Skip to main content
. 2014 Dec 26;9(12):e115065. doi: 10.1371/journal.pone.0115065

Table 2. Modeling options from NMA R packages gemtc, pcnetmeta and netmeta.

Tasks Features gemtc pcnetmeta netmeta
NMA Model Based on Generalized Linear Models [6], [17] Multivariate methods [18] Graph theory [32]
Model options regarding the Homogeneity assumption Fixed-effect model
Random-effect model with a common heterogeneity parameter
Random-effect model with different heterogeneity parameters
Model options regarding the Consistency assumption Consistency model
Inconsistency model
Inclusion of covariates Meta-regression
Estimation framework Frequentist
Bayesian
Bayesian Modeling NA
Prior distributions for baseline and relative effect parameters Default distribution and parameter values ✓ Normal distribution, heuristic initial values ✓ Normal distribution, heuristic initial values
Option for user-specified distribution and parameter values ✓ Restricted to specifying variance ✓ Restricted to Normal distribution
Prior distribution for heterogeneity parameters Default distribution and parameter values ✓ Uniform distribution, heuristic initial values ✓ Inverse-Gamma distribution, specific values
Option for user-specified distribution and parameter values ✓ Uniform or Gamma distribution, specify values ✓ Inverse-Gamma or Wishart distribution, specify values
Markov Chain Monte Carlo (MCMC) Sampler WinBUGS
OpenBUGS
JAGS
Control over posterior samples Total iterations
Adaptation phase
Burn-in phase
Thinning
Model convergence diagnostics Option for multiple chains
Time-series plot
Trace plot
Brooks-Gelman-Rubin (BGR) diagnostic test