliably observed over a wide loading range [14]. This
paper is concerned with an interesting experimental phenomenon observed by Brau et al. [5]
in Poly(dimethylsiloxane) (PDMS) film/substrate systems and illustrated by our experiments
(figure 1). The experiments show that the sinusoidal wrinkling mode will transform to the period-
doubling mode when the overall compressive strain reaches around 19%. This phenomenon
was recently confirmed by nonlinear finite-element simulations [11]. Moreover, the nonlinear
analysis [11] reveals that the critical condition for the onset of the wrinkling pattern transition
largely depends on the nonlinear deformation behaviour of the substrate. Precompression
favours the occurrence of folding while pre-stretch will retard the wrinkling mode transition;
over pre-stretch may lead to a mountain ridge mode [12]. Hutchinson [14] investigated the
role of substrate nonlinearity on the wrinkling of thin films bonded to a compliant substrate
within the initial post-bifurcation range when wrinkling first emerges. His insightful analysis
revealed that when the elastic modulus of the film is about five times greater than that of
the substrate, the wrinkling bifurcation will be stable, whereas for a relatively soft film, the
wrinkles can be unstable. However, the initial post-bifurcation expansion does not capture the
unusual wrinkling modes observed at compressive strains well above the bifurcation strain such
as period-doubling, folding [5,11,16] and ridging [12,17,18]. These previous studies help us to
understand the physics behind the wrinkling pattern evolution in hyperelastic bilayer systems.
However, a quantitative understanding of the wrinkling mode transition from sinusoidal to
period-doubling in bilayer systems with the presence of substrate pre-deformation has thus far
remained elusive.

This paper is organized as follows. A theoretical analysis is first performed in §2 on the
branching of the wrinkling mode to characterize the correlation between the wrinkling transition
strain and the parameters of the system. Computational studies are carried out in §3 to explore
the deformation behaviour of the substrate in the vicinity of the second bifurcation point. A
characteristic (nominal) strain in the substrate is identified at the incipient occurrence of the
period-doubling, which corresponds to a critical point beyond which the period-doubling mode
is energetically favourable in comparison with the sinusoidal wrinkling mode. In §4, explicit
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Figure 1. Wrinkling morphology observed in the experiments with substrate with no pre-stretch. (a) Sinusoidal wrinkling
observed when the compressive strain was 0.1; (b) period-doubling mode observed at the overall compressive strain of 0.19.
The experimental phenomenon is similar to that observed by Brau et al. [5]. PDMS was the substrate in our experiments. The
stiff film was generated after the PDMS was subjected to a UV-ozone treatment for 10 min. Experiments details are given in
appendix A. (Online version in colour.)

solutions are given to predict the critical overall strain for the onset of the period-doubling
mode in the cases with and without substrate pre-deformation, which are validated by numerical
simulations and experiments. Section 5 gives some concluding remarks.

2. Theoretical analysis of wrinkling pattern transition

(a) Model
To determine the critical compressive strain for the onset of a period-doubling mode, we first
perform a theoretical analysis on the wrinkling mode branching. For the system illustrated in
figure 2, we explore a displacement-controlled loading procedure. The upper surface of the thin
film is traction-free. Here, x is coordinate of the initial configuration and � and h are the length
and thickness of the film, respectively, and � is assumed to be much larger than the wrinkling
wavelength of the system. We assume that the film follows the generalized Hooke’s law and the
substrate is an incompressible neo-Hookean material. The overall compressive strain in the film
in the fundamental state is δ. In the plane strain case, the resultant membrane stresses in the
film in the fundamental state can be obtained by

Nxx = −σh, Nyy = −νσh and Nxy = 0, (2.1)

where σ = Ēδ and Ē = E/(1 − ν2), with E and ν being Young’s modulus and Poisson’s ratio,
respectively.

