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Abstract

GPR120 (Ffar4) has been postulated to represent an important receptor mediating

the improved metabolic profile seen upon ingestion of a diet enriched in

polyunsaturated fatty acids (PUFAs). GPR120 is highly expressed in the digestive

system, adipose tissue, lung and macrophages and also present in the endocrine

pancreas. A new Gpr120 deficient mouse model on pure C57bl/6N background

was developed to investigate the importance of the receptor for long-term feeding

with a diet enriched with fish oil. Male Gpr120 deficient mice were fed two different

high fat diets (HFDs) for 18 weeks. The diets contained lipids that were mainly

saturated (SAT) or mainly n-3 polyunsaturated fatty acids (PUFA). Body

composition, as well as glucose, lipid and energy metabolism, was studied. As

expected, wild type mice fed the PUFA HFD gained less body weight and had lower

body fat mass, hepatic lipid levels, plasma cholesterol and insulin levels and better

glucose tolerance as compared to those fed the SAT HFD. Gpr120 deficient mice

showed a similar improvement on the PUFA HFD as was observed for wild type

mice. If anything, the Gpr120 deficient mice responded better to the PUFA HFD as

compared to wild type mice with respect to liver fat content, plasma glucose levels

and islet morphology. Gpr120 deficient animals were found to have similar energy,

glucose and lipid metabolism when fed HFD PUFA compared to wild type mice.

Therefore, GPR120 appears to be dispensable for the improved metabolic profile

associated with intake of a diet enriched in n-3 PUFA fatty acids.
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Introduction

GPR120 is a G-protein coupled receptor that is highly expressed in the human and

rodent digestive system, notably, though not exclusively, in enteroendocrine L-

cells [1]. In the intestine, GPR120 mediates free fatty acid (FFA) stimulated release

of glucagon-like peptide 1 (GLP1) that increases glucose stimulated insulin

secretion (GSIS), enhances b-cell mass and reduces gastric emptying and appetite

[2]. Germ free mice given access to intralipid emulsions display significantly

reduced intestinal expression of GPR120, indicating that expression of this

receptor is dependent on the intestinal lipid content and microbiota [3]. In

addition to its role in the intestine, GPR120 is also expressed in adipose tissue,

lung, pro-inflammatory macrophages and islets of Langerhans [2, 4–6]. GPR120

was recently shown to be expressed in the delta-cells of the islets of Langerhans

mediating a negative effect on glucose stimulated somatostatin secretion [7] as

well as in alpha-cells mediating the fatty acid induced secretion of glucagon [8].

Long chain fatty acids (LCFAs) are preferred ligands for GPR120 [2, 9, 10]

[5, 11]. The most potent GPR120 ligands are n-3 polyunsaturated fatty acids

(PUFAs), such as a-linolenic acid (ALA), eicosapentaenoic acid (EPA) and

docosahexaenoic acid (DHA) [5, 11]. However, also n-6 PUFA and saturated fatty

acids are able to activate the receptor [2, 8].

Mice deficient in Gpr120 have been developed and studied in relation to diet-

induced obesity and insulin resistance [5, 6] [8]. Oh et. al. performed studies on

Gpr120 deficient mice having a mixed 129Sv/C57BL/6 genetic background and

exon 2 replaced by a neomycin selection marker. The Gpr120 deficient mice,

showed impaired glucose tolerance, increased insulin secretion, as well as hepatic

and skeletal muscle insulin resistance on normal chow diet (containing exogenous

v-3 lipids) despite having unaltered body weights [5]. Both WT and Gpr120

deficient mice were similarly susceptible to the development of insulin resistance

when fed a HFD without n-3 PUFA supplementation [5]. However, unlike their

wild type counterparts, Gpr120 deficient mice did not display improvements in

insulin sensitivity and hepatic lipid content when fed a high fat diet (HFD)

supplemented with n-3 PUFA [5]. The findings by Oh and co-workers suggested

that GPR120 is necessary for the beneficial effects of n-3 PUFA on glucose control

and insulin action and, as such, supported earlier observations on the effects of n-

3 PUFA [12, 13] and reviewed in [14, 15]. It was recently shown that Gpr120

deficient mice from the same provider as used by Oh et. al. [5], and back-crossed

to C57bl/6, had higher body weight gain on chow diet [8]. On HFD diet, the

Gpr120 deficient animals were heavier than controls at younger age, but the

difference disappeared at 4 months of age. Moreover, they showed an increased

glucagon secretion and sensitivity that could help to explain the observation of

higher plasma glucose levels and impaired glucose tolerance in the Gpr120

deficient mice. It was concluded that the Gpr120 deficient mice were

hyperglycaemic and glucose intolerant because of an hyperactive counter-

regulatory response rather than insulin resistance [8]. Another study have

reported the phenotype of a different Gpr120 deficient mouse line generated on a
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mixed 129Sv/C57BL/6 genetic background with exon 1 in the Gpr120 locus

replaced by a neomycin resistance selection marker [6]. These Gpr120 deficient

mice were not different from wild-type controls with respect to body weight,

fasting plasma glucose or insulin levels when fed a chow diet. However, when fed a

60% HFD with similar amounts of saturated and mono-unsaturated lipids and

low n-3 fatty acids, the Gpr120 deficient mice displayed higher body weight, body

fat mass and liver fat as well as elevated fasting plasma glucose and insulin levels as

compared to the control mice [6]. In summary, the combined results from

published studies do not give a clear picture of the role of GPR120 for the effects

of n-3PUFA in relation to saturated long-chain fatty acids.

In the present study, a new independent Gpr120 deficient mouse line was

developed on a pure C57bl/6N genetic background with exon 1 disrupted by an

ATG-LacZ gene fusion and without carrying any antibiotic selection marker.

These mice have been used recently to investigate the distribution of the receptor,

especially in the islets of Langerhans, and importance of GPR120 for the

regulation of somatostatin and insulin secretion [7]. The mice in the present study

were fed either a HFD based on lard and palm oil in which most lipids are

saturated fatty acids (SAT HFD) or alternatively they were fed a HFD based on

Menhaden oil, which contains predominantly n-3 polyunsaturated fatty acids

(PUFA HFD). The primary aim of the study was to investigate the effects of the

PUFA diet as compared to the saturated fat diet in wild-type (WT) mice and in

Gpr120 deficient mice.