The nonlinear von Kármán plate equations [19–21] are used to model the film in the wrinkling
state (figure 2)

1
12

Ēh3w ,xxxx = F ,yyw ,xx − R − hσw ,xx (2.2a)

and
1

Eh
∇4F = 0, (2.2b)

where w(x) is the additional deflection of the film from the fundamental state. F is the stress
function and

R = R0 + Kpw + K2(pw)2 + · · · (2.3)
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Figure 2. Schematic of compression induced surface wrinkling in the film/substrate bilayer system. (Online version in colour.)

refers to a Taylor series of the resistant force of the foundation to the film. R0 is a constant term
in the expansion of R. If the expansion is up to the linear term, R0 is zero, ensuring that the
total vertical resistant force is zero. However, R0 may be non-zero for a nonlinear foundation, but
it can be seen from subsequent analysis that R0 has no contribution to the potential energy of
the system. The linear stiffness coefficient of the foundation is given by K = cμs [11,14] with μs

being the initial shear modulus of the incompressible neo-Hookean substrate. The wavenumber
of the wrinkling state is p and c = 1 + λ2

0, where λ0 is the pre-stretch ratio of the substrate. The
constant K2 is proportional to the initial shear modulus and depends on the deformation state of
the substrate as described in the sequel. The stress function F(x, y) gives the additional stresses
from the fundamental state by

Nαβ = F ,γ γ δαβ − F ,αβ , (2.4)

where α, β, γ = 1, 2 and δαβ =
{

1, α = β

0, α �= β
is the Kronecker delta. In this study, we investigate the

cases where the ratio of the modulus of the film to the substrate is relatively large, e.g. greater than
50. The strain in the film is assumed to be small. In this case, it is reasonable to assume that the film
is linear elastic. Dervaux et al. [21] showed that at low strains, hyperelastic film/substrate systems
also satisfy the Föppl–von Kármán equations. Our finite-element simulations in the sequel also
demonstrate that the assumption of the film as linear elastic or hyperelastic basically has no effect
on the wrinkling mode evolution when the modular ratio is relatively large.

Linearizing equation (2.2a) about the pre-buckling state gives the following buckling equation:

1
12

Ēh3ŵ,xxxx = −hσ ŵ,xx − cμspŵ, (2.5)

where ŵ represents the linearized mode. Equation (2.5) admits the following solution:

ŵ = hA cos px, (2.6)

where A refers to the amplitudes of ŵ.
Substituting equation (2.6) into (2.5) gives

σ = 1
12

Ēh2p2 + cμs

hp
. (2.7)

Minimizing equation (2.7) with respect to p gives

p = 1
h

(
6cμs

Ē

)1/3
and δc = σc

Ē
= 1

4

(
6cμs

Ē

)2/3
. (2.8)

Equation (2.8) permits us to determine the critical condition for the onset of sinusoidal wrinkling
and has been derived in a previous study [11]. These results will be used in the following
wrinkling mode branching analysis.
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(b) Wrinkling mode branching
Now consider the sinusoidal wrinkling mode with the additional deflection expressed by

w = hb0 cos px, (2.9)

with b0 being the amplitude of wrinkling mode.
Equation (2.2) admits the stress function in the following form:

F = 1
2

a1y2 + 1
2

a2x2, (2.10)

where a1 and a2 represent the change of average membrane stresses along the x- and y−directions,
respectively.

Invoking the following compatibility conditions [9,22]:
∫ �

0

1
Eh

(F,yy − νF,xx)dx =
∫ �

0

1
2

w2
,xdx

F,xx − νF,yy = 0,

⎫⎪⎬
⎪⎭ (2.11)

we have

a1 = 1
4

Ēh3b2
0p2 and a2 = νa1. (2.12)

Substituting equations (2.9) and (2.10) into the following potential energy function

P[w, F] = 1
2

∫ [
1

12
Ēh3w2

,xx + 1
Eh

[
(1 + ν)F,αβF,αβ − νF2

,γ γ

]
− hσw2

,x + 2
∫w

0
Rdw

]
dx, (2.13)

we obtain

PI[w, F] = 1
4

(σc − σ) h3p2b2
0� + 1

32
Ēh5p4b4

0�. (2.14)

Equation (2.13) can be derived from the potential energy function given by Cai et al. [9], and the
last term in equation (2.13) refers to the elastic energy of the foundation.

Minimizing the potential energy with respect to b0, ∂PI[w, F]/∂b0 = 0, the following
relationship is obtained

b0 = 2
hp

√
σ − σc

Ē
. (2.15)

Equation (2.15) gives the evolution of the wrinkling amplitude and is consistent with the results in
previous studies [23,24]. It is interesting to note that the nonlinear term of the foundation stiffness
relevant to K2 has no influence on the potential energy for this wrinkling mode when we take the
resistant force of the foundation in the form of equation (2.3) and omit higher order terms.