Material and Methods

Generation of Gpr120 null mice

All experiments were approved by Gothenburg Ethics Committee for

Experimental Animals.

The targeting strategy of the mouse Gpr120 gene is described under S1

Supplementary experimental procedures and illustrated in S1A Fig. In short, a

0.567 kb fragment of the coding sequence (CDS) within exon 1 was replaced in

frame by a nuclear bGal (nbGal) expression cassette and a loxP floxed PGKneo

selection marker gene. This resulted in the deletion of transmembrane domains 1–

4 of the GPR120 protein and allowed the expression of nbGal to be driven by the

endogenous Gpr120 promoter. The mice were genotyped by PCR using primers

amplifying a wild type allele (0.299 kb fragment) and the null allele (0.580 kb

fragment), forward: 5’-GCTTTCATATGGGGTTACTCG-3’; reverse: 5’-ACTTG-

GCACTGTGGGTAAACT-3’; 732, forward: 5’-TGAAGGCTCTTTACTATTGCT-

3’. Tissue samples from lung, liver and skeletal muscle were dissected from 8 week

old wild type, Gpr120 heterozygous and Gpr120 homozygous littermates. Total

RNA was extracted with TRIZol Reagent (Invitrogen) according to the

manufacturer’s protocol. Reverse transcription was performed with SuperScript

First-Strand (Invitrogen) followed by PCR using primers located in 59 UTR of

exon 1 of Gpr120 and within downstream intact exons, forward: 5’-ATGAGCGC-

GPR120 Is Not Required for n-3 PUFA Effects on Energy Metabolism

PLOS ONE | DOI:10.1371/journal.pone.0114942 December 26, 2014 3 / 25



TCTCTCAGACAGC-3’; reverse: 5’-GCCAATCCAATGTGCAAATCG-3’; forward:

5’-ATTGGCCCAACCGCATAGGAG-3’ and reverse: 5’-TCATTTCGCCTGAC-

AGACGTA-3’ (Fig. 1A). Tissue X-gal staining experiment was performed as

described previously [16] but the tissues were stained at 37 C̊ over night (Fig. 1B).

Animal experiments

The Gpr120 heterozygous mouse colony was expanded by breeding to C57Bl/6N

mice (Charles River) and heterozygous intercross was performed to produce

experimental (Gpr120 KO) and wild type (WT) littermate control cohorts, having

a pure C57bl/6N genetic background. Male Gpr120 KO and WT littermates were

housed individually in a temperature controlled room (22 C̊) with a 12 hour

light-dark cycle. They had access to a normal chow diet (R36, Lactamin AB,

Stockholm, Sweden) and water ad libitum. The R36 chow diet contained (weight

%): 3.5% cellulose, (energy %): 22.9% protein, 67.1% carbohydrate and 9.6% fat.

The main sources of proteins were from soy, grain and potatoes. Carbohydrate

source was mainly grains and the main fat source was soy beans. Fatty acid

composition of the R36 chow diet is the following; C16:0,18%; C18:1 n9,16%;

C18:2 n6,53%; C18:3 n3,5% (remaining n3 FAs ,0.1%). The energy density of

R36 is 3.08 kcal/g. During high fat diet (HFD) feeding, two different HFD were

used (Research Diets Inc., New Brunswick, USA). Both diets had the following

energy source composition (energy %): proteins 20%; carbohydrates 35%, lipids

45% and an energy density of 4.73 kcal/g. The lipids from the polyunsaturated

(PUFA) HFD were derived from Menhaden oil and contained 29% saturated fat,

24% monounsaturated fat and 47% polyunsaturated fat, resulting in 11 g/kg n-6

lipids, 75 g/kg n-3 lipids and an n-6/n-3 ratio of 0.14. The lipids from the

saturated (SAT) HFD were derived from lard (50%) and palm oil (50%) and

contained 42% saturated fat, 45% monounsaturated fat and 13% polyunsaturated

fat, resulting in 27 g/kg n-6 lipids, 2 g/kg n-3 lipids and an n-6/n-3 ratio of 15.33.

Detailed information on the diets is presented in S1 Table.

The mice were initially fed the normal R36 chow diet. At 13 weeks of age, they

were subdivided into two groups, and 1 cohort of Gpr120 KO mice (n57) and 1

cohort of WT mice (n58) were switched to the SAT HFD while a second cohort

of Gpr120 KO mice (n57) and WT mice (n58) were switched to the PUFA HFD.

The HFD was provided to all animals over an 18 week period. Separate groups of

WT (n58) and Gpr120 KO (n58) mice were fed R36 chow diet for 16 weeks

before their body composition was analysed.

All mice were terminated at 31 weeks of age, 18 weeks after the introduction of

their respective HFDs. The mice were fasted for 3 hours, then anaesthetised by

Isoflurane inhalation and blood was collected in EDTA-coated tubes by cardiac

puncture. Blood plasma was separated by centrifugation (2500 rpm (664 g),

10 min. 4 C̊) and snap frozen in liquid nitrogen. Liver tissue samples were taken

for hepatic triglyceride content analysis [17]. Tissue samples of liver, epididymal

WAT and pancreas were processed for histological analysis by immersion fixation
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in 4% buffered formaldehyde solution for 24–48 hours, dehydrated in graded

series of alcohol and embedded in paraffin, sectioned and stained.

Body weight, indirect calorimetry, locomotor activity, food intake,

body temperature and composition

Body weights of the Gpr120 KO and WT mice were recorded on a weekly basis

from 4 weeks of age up to 23 weeks of age and then finally at 31 weeks of age.

Fig. 1. Validation of the genetic model. A; Gpr120 transcript and RT-PCR analysis. Tissues were dissected from wild type, Gpr120 heterozygous and
Gpr120 homozygous littermate mice. Arrows indicate oligos used for RT-PCR. B; Representative pictures of LacZ expression by X-gal induced staining in
lung and intestine dissected from wild type and Gpr120 KO mice. C; Tissue slides of intestine and lungs derived from Gpr120 KO mice stained with X-gal.
Magnification was set to 40x.

doi:10.1371/journal.pone.0114942.g001
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Body length (nose to base of the tail) was assessed at 23 weeks of age. Assessment

of indirect calorimetry, water consumption and locomotor activity was performed

at 22–23 weeks of age (10 weeks after HFD introduction) in a CLAMS system

(Columbus Instruments, Columbus, USA) at thermoneutral temperature (set for

WT mice to be 29.5 C̊) as previously described [18]. The mice were placed in the

CLAMS calorimeter chambers with ad libitum access to diet and water for

72 hours. Energy intake was analysed over 48 hours in food deprived mice

(12 hours) as previously described [19] with a minor modification: no initial

incubation (80 C̊ for 1 hour) of the cages was done. Total faeces produced over

the measurement periods were collected and the energy content of the faeces was

determined with a bomb calorimeter (C 5000, IKAH Werke GmbH & Co. KG,

Germany). Rectal core body temperatures were recorded in conscious non-

anaesthetised mice during day time (10.00–11.00 am) using a rectal probe [18].

Body composition was assessed by dual energy X-ray absorptiometry (DEXA, GE

Lunar, Madison, USA) in Isoflurane anaesthetised mice as previously described

[18].

Oral glucose tolerance test (OGTT)

OGTT was performed 14 weeks after respective HFD introduction as previously

described [20]. Fasting blood glucose level times fasting insulin level was

calculated [fasting blood glucose (mM) x fasting blood insulin (ng/ml)] as an

index of insulin resistance.

Plasma analysis

Plasma levels of cholesterol, triglyceride, leptin, adiponectin, alanine amino-

transferase (ALT) and albumin were determined as previously described [17].

Plasma levels of fructosamine were measured using an enzymatic colorimetric

method (Kit No FR2992, Randox Laboratories Ltd, UK) and assays were

performed on an ABX Pentra 400 (Horiba ABX, France). Total bilirubin was

measured using a colorimetric method (Kit No 11552414 216; BIL-T, Roche

Diagnostics GmbH, Germany). Plasma lipids were extracted as described

previously [21] and explained in detail under S1 Supplementary experimental

procedures. Individual fatty acids, including, C14:0, C16:0, C16:1n-9, C18:0,

C18:1n-9, C18:2n-6, C18:3n-3 (ALA), C20:4n-6, C20:5n-3 (EPA), C22:6n-3

(DHA) were quantified by calculating area response versus the internal standard.

Histology

Epididymal WAT macrophage staining and semi quantitative assessment were

performed on histological sections as previously described using an anti-Mac2/

galectin3 antibody [17]. Adipocytes were also double stained with Perilipin and

Mac2/gelectin3 antibodies, details are outlined in S1 Supplementary experi-

mental procedures. Histopathological examination and evaluation of liver tissue
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samples was performed on hematoxylin-eosin (H&E) stained sections and degree

of steatosis and inflammation was scored on a semi quantitative 5 grade scale.

Serial sections of paraffin embedded pancreases were employed for immunos-

taining and were prepared from WT mice fed chow (n53 separate group), SAT

HFD or PUFA HFD and from Gpr120 KO mice fed chow (n53 separate group),

SAT HFD or PUFA HFD. Sections were stained with anti-insulin (Dako

Cytomation, Ely, UK) and anti-Mac2 (Cederlane Labs, Ontario, Canada)

antibodies (DAKO, Ely, UK) using standard immunoperoxidase technique (see S1

Supplementary experimental procedures). Slides were examined by light

microscopy and quantitative analysis carried out using randomly selected islets

from each section. The number of Mac2/galectin3 positive cell profiles (indicating

the number of macrophages) present within the islet profile or in the peri-islet

area was recorded. The area of each islet was measured using ImageJ software.

Statistical analysis

All values are given as group means ¡ SEM. Statistical analyses was performed

using 1-way ANOVA and if significant (p,0.05) followed by pair-wise

comparison using Student’s t-test between the two HFD groups in WT and

Gpr120 KO mice, respectively. The other 4 possible comparisons were not tested.

Statistical calculations of parameters measured over time were done by a 2-way

ANOVA using time and diet as factors or alternatively calculating AUC for each

observation and then applying 1-way ANOVA. Data was log normalized when

appropriate. p,0.05 between the groups was considered to be statistically

significant differences.

Results

Gpr120 null animals were generated by targeted deletion of a part of exon 1 in the

Gpr120 locus (S1A Fig.). Gpr120 deficiency was confirmed by RT-PCR analyses,

designed to amplify fragments both within and outside the deleted DNA sequence,

using RNA derived from skeletal muscle, liver and lung tissue from wild type,

heterozygous and homozygous Gpr120 KO mice. As expected, no expression of

Gpr120 was observed in the homozygous Gpr120 KO mice (Fig. 1A). The

construct design was validated by LacZ expression in which blue staining was

observed in tissue sections where GPR120 is known to be present upon incubation

with X-gal. Staining was observed in the lung and the intestine of Gpr120 deficient

mice but was absent from all tissues in WT mice (Fig. 1B). Slides from intestine

and lungs clearly show positive staining in enteroendocrine cells and goblet cells,

respectively (Fig. 1C). Intercrossing of male and female mice heterozygous for the

Gpr120 mutation resulted in offspring of normal litter sizes. Among the male

offspring; 26% were homozygous for the deletion, 48% were heterozygous and

26% were wild type.
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Body weight and body composition

No significant differences in body weight gain were observed between Gpr120 KO

(n514) and WT (n516) mice on chow diet at any time point up to 13 weeks of

age (Fig. 2A). Moreover, body composition was assessed by DEXA in a separate

cohort of chow fed Gpr120 KO and WT mice at 16 weeks of age. At that time,

there was no significant difference in absolute and relative measures of body lean

mass, body fat mass, bone mineral content (BMC) or bone mineral density

(BMD) (data not shown). The mice in this cohort were also studied with respect

to assessment of body weight gain, indirect calorimetry, ECG and a number of

behavioural assessments [18] over a 48 week period. No significant differences

were observed in any of these assessments between chow fed WT and Gpr120 KO

mice (data not shown).

After switching to SAT HFD or PUFA HFD at 13 weeks of age, no significant

differences in body weight gain were observed between the WT and Gpr120 KO

mice (Fig. 2B). However, PUFA HFD feeding resulted in lower body weight gain

in both genotypes. At study termination after 18 weeks on HFDs, the mice fed

SAT HFD were more than 20% heavier than the mice on PUFA HFD (p,0.05).