Next, we consider the following period-doubling mode:

w = h
[
b0 cos px + cm sin

px
2

]
, cm � b0. (2.16)

The stress function is solved from the nonlinear von Kármán plate equations as

F = 1
2

a3y2 + 1
2

a4x2. (2.17)

From the compatibility condition in equation (2.11), we have

a3 = 1
4

Ēh3p2
(

b2
0 + 1

4
c2

m

)
and a4 = νa3. (2.18)

Inserting equations (2.16) and (2.17) into (2.13) gives the variation of the potential energy of the
system from the fundamental state to the period-doubling wrinkling state as

PII[w, F] = 1
4

(σc − σ )h3p2b2
0� + 1

32
Ēh5p4b4

0� + 1
16

(
17
12

σc − σ

)
h3p2c2

m�

− 3
16

K2h3p2b0c2
m� + 1

64
Ēh5p4b2

0c2
m�, (2.19)
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where we have neglected the terms of c4
m. The increment of the potential energy from the

sinusoidal mode to the period-doubling mode is

�P = PII − PI

= 1
16

[
17
12

σc − σ

]
h3p2c2

m� − 3
16

K2h3p2b0c2
m� + 1

64
Ēh5p4b2

0c2
m�. (2.20)

Substituting equation (2.15) into (2.20) gives

�P = 5
192

h3p2c2
mσc� − 3

16
cμsf (δ, λ0, δc)h2pc2

m�, (2.21)

where

f (δ, λ0, δc) = hpb0
K2

K
. (2.22)

For a linear foundation, i.e. K2 = 0, �P is always positive, indicating that the sinusoidal wrinkling
mode has a lower potential energy and the system is unlikely to evolve into the period-doubling
mode. Our finite-element simulations have also demonstrated that the system will maintain the
sinusoidal mode if the substrate is assumed to be a linear foundation. This demonstrates that the
nonlinear behaviour of the substrate deformation plays a fundamental role in the occurrence of
the period-doubling mode in film/substrate bilayer systems. For a nonlinear foundation, �P = 0
determines the critical overall compressive strain δ2 in the film for the transition from sinusoidal
wrinkling to a period-doubling pattern, which gives

f (δ2, λ0, δc) = 5
24

. (2.23)

It is worth mentioning that Brau et al. [5] have performed an insightful theoretical analysis on the
occurrence of the period-doubling mode. They considered an inextensible film with δc = 0 but did
not explore the effect of substrate pre-stretch, i.e. λ0 = 1. In this case, equation (2.23) degenerates to

f (δ2) = 5
24

, (2.24)

where f (δ2) = 2
√

δ2K2/K according to equation (2.22). Therefore, following the assumption of Brau
et al. and for the case of λ0 = 1, equation (2.24) gives

δ2 =
(

5
48(K2/K)

)2
, (2.25)

which is consistent with the result given by equation (36) in the electronic supplementary material
of Brau et al. [5]. Equation (2.23) indicates that δ2 depends on λ0 and δc as well. Provided that K2
is known, the function f (δ2, λ0, δc) can be determined and then δ2 can be solved from equation
(2.23). However, it is by no means trivial to determine K2 analytically. Without considering the
substrate compression, Brau et al. [5] have obtained an analytical solution for K2, which is zero
for an incompressible substrate; with this value, δ2 predicted by equation (2.25) will be infinite
and inconsistent with nonlinear finite-element simulations [11]. Very recently, Hutchinson [14]
made an effort to calculate K2. He also obtained K2 = 0 in the absence of substrate compressive
deformation. His analysis [14] revealed that K2 strongly depends on the pre-deformation of the
substrate and the boundary condition at the upper surface, for which an analytical solution is
difficult to obtain if realistic interfacial conditions are taken into account. Bearing this in mind, a
nonlinear finite-element analysis is carried out in this paper to explore the deformation behaviour
of the substrate at the onset of the period-doubling mode. We will derive an explicit solution to
predict δ2 without solving K2 directly.
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3. Nonlinear finite-element analysis

(a) Computational model
Nonlinear finite-element analysis is carried out to investigate the plane strain problem (λ3f = λ3s =
1) of a neo-Hookean bilayer system at compressive strain levels well beyond the bifurcation strain.
We concentrate on the deformation behaviour of the substrate when the wrinkling mode evolves
from the sinusoidal pattern to the period-doubled pattern. Plane strain finite-element simulations
were performed via the commercial software ABAQUS [25]. The incompressible neo-Hookean
material model is adopted for both the film and the substrate, and the anticipated wavelength is
much greater than the element size. The hybrid element (CPE8RH in ABAQUS) was used which
is applicable for simulations of incompressible materials.