Body length did not differ significantly between any of the groups (data not

shown).

Assessment of body composition was performed after 11 weeks on HFD (23

weeks of age). Both WT and Gpr120 KO mice fed PUFA HFD had significantly

lower absolute and relative (% of body weight) body fat mass compared to WT

mice fed the SAT HFD (Fig. 3). Lean body mass was not significantly different

between animals on PUFA HFD as compared to SAT HFD in any of the

genotypes. Also, no significant effects on bone mineral density (BMD) or bone

mineral content (BMC) were observed between mice fed PUFA vs. SAT HFD

regardless of genotype. (Fig. 3).

Energy intake, energy expenditure, locomotor activity and core

body temperature

The major difference in body composition between mice on PUFA HFD and SAT

HFD was body fat mass. Since energy expenditure in adipose tissue is generally

relatively low, energy intake and energy expenditure are presented per individual

mouse as well as related to lean body mass. Energy intake per mouse (kcal/day)

was significantly higher when Gpr120 KO mice were fed PUFA HFD compared to

SAT HFD. The same trend was also seen in WT mice on PUFA HFD as compared

to SAT HFD (Table 1). Energy intake related to lean body mass was significantly

higher in both WT and Gpr120 KO mice on PUFA HFD as compared to SAT

HFD. Interestingly, also the faecal energy content was increased when the mice

were fed PUFA HFD compared to SAT HFD, but the difference was statistically

significant in Gpr120 KO mice only. When taking into account the faecal energy

loss, relative energy uptake was significantly higher in PUFA fed WT and Gpr120

KO mice expressed as energy intake per lean body mass. Also relative water intake

was higher when the mice were fed PUFA HFD compared to SAT HFD (Table 1).
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Mean values for energy expenditure over 72 h was calculated for each

individual mouse and presented as mean values for the treatment groups (Fig.4)

and values for each 2 h time point during the 72 h period in the CLAMS system

are presented in Fig. S2. Energy expenditure expressed per mouse was lower in

WT mice on PUFA HFD as compared to WT mice on SAT HFD, while there was

no significant difference between the groups of Gpr120 KO mice. However, there

was no significant difference in energy expenditure relative to lean body mass

Fig. 2. Body weight gain. A; Body weight gain from four to thirteen week of age during chow diet feeding in
WT mice (n516, solid line) and Gpr120 KO (n514, dashed line). B; Body weight gain over an 18 week period
of feeding of HFDs in WT fed SAT HFD (n58, filled square) and PUFA HFD (n58, open square) and in
Gpr120 KOmice fed SAT HFD (n57, dashed line, filled circle) and PUFA HFD (n57, dashed line, open circle).
Statistical analysis was done by 1-way ANOVA for each time point followed by pair wise comparisons by
Student’s t-test using a pooled estimate of variability from the ANOVA. Body weight was significantly lower in
the PUFA HFD fed mice at all time points assessed compared to mice fed SAT HFD.

doi:10.1371/journal.pone.0114942.g002
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between mice given PUFA HFD and mice given SAT HFD, neither in WT nor in

Gpr120 KO animals. No significant difference was observed in respiratory

exchange ratio (RER) between mice fed PUFA HFD and SAT HFD, regardless of

genotype (data not shown). Neither locomotor activity nor core body temperature

was significantly influenced by the diets in WT and Gpr120 KO mice (data not

shown).

Fig. 3. Body composition analyses. Body composition was assessed at 23 weeks of age after 11 weeks of
HFD. A; body fat mass, B; body lean mass and C; body bone mineral density (BMD) and content (BMC) in WT
mice fed SAT HFD (n58, filled bars) and PUFA HFD (n58, open bars) and in Gpr120 KO mice fed SAT HFD
(n57, filled bars) and PUFA HFD (n57, open bars). Statistical analysis was done by 1-way ANOVA followed
by two comparisons (SAT HFD vs. PUFA HFD) using Student’s t-test, *** p,0.001.

doi:10.1371/journal.pone.0114942.g003
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Glucose homeostasis

Measurement of fasting plasma levels of glucose and insulin as well as oral glucose

tolerance tests (OGTT) were performed 14 weeks after the HFDs were introduced.

Table 1. Energy intake and faecal energy content.

Parameter\Genotype WT (n58) SAT HFD WT (n58) PUFA HFD
Gpr120 KO (n57)
SAT HFD

Gpr120 KO (n57)
PUFA HFD 1-way ANOVA

Energy intake (kcal/day) 15.31¡1.03 17.56¡0.88 14.93¡0.98 18.03¡0.87* p,0.05

Rel. energy intake (kcal/day/g
LBM)

0.66¡0.04 0.84¡0.05* 0.70¡0.04 0.82¡0.04* p,0.05

Faecal energy content (kcal/day) 1.07¡0.09 1.38¡0.14 1.14¡0.12 1.46¡0.08* p,0.05

Energy uptake (kcal/day) 14.24¡0.95 16.18¡0.76 13.79¡0.88 16.57¡0.80 NS

Rel. energy uptake (kcal/day/g
LBM)

0.61¡0.04 0.78¡0.05* 0.64¡0.04 0.75¡0.04* p,0.05

Water intake (ml/day) 2.28¡0.19 2.69¡0.14 2.19¡0.18 3.12¡0.39* p,0.05

Rel. water intake (ml/day/g LBM) 0.098¡0.007 0.129¡0.007** 0.104¡0.008 0.142¡0.020 p,0.05

Values are presented as group mean ¡ SEM. Rel. 5 relative. LBM 5 lean body mass. Statistical analysis performed by 1-way ANOVA followed by Students
T-test comparing SAT HFD vs. PUFA HFD. Star indicates significant difference between mice fed SAT HFD vs. WT fed PUFA HFD. * p,0.05; ** p,0.01.

doi:10.1371/journal.pone.0114942.t001

Fig. 4. Indirect calorimetry assessment. A; Energy expenditure given in kilocalories per hour per mouse
(kcal/h) and B; energy expenditure relative to lean body mass (LBM). The groups are WT fed SAT HFD (n58)
and PUFA HFD (n58) as well as Gpr120 KO mice fed SAT HFD (n57) and PUFA HFD (n57). Mean values
for energy expenditure over 72 h was calculated for each individual mouse and the graphs show mean values
for the treatment groups. Statistical analysis was performed using 1-way ANOVA followed by Student’s t-test
comparing SAT HFD and PUFA HFD in each genotype, * p,0.05.

doi:10.1371/journal.pone.0114942.g004
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Both WT and Gpr120 KO had significantly lower fasting insulin levels on PUFA

HFD than on SAT HFD. In contrast, Gpr120 KO mice, but not WT mice, had

significantly lower fasting plasma glucose levels on PUFA HFD as compared to

SAT HFD. An insulin resistance index (glucose (mM) x insulin (ng/ml)) was

calculated and it was significantly lower in both groups of mice on PUFA HFD

than in those on SAT HFD (Fig. 5A). Oral glucose tolerance was improved in

both WT and Gpr120 KO mice fed PUFA HFD compared to SAT HFD (Fig. 5B).

In WT mice, blood glucose area under the curve (AUC) was 1714.1¡110.5 on

PUFA HFD and 2151.4¡103.5 on SAT HFD (p,0.05), and in Gpr120 KO mice,

blood glucose AUC was 1532.5¡47.0 on PUFA HFD and 1817.1¡50.6 on SAT

HFD (p,0.01). The insulin response measured as AUC was significantly lower

following the glucose challenge in both genotypes when fed the PUFA HFD as

compared to the SAT HFD. In WT mice, blood insulin AUC was 257.6¡53.4 on

PUFA HFD and 683.5¡107.6 on SAT HFD (p,0.01), and in Gpr120 KO mice,

blood insulin AUC was 304.6¡50.6 on PUFA HFD and 554.0¡84.7 on SAT HFD

(p,0.05). The 15 minute insulin response in Gpr120 KO mice on PUFA HFD was

more marked and correlated with a trend towards lower blood glucose levels at

30 minutes in the Gpr120 KO mice compared to WT mice on PUFA HFD

(Fig. 5B).

Tissue weights and histology

Final body weight was 18% lower in WT mice and 12% lower in Gpr120 KO mice

on PUFA HFD as compared to the corresponding groups on SAT HFD (Table 2).

Interestingly, the relative weights of epididymal and retroperitoneal fat depots

tended to be higher in WT animals and was significantly higher in Gpr120 KO

animals on PUFA HFD as compared to those on SAT HFD. However, there was

no effect on diet or genotype on relative brown adipose tissue (BAT) weights. The

relative liver weight was approximately 40% lower in both WT and Gpr120 KO

animals on PUFA HFD.

Epididymal white adipose tissue (WAT) was analysed in terms of macrophage

content. No significant differences in Mac2 quantified staining were observed

between PUFA HFD and SAT HFD fed mice. In WT mice, Mac2 area was

1.14¡0.23% on PUFA HFD and 0.98¡0.34% on SAT HFD, and in Gpr120 KO

mice, the Mac2 area was 0.98¡0.21% on PUFA HFD and 0.80¡0.22% on SAT

HFD (representative slides shown in S3 Fig.). WAT tissue was also double stained

with Perilipin and Mac2 to understand how the different pattern of immune

markers correlated with dead adipocytes (Fig. 6). As expected, adipose tissue from

mice fed SAT HFD displayed high number of ‘crown like’ structures (CLS)

surrounding perilipin-free lipid droplets (Fig. 6 and S3 Fig.). Interestingly,

staining of the WAT macrophages in mice fed the PUFA HFD revealed the

presence of similar numbers of immunopositive macrophages but these displayed

a different pattern of Mac2-staining as multinuclear giant cells aggregation

(MNGCA) rather than CLS, and only a few of the CLS were observed in samples

from the mice fed PUFA HFD (Fig. 6). Most cells on the slides displayed positive
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perilipin staining, regardless of genotype and diet. However, WAT tissue slides

from mice fed SAT HFD displayed more frequent perilipin negative cells

associated with the CLS compared to mice fed PUFA HFD. Slides from PUFA

HFD fed mice had less perilipin free cells, indicating that PUFA HFD feeding is

associated with fewer dead adipocytes compared to SAT HFD feeding. No

differences between genotypes were observed with respect to Mac2 and perilipin

staining.

The inferior lobes of the liver were sampled to assess liver triglyceride content

and histopathology. WT mice fed PUFA HFD displayed about 70% lower hepatic

triglyceride content compared to the SAT HFD fed WT mice. Gpr120 KO mice fed

PUFA HFD had close to 90% lower liver triglyceride content compared to Gpr120

Fig. 5. Oral glucose tolerance test. A; Fasting blood insulin, glucose levels and insulin resistance index (glucose (mM) x insulin (ng/ml)) and B; oral
glucose tolerance test in WT mice fed SAT HFD (n58, filled bars, filled square) or PUFA HFD (n58, open bars, open square) and in Gpr120 KO mice fed
SAT HFD (n57, filled bars, dashed lines filled circle) or PUFA HFD (n57, open bars, dashed lines open circle). Statistical calculations were based on
individual area under the curve (AUC) values, calculated from 0 to 120 minute time points. Statistical analysis was done by 1-way ANOVA followed by two
comparisons (SAT HFD vs. PUFA HFD) using Student’s t-test, * p,0.05; ** p,0.01.

doi:10.1371/journal.pone.0114942.g005
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KO mice fed the SAT HFD (Fig. 7A). These findings were supported by

histopathological examination, which revealed that the PUFA HFD fed mice,

regardless of genotype, displayed a lower degree of hepatic steatosis compared to

animals fed the SAT HFD. The steatosis was graded from 0 to 5 and mean

steatosis grade was 3.9¡0.1 in WT and 4.0¡0.0 in Gpr120 KO mice on SAT

HFD. On PUFA HFD, the steatosis grade was 1.6¡0.4 in WT animals and

0.6¡0.3 in Gpr120 KO mice. In addition, liver samples from PUFA HFD fed WT

and Gpr120 KO mice showed conspicuous sinusoidal Kupffer cells and/or possibly

perisinusoidal Ito cells. These cells had a foamy appearance with markedly swollen

and slightly basophilic cytoplasm, and they were sometimes surrounded by

inflammatory cells (Fig. 7B).