In the post-buckling analysis, two schemes were used to introduce the stress-free geometric
imperfections to the system to initiate growth of the post-bifurcation modes [11]. With the absence
of substrate pre-stretch, a linear perturbation was first accomplished using the ‘BUCKLE’ function
in ABAQUS. The critical eigenmode scaled by a very small factor (e.g. 0.005 h) was introduced as
a geometric imperfection into the mesh. With the presence of substrate pre-stretch, finite-element
simulations were first run by specifying a sinusoidal surface deflection at the upper surface. The
computed displacement field was then introduced as a stress-free geometric imperfection into
the mesh. Displacement-controlled loading is employed with u1 (independent of x2) and zero
shear traction specified on the vertical sides of the model. The nominal compressive overall strain
imposed on the system after the film is attached to the substrate, δ, is defined in terms of the
film stretch, λ1f , calculated from the relative difference between u1 on the two sides of the model.
The displacement u2 and the shear traction on the bottom surface of the model are taken to be
zero. The computational model has a width of the order of 10 wavelengths of the sinusoidal
wrinkling mode. The depth of the substrate is taken to be more than 10 times the sinusoidal
wavelength and, thus, sufficiently deep such that the substrate can be regarded as infinite. In
order to capture the occurrence of the period-doubling mode, a pseudo-dynamic algorithm was
adopted in the loading paths. Both loading and unloading procedures were explored to show
the effect of damping on the deformation behaviour of the substrate at the bifurcation point. The
results indicate that the unloading procedure permits the identification of the critical overall strain
for the onset of the period-doubling mode more accurately as shown in detail below.

(b) A characteristic strain at the onset of period-doubling mode
Figure 3 shows the nominal compressive strain of the centre of the peak in the substrate along
the loading direction in both loading and unloading paths. Electronic supplementary material,
Video S1, shows the evolution of the wrinkling morphology of the film–substrate system for the
case without substrate pre-stretch. The strain in figure 3 is the maximum compressive strain in the
substrate when the wrinkling mode of the system is sinusoidal. The location of this strain is shown
in figure 4. A positive value in figure 3 refers to a compressive strain. In theory, the loading and
unloading paths should coincide with each other, since the system is hyperelastic. However, the
occurrence of a period-doubling mode may not be captured when the pseudo-dynamic algorithm
is not adopted in our simulations. Therefore, the pseudo-dynamic algorithm is used in the loading
paths, but not in the unloading paths (β is the damping factor). It can be seen that the two paths
are not consistent with each other around the bifurcation point (figure 3) because of the effects of
damping. The difference of the two paths is deceased when β becomes smaller. However, figure 3
shows that two unloading paths are consistent for the two different damping factors β and the
loading path will basically coincide with the unloading path when β tends to zero. Thus, the
unloading procedure permits us to identify the occurrence of period-doubling more accurately.
The results of the unloading path show that when the nominal strain reaches a maximum value
(0.381, point d in figure 3), the strain in the centre of the peak is released and strain localization
occurs in the substrate (figure 3c). Point d in figure 3 is regarded as the bifurcation point for the
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Figure 3. The nominal compressive strain of the centre of the peak in the substrate along the loading direction in both loading
and unloading paths. This nominal strain is the maximum compressive strain (ε11,max) in the substrate when the substrate
deformation is sinusoidal. The location of this strain is shown in figure 4. When period-doubling appears, this strain dissipates
and strain localization occurs. The strain at pointd is defined as the characteristic strainεc(≈0.381).β is the damping factor. The
cloud pictures in the figure show the nominal compressive strain distributions of some feature points. (Online version in colour.)
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Figure 4. The location of the maximum nominal compressive strain along the loading direction in the substrate when the
wrinkling mode is sinusoidal. ε11,max is a function of δ and δc in the case of no-pre-stretch. H(δ)≈ 0.18 × 2π/p in the
fundamental state, which is largely insensitive to the compression δ. It should bementioned that when the system has evolved
into the period-doubling mode, the strain of the point shown in this figure is no longer the maximum strain in the substrate.
(Online version in colour.)

onset of the period-doubling mode. The nominal compressive strain at point d is defined as the
characteristic strain εc, and εc ≈ 0.381. The overall compressive strain at point d is defined as the
critical overall strain δ2, which is approximately 0.185. To understand the physics underpinning
this characteristic strain, we examine the total potential energy of the system during the wrinkling
pattern evolution.

In finite-element simulations, without perturbation the system may keep the sinusoidal
wrinkling mode even when the overall compressive strain is greater than δ2, which permits
us to evaluate the total potential energy Ps corresponding to the sinusoidal wrinkling mode.
With the presence of perturbation for instance by introducing the damping factor, the system
will evolve from the sinusoidal mode to the period-doubling wrinkling mode; in this case, the
total potential energy Pa can be obtained from finite-element results. Here, Pa corresponds to
the unloading path. Figure 5 shows the potential energy difference �P∗ = Pa − Ps between the
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Figure 6. The characteristic strain defined in figure 3 is basically a constant for different modular ratios. The pre-stretch ratio
of the substrate is 1. (Online version in colour.)

wrinkling mode that actually occurs and the sinusoidal wrinkling mode. It can be seen that when
the nominal compressive strain at the point shown in figures 4 and 5 reaches the value of 0.381,
the sinusoidal wrinkling mode gives way to the period-doubling mode. Beyond this critical point,
the period-doubling mode is energetically favourable in comparison with the sinusoidal mode.
The corresponding overall compressive strain at the bifurcation point is approximately 0.185.

Our analysis shows that the characteristic strain εc is basically independent of the modular
ratio of the film to the substrate and insensitive to the geometric imperfection introduced in
the system, as shown in figures 6 and 7. The parameter η in figure 7 represents the ratio of
the imperfection amplitude to the film thickness. The strain εc is not far from the crease strain
identified by Hohlfeld & Mahadevan [7,10] and Hong et al. [8]. But the connection between these
two strains remains unclear. We also explored the case with substrate pre-stretch, i.e. λ0 �= 1.
Our results show that εc basically linearly depends on λ0 (figure 8). A linear function with
εc = 0.381 + 0.15(λ0 − 1) is used to fit the results.
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The characteristic strain identified here and the analysis on the total potential energy of
the system may not only help us understand the physics behind the occurrence of the period-
doubling mode and localized folding in bilayer systems but also provide a means to determine
the critical overall compressive strain at the onset of the wrinkling mode transition. This issue
will be further addressed below.

4. Explicit solutions to predict the critical overall strain for the onset
of period-doubling

In this section, we show that the characteristic strain identified in §3 permits the determination of
δ2 in an explicit form. Our analysis reveals that δ2 depends on λ0 and δc, i.e.

δ2 = f1(λ0, δc). (4.1)

Without substrate pre-stretch, i.e. λ0 = 1,

δ2 = f1(δc). (4.2)
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Figure 9. Comparison of function g (equations (4.4) and (4.6.)) with respect to finite-element results, where we take
μf/μs = 448 in the finite-element simulations. (Online version in colour.)

Based on the characteristic strain identified in §3, we provide a means to determine the function f1
and δ2 in equation (4.2). For the sinusoidal wrinkling mode, the maximum nominal strain ε11,max
along the loading direction depends on δc and the overall compressive strain δ without substrate
pre-stretch (figure 4).

When ε11,max reaches εc, δ will have the value of δ2, i.e.

ε11,max = εc = 0.381 = g(δ2, δc). (4.3)

Therefore, provided that the function g is known, we can determine the function f1 in equation
(4.2). Based on the nonlinear finite-element simulations in §2, we have determined the function g.
This function gives the correlation between ε11,max, δ and δc as

ε11,max = g(δ, δc) = 1.11
(

δ − 1
2
δ2 − δc + 1

2
δ2

c

)3/5
+ δc. (4.4)

The last term in equation (4.4) ensures that ε11,max = δc when δ = δc. 2/hp(δ − 1/2 δ2 − δc+
1/2 δ2

c )1/2 can well describe the evolution of the wrinkling amplitude given by finite-element
simulations. For illustration, the function g determined from a finite-element example is shown
in figure 9.

From equations (4.3) and (4.4), δ2 is derived in the explicit form:

δ2 = 1 −
√

(1 − δc)2 − 2
(

εc − δc

1.11

)5/3
, (4.5)

indicating that the dependence of δ2 on δc is rather weak when the modular ratio μf /μs is large.
For instance, when μf /μs > 50, equation (4.5) gives δ2 ≈ 0.185, as shown in figure 10. Figure 11
shows that δ2 is insensitive to the geometric imperfections introduced in the post-buckling
analysis. The solution given by equation (4.5) is consistent with our experimental results (figure 1)
and finite-element simulations performed by Cao & Hutchinson [11].

In the case of λ0 �= 1, our theoretical analysis shows that δ2 = f1(λ0, δc), and the prestrain in the
substrate is δ0 = 1 − λ0. In the presence of pre-stretch, the maximum (nominal) compressive strain
in the substrate based on the finite-element results is given by

ε11,max = δ0 + 1.11λ0

(
λ0δ − 1

2
λ2

0δ
2 − λ0δc + 1

2
λ2

0δ
2
c

)3/5
+ λ0δc. (4.6)

Note that equation (4.6) reduces to equation (4.4) in the case of λ0 = 1. The comparison of equation
(4.6) with the finite-element simulations shown in figure 9 indicates that equation (4.6) is a very



12

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140695

...................................................

0.25

0.20

0.15

0.10

0.05

100 1000 10 000
0

finite-element

0.185

l0 = 1

d2

mf /ms

Figure 10. Comparison of δ2 predicted from equation (4.5) for different modular ratios with our finite-element results. (Online
version in colour.)

0 0.02 0.04 0.06 0.08 0.10 0.12
h

0.25

0.20

0.15

0.10

0.05

0

d2
finite-element

0.185

l0 = 1

mf /ms = 774

Figure 11. The critical overall strain δ2 for the onset of the period-doubling mode corresponding to different imperfection
amplitudes. (Online version in colour.)

good approximation. When ε11,max = εc, the period-doubling occurs. This condition together with
equation (4.6) gives

δ2 = 1
λ0

− 1
λ0

√
(1 − λ0δc)2 − 2

[
εc − δ0 − δc

1.11λ0

]5/3
, (4.7)

where εc = 0.381 + 0.15(λ0 − 1). We have compared the predicted δ2 given by equation (4.7) with
our finite-element simulations. The results are plotted in figure 12 for two different modular ratios
and various pre-stretch ratios. Equation (4.7) matches the finite-element results well. It is also
seen that the pre-stretch has pronounced effects on δ2. With the increase of λ0 from 0.8 to 1.3, δ2
increases by a factor of five.

To validate further our analysis and equation (4.7), experiments have been performed. PDMS
bulk was chosen as the soft substrate, and the stiff film was generated by subjecting the PDMS
to a UV-ozone treatment for 10 min. Experimental details are given in appendix A. The surface
wrinkling morphology of the PDMS bulk with occurrence of period-doubling is shown in
figure 13 for λ0 = 0.83, 0.9, 1, 1.1, respectively. It is a challenging issue to accurately determine
δ2 in our experiments; therefore, it is difficult to quantitatively validate equation (4.7). However,
figure 13 indeed shows that the onset of period-doubling strongly depends on the pre-stretch ratio
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and the experimental results basically support our theoretical and numerical results. Equations
(4.5) and (4.7) are valid for the systems with relatively large modular ratio μf /μs; when the
modular ratio is small, say smaller than 10, some localized buckling modes may occur instead
of period-doubling [11], which is beyond the scope of this study. Very recently, Auguste et al. [26]
studied the post-wrinkling bifurcations in films on pre-stretched substrate through a combination
of simulations and experiments. They found the interesting ‘chaotic’ wrinkling when λ0 = 0.7. In
our experiments, the minimum pre-stretch ratio λ0 = 0.83 at which stable period-doubling was
observed.

The solution in equation (4.7) allows us to predict the critical condition for the onset of the
period-doubling mode, and thus it provides a guideline for controlling surface wrinkling patterns
by tuning the stress state in the substrate. Understanding the morphogenesis and origin of shapes
has long been a central goal of developmental biology [27–29]. Growth is responsible for the
morphogenesis of biological organs and tissues, which consists of a series of orchestrated steps
[30]. Besides genetic and chemical effects, mechanical environments play a significant role in
regulating pattern formation. Differential growth or atrophy of tissues and organs could induce
residual stresses, which are important in the morphogenesis and physiological functions of soft
tissues and organs [28,31–33]. Recently, Ben Amar & Jia [34] have studied the surface wrinkling
and the zigzag mode of a hyperelastic bilayer soft tissue. In their study, differential growth of the
soft tissue elicits residual stresses which lead to surface instability. In this paper, we have studied
the development of a period-doubling mode in the plane strain compression of film/substrate
bilayer systems with focus on the effects of prestresses. Equation (4.7) clearly demonstrates that
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prestresses in the substrate affect the evolution of wrinkling patterns and therefore it would be
interesting to take this factor into account in understanding the correlation between the growth
and morphogenesis of biological organs and tissues.

It should be pointed out that this study is limited to the system with a flat surface. In this sense,
although figure 11 shows that δ2 is insensitive to geometric imperfections introduced in the post-
buckling analysis, the geometric imperfections should be smaller than the film thickness in order
to use equations (4.5) or (4.7) as appropriate. To illustrate this point further, we explore a case
where geometric imperfections are introduced based on a buckled deformation corresponding
to the sinusoidal mode. In the initial configuration, the buckled amplitude of film is much
greater than its thickness. Electronic supplementary material, Video S2, shows the deformed
configurations of the system at different overall compressive strains. In this case, equation (4.5)
is no longer valid to predict the critical overall compressive strain δ2 for the onset of period-
doubling. However, it is interesting to find that period-doubling still occurs when the local
nominal strain in the substrate at the centre of the peak (figure 4) reaches the characteristic strain
εc. Both this example and the solution in equation (4.5) indicate that the period-doubling mode
employs the sinusoidal wrinkling mode as the base state and is almost independent of the overall
strain in the fundamental state given in figure 2. Besides the wavelength, the sinusoidal wrinkling
mode is primarily characterized by its amplitude. This may help us to understand why the critical
condition for period-doubling is given in terms of the characteristic maximum nominal strain in
the substrate.

5. Concluding remarks
Understanding the unusual wrinkling modes at compressive strains well above the bifurcation
strain such as period-doubling and folding is a challenging issue [5,11,16,34]. In this paper,
we have studied the occurrence of a period-doubling mode in the plane strain compression of
film/substrate bilayer systems. Our analysis shows that the overall compressive strain δ2 in the
film for the onset of the period-doubling mode depends on the substrate pre-stretch ratio and the
critical overall strain for the onset of wrinkling. When the modular ratio of the film to the substrate
is large, say greater than 50, δ2 only depends on the substrate pre-stretch and is insensitive to
the wrinkling strain. Nonlinear finite-element analysis (compressing and unfolding the system)
reveals a characteristic strain of 0.381 (with no substrate pre-stretch) for the onset of period-
doubling. When maximum compressive strain reaches the value of εc, the period-doubling mode
occurs and the potential energy of system in this case is lower than that of the sinusoidal wrinkling
mode. This indicates that the period-doubling mode is indeed energetically favourable and likely
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to occur in practical systems. Finally, explicit solutions based on the characteristic strain have been
formulated to predict the overall compressive strain for the onset of the period-doubling in the
cases with or without substrate pre-stretch. The solutions proposed here match both experimental
and finite-element results well.
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Appendix A. Experimental details

(a) Materials
PDMS bulk was prepared by mixing the base and curing agent (Sylgard 184, Dow Corning)
in a ratio of 40 : 1 by weight. The mixture was then cured at 60◦ for 3 h, after being degassed
for 1 or 2 h to remove excess bubbles. The PDMS bulk was cut into cuboids of size 20 × 15 ×
7 mm in the experiment. The initial shear modulus of the PDMS bulk was measured as being
around 0.043 MPa through performing indentation tests by using the Bose ElectroForce3100 test
instrument.

(b) Surface treatments of Poly(dimethylsiloxane)
The PDMS (with or without pre-stretch) was subjected to a UV-ozone treatment for 10 min. A
thin, stiff film was then formed onto the PDMS surface. Wrinkles formed when the film/substrate
system was compressed. The tensile/compressive tests were performed using a locally made
uniaxial tensile instrument. UV-ozone conditioning was provided by a UV-ozone cleaner. The
modulus of the film induced by the UVO treatment is of the order 10 GPa [35].

(c) Examination of surface morphology
The PDMS surface was observed using a laser scanning microscope (VK-X100 K, Keyence, Japan).
We observed the surface morphology while applying compression to the treated PDMS bulk. The
compressive strain δ in figure 13 corresponded to the situation where the period-doubling mode
was clearly observed.
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