Pancreases were analyzed to determine the average islet area and macrophage

content. Separate cohorts of chow fed WT and Gpr120 KO mice were also

included to understand islet size and inflammation under normal dietary

conditions. No significant difference was observed in islet area between PUFA

HFD fed and SAT HFD fed WT mice (Fig. 8A). However, the PUFA HFD fed WT

mice displayed lower numbers of macrophages per islet compared to the SAT

HFD fed mice (PUFA HFD: 2.09¡0.45 cells/islet, SAT HFD: 3.11¡0.19;

p50.05). Gpr120 KO mice fed PUFA HFD had significantly lower islet area and

Table 2. Absolute and relative tissue weights.

Parameter\Genotype
WT (n58) SAT
HFD WT (n58) PUFA HFD

Gpr120 KO (n57)
SAT HFD

Gpr120 KO (n57) PUFA
HFD 1-way ANOVA

Body weight (g) 53.50¡1.12 43.83¡3.05* 50.03¡1.20 43.90¡2.08* p,0.05

Lung (g) 0.17¡0.00 0.18¡0.01 0.16¡0.00 0.18¡0.01 NS

Rel. lung (mg/g bw) 3.11¡0.04 4.31¡0.29*** 3.25¡0.07 4.11¡0.07*** p,0.05

Heart (g) 0.19¡0.01 0.17¡0.01 0.18¡0.00 0.18¡0.01 NS

Rel. Heart (mg/g bw) 3.58¡0.11 4.03¡0.17* 3.66¡0.07 4.12¡0.13** p,0.05

Epi WAT (g) 1.69¡0.14 1.91¡0.23 2.07¡0.12 2.27¡0.14 NS

Rel. epi WAT (mg/g bw) 31.81¡3.09 42.72¡4.48 41.73¡3.44 51.54¡0.98* p,0.05

Retro WAT (g) 0.59¡0.03 0.55¡0.07 0.62¡0.04 0.70¡0.03 NS

Rel. retroWAT (mg/g bw) 11.00¡0.62 12.38¡1.63 12.47¡0.98 16.08¡0.57** p,0.05

BAT (g) 0.54¡0.04 0.49¡0.07 0.51¡0.04 0.40¡0.04 NS

Rel. BAT (mg/g bw) 10.08¡0.67 10.76¡1.14 10.23¡0.62 8.95¡0.65 NS

Testis (g) 0.22¡0.00 0.22¡0.01 0.22¡0.01 0.22¡0.01 NS

Rel. Testis (mg/g bw) 4.03¡0.11 5.29¡0.43** 4.35¡0.17 5.11¡0.27* p,0.05

Liver (g) 4.33¡0.34 2.19¡0.22*** 3.38¡0.29 1.84¡0.07*** p,0.05

Rel. liver (mg/g bw) 80.21¡5.09 49.60¡2.57*** 67.13¡4.62 42.20¡1.02*** p,0.05

Kidney (g) 0.43¡0.02 0.42¡0.02 0.40¡0.01 0.47¡0.03 NS

Rel. Kidney (mg/g bw) 8.03¡0.28 9.84¡0.50** 8.08¡0.13 10.75¡0.38*** p,0.05

Values are presented as group mean ¡ SEM. Statistical analysis performed by 1-way ANOVA followed by Students T-test comparing SAT HFD vs. PUFA
HFD Star indicates significant difference between mice fed SAT HFD vs. WT fed PUFA HFD.
* p,0.05; ** p,0.01;
*** p,0.001.
WAT; white adipose tissue, Epi; Epididymal, Retro; retroperitoneal, BAT; brown adipose tissue, bw; body weight.

doi:10.1371/journal.pone.0114942.t002
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macrophage content per islet compared to Gpr120 KO mice fed SAT HFD

(Fig. 8B).

Plasma analysis

Plasma levels of adiponectin were higher and ALAT levels were lower in PUFA

HFD fed vs. SAT HFD fed WT and Gpr120 KO mice (Table 3). Plasma leptin

levels trended to be lower in PUFA HFD fed mice, but the effect was not

statistically significant. Plasma levels of albumin were significantly lower in PUFA

HFD fed vs. SAT HFD fed WT mice, but no significant effect of diet on plasma

albumin was observed in Gpr120 KO mice. Plasma cholesterol levels were

significantly lower and there was a trend towards lower plasma triglyceride levels

in the mice fed PUFA HFD compared to mice given SAT HFD. There was no

effect of the diets on fructosamine levels. The fatty acid composition of

triglycerides, phospholipids and cholesteryl esters were determined in plasma. The

content of C20:5n-3was below the detection limit in the SAT HFD mice and

PUFA HFD diet resulted in high levels of this fatty acid. The levels of 22:6n-3 and

C18:3n-3 were significantly higher in mice fed PUFA HFD than in mice fed SAT

HFD. The mol% of n-3 PUFA (22:6n-3, C20:5n-3, C18:3n-3) was 38.2% and

Fig. 6. Adipose tissue histology. Representative slides of epididymal WAT double-stained for Perilipin and
Mac2 (Macrophage 2 antigen, Galectin-3) from WT and Gpr120 KO mice fed either the SAT HFD or PUFA
HFD as indicated. Perilipin staining is seen as read coloured lines surrounding the cells. Some cells, typically
associated with ‘crown like’ structures (CLS) do not display perilipin staining. Arrows indicate CLS (black
arrow) and multinuclear giant cell aggregate (blue arrow). Scale bar upper left corner 5100 mm.

doi:10.1371/journal.pone.0114942.g006
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39.3% in WT and Gpr120 KO mice fed PUFA HFD respectively, and 7.2 and 9.3%

in WT and Gpr120 KO mice fed SAT HFD respectively. Mice fed PUFA HFD,

regardless of genotype had increased levels of C14:0 and C16:1, but significantly

lower levels of C16:0, C18:0, C18:1n-9, C18:2n-6 and C20:4n-6 compared to mice

fed the SAT HFD (Table 3).

Fig. 7. Liver triglyceride content and histological assessment. A; Hepatic triglyceride content was
measured at 31 weeks of age after 18 weeks of HFD in WT mice fed SAT HFD (n58, filled bars) and PUFA
HFD (n58, open bars) and in Gpr120 KO mice fed SAT HFD (n57, filled bars) and PUFA HFD (n57, open
bars). Statistical analysis was done by 1-way ANOVA followed by two comparisons (SAT HFD vs. PUFA HFD)
using Student’s t-test, *** p,0.001. B; Representative slides of livers stained by hematoxylin- eosin (H&E)
from WT and Gpr120 KO mice fed either the SAT HFD or the PUFA HFD as indicated.

doi:10.1371/journal.pone.0114942.g007
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Discussion

The n-3 polyunsaturated fatty acids (n-3 PUFAs) are generally considered to be

beneficial for a variety of indications, including various aspects of the metabolic

syndrome such as dyslipidemia, insulin resistance, endothelial dysfunction and

inflammation [15, 22–24]. Recently, GPR120 has been implicated in several

processes associated with metabolic regulation and body weight control [2, 5, 6]

[8] and, in particular, the receptor has been proposed to mediate the effects of n-3

PUFA on these processes [5]. Against this background, we have investigated the

well-known effects of a diet enriched in n-3 PUFA as compared to a diet

comprising mainly of saturated and monounsaturated fatty acids on glucose and

Fig. 8. Pancreas histology. A; Average islet area and B; macrophage content in WT (n53, horizontally lined
bars) and Gpr120 KO (n53, vertically lined bars) fed chow diet, WT mice fed SAT HFD (n58, filled bars) and
PUFA HFD (n58, open bars) and in Gpr120 KO mice fed SAT HFD (n57, filled bars) and PUFA HFD (n57,
open bars). Statistical analysis was done by 1-way ANOVA followed by two comparisons using Student’s t-
test, SAT HFD vs. PUFA HFD, * p,0.05; ** p,0.01.

doi:10.1371/journal.pone.0114942.g008
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energy metabolism in a newly developed Gpr120 deficient (Gpr120 KO) mouse

line. We found that wild type (WT) and Gpr120 KO mice developed a similar level

of obesity and impaired glucose control when fed a saturated HFD containing low

amounts of n-3 PUFAs. To our surprise, when fed the n-3 PUFA enriched HFD,

Gpr120 deficient mice displayed similar body weight, body fat mass, liver fat,

energy metabolism and glucose control to WT mice on n-3 PUFA HFD, showing

that GPR120 is dispensable for the positive effects of n-3 PUFA on metabolism.

The effects of n-3 PUFA supplementation on body weight regulation and

glucose control in rodents are well studied. In accordance with expectation,

consumption of a high fat diet (HFD) containing n-3 PUFA resulted in lower

body weight gain and adipose tissue mass than feeding of a HFD containing

mainly saturated fat in C57Bl/6 mice [25–27]. Similarly, fat-1 transgenic mice that

express a desaturase from C. Elegans, which converts n-6 PUFA to n-3 PUFA, also

show lower body weight gain [28] as compared to WT mice fed HFD. Our study

showed that 11 weeks of PUFA HFD feeding resulted in lower total body fat mass

compared to a corresponding group fed SAT HFD. Surprisingly, the weights of

Table 3. Plasma analyses.

Parameter\Genotype WT (n58) SAT HFD WT (n58) PUFA HFD
Gpr120 KO (n57)
SAT HFD

Gpr120 KO (n57) PUFA
HFD

1-way
ANOVA

Total bilirubin (mM) 1.78¡0.10 1.80¡0.15 1.81¡0.15 1.81¡0.12 NS

Albumin (g/l) 32.50¡0.54 29.58¡0.26*** 30.96¡0.35 29.56¡0.61 p,0.05

ALAT (mkat/l) 7.46¡0.99 0.62¡0.08*** 4.75¡0.59 0.50¡0.04*** p,0.05

Adiponectin (nM) 147.64¡18.65 275.21¡18.31*** 191.23¡11.27 335.68¡30.46*** p,0.05

Leptin (ng/ml) 68.30¡4.41 63.43¡1.92 64.54¡3.04 52.36¡5.17 p,0.05

Cholesterol (mM) 6.92¡0.20 3.64¡0.30*** 6.16¡0.25 2.90¡0.16*** p,0.05

Triglycerides (mM) 0.96¡0.15 0.64¡0.15 0.69¡0.08 0.55¡0.08 NS

Fructosamine (mM) 72.49¡2.75 68.85¡5.54 70.46¡3.69 67.30¡2.37 NS

C20:5n-6 (mM) ,LLOQ 163.9¡14.6 ,LLOQ 137.3¡6.4 -

C22:6n-3 (mM) 93.2¡4.6 129.6¡8.2** 76.5¡6.5 110.9¡5.5** p,0.05

C14:0 (mM) 48.4¡2.6 88.2¡3.8*** 62.3¡2.4 114.8¡7.5*** p,0.05

C16:0 (mM) 468.2¡29.9 207.7¡22.1*** 362.5¡34.6 165.3¡7.6*** p,0.05

C16:1n-9 (mM) 20.3¡1.6 31.8¡3.9* 16.6¡1.2 28.6¡1.9*** p,0.05

C18:0 (mM) 282.7¡10.2 119.1¡9.5*** 230.6¡20.0 98.0¡4.5*** p,0.05

C18:1n-9 (mM) 278.2¡22.6 67.1¡13.7*** 213.4¡21.6 50.4¡4.4*** p,0.05

C18:2n-6 (mM) 271.8¡15.6 22.9¡2.1*** 224.5¡21.2 18.0¡0.9*** p,0.05

C18:3n-3 (mM) 43.2¡1.1 88.7¡3.1*** 63.2¡5.1 109.1¡4.1*** p,0.05

C20:4n-6 (mM) 394.8¡17.3 91.6¡3.9*** 323.9¡25.9 77.6¡2.0*** p,0.05

% n-3 of total 7.2¡0.2 38.2¡0.8*** 9.3¡0.5 39.3¡0.4*** p,0.05

Values are presented as group mean ¡ SEM. Statistical analysis performed by 1-way ANOVA followed by Students t-test comparing SAT HFD vs. PUFA
HFD. Significance tests were made between mice fed SAT HFD vs. mice fed PUFA HFD.
* p,0.05;
** p,0.01;
*** p,0.001.
Percentage of n-3 fatty acids in plasma triglycerides, phospholipids and cholesteryl esters were calculated as sum of 18:3n-3, 20:5n-3 and 22:6n-3 divided
by the sum of all detected fatty acids. LLOQ - Lower Limit Of Quantification.

doi:10.1371/journal.pone.0114942.t003
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the epididymal and retroperitoneal fat depots were not different between the diets

at the time of sacrifice, although the total body weight was about 20% lower in the

PUFA HFD fed mice. This finding is in line with increased epididymal fat pad

weight in spite of reduced body weight gain in mice on menhaden oil diet in a

previous study [27]. Based on our own data and previous studies showing reduced

body fat mass following n-3 PUFA supplementation [25, 26], the most likely

explanation for the discrepant effect on total body fat mass and unchanged weight

of the fat pads is a change in body fat distribution, e.g. reduced subcutaneous and

visceral fat mass.

Even though the present study was not designed to evaluate the effect of a SAT

HFD as compared to chow fed mice, it was clearly demonstrated that Gpr120

deficiency did not result in a different body weight on a SAT HFD as compared to

WT mice. This finding is in contrast to the reported intolerance to HFD observed

by Ichimura et.al. [6]. In contrast to our results, they found that Gpr120 deficient

mice given a HFD containing mainly saturated and monounsaturated lipids

displayed higher body weight gain, impaired glucose control and hepatic steatosis

by comparison to WT mice fed HFD [6]. Suckow et.al. [8] using the same strain

of Gpr120 deficient mice as Oh et.al. [5], but back-crossed to C57bl/6, showed that

Gpr120 KO mice on HFD were initially heavier than the WT controls, but after 4

months there were no difference in body weight between the genotypes. We have

done another study (data not shown) in which we fed WT (n57) and Gpr120 KO

mice (n59) a HFD with 60% energy from fat (Product nr: 12492, Research Diets

Inc.). The mice were on the diet for 25 weeks and body weight gain, body

composition, indirect calorimetry, oral glucose tolerance and food intake were

recorded. However, none of these parameters were significantly different between

WT and Gpr120 KO mice using that diet. Hence, the Gpr120 deficiency model

used herein is not associated with an abnormal metabolic phenotype.

Since the effects of n-3 PUFA HFD on food intake and energy expenditure were

similar between the genotypes, it is concluded that GPR120 is not obligatory for

n-3 PUFA mediated effects on energy metabolism. In spite of increased food

intake and energy uptake, also in relation to lean body mass, the PUFA HFD fed

mice gained less body weight than the SAT HFD fed mice independent of

genotype. Therefore, it is likely that increased energy expenditure explains the

lower body weight gain during PUFA HFD as compared to feeding the SAT HFD.

The energy expenditure is presented per individual mouse and also relative to lean

body mass since body fat mass mainly explained the difference in body weight

gain and energy expenditure of adipose tissue is considered to be relatively low

[29]. Total energy expenditure per mouse was significantly lower in WT mice on

PUFA HFD than in WT mice on SAT HFD, but no significant difference was

observed between the Gpr120 KO diet groups. The difference in total energy

expenditure per mouse between WT mice given SAT HFD and WT mice given

PUFA HFD could be explained by the lower body weight (see body weights at 10

weeks in Fig. 2) and similar body composition of the Gpr120 KO mice on SAT

HFD as compared to WT mice on SAT HFD. Surprisingly, there was no detectable

difference in energy expenditure related to lean body mass in spite of higher food
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intake related to lean body mass and lower body weight gain in mice on PUFA

HFD. The measurements of energy expenditure were performed at thermoneu-

trality to avoid the influence of heat loss and therefore heat production. However,

all other experiments were performed at room temperature. It is possible that the

difference in energy expenditure between the mice on different diets was too small

to be detected by the system or that there had been a difference in energy

expenditure if the oxygen consumption had been measured at room temperature.

On the other hand, energy expenditure at thermoneutral temperature has been

shown to be increased by n-3 PUFA supplementation in a rat model [30]. Several

potential and non-exclusive mechanisms for increased energy expenditure

following n-3 PUFA diet have been described, including increased sodium and

calcium pump activities, increased mitochondrial proton leak and an enhanced

futile cycle in adipocytes involving lipolysis and re-esterification [14, 31, 32].

Therefore, a third possibility is that PUFA HFD triggered increased energy

expenditure mainly in the adipose tissue. Few studies have been performed in

humans on the effects of n-3 PUFA on energy metabolism but the available

evidence suggests that the effects are small and in line with previous results from

rodent studies [14]. For example, a cross-over study in healthy volunteers showed

that n-3 PUFA supplementation resulted in an increase in basal metabolic rate

and reduced adipose tissue mass [33].

A HFD enriched in n-3 PUFA or transgenic over expression of fat-1 have been

shown to improve glucose control in mice, including fasting plasma glucose,

glucose tolerance and several measures of insulin sensitivity [12, 13, 26, 27, 34, 35]

reviewed in [14]. In human studies, n-3 PUFA supplementation often improves

glucose control in non-diabetics but the results are less clear in type 2 diabetes

[15]. Oh and co-workers showed that n-3 fatty acid supplementation for 5 weeks

resulted in improved glucose metabolism by improving insulin sensitivity in WT

but not in Gpr120 deficient mice [5]. The importance of GPR120 in the regulation

of insulin sensitivity was recently challenged [8]. Suckow et.al. showed that the

Gpr120 deficient mice have an enhanced glucagon secretion and sensitivity, which

better explained the deteriorated glucose control than worse insulin resistance.

Islet studies showed that Gpr120 deficiency enhanced arginine stimulated

glucagon secretion, while Gpr120 deficiency reduced glucagon response to DHA

and palmitic acid, which would indicate an improved glucose control in Gpr120

KO mice on HFD [8]. In our study, the PUFA HFD had similar effects on glucose

control in WT and Gpr120 deficient mice. If anything, the Gpr120 deficient mice

on PUFA HFD displayed a healthier phenotype including significantly lower

fasting glucose levels and a more marked insulin response at 15 minutes post

glucose challenge as compared to the SAT HFD.

Adipose tissue histology showed similar number of macrophages following

PUFA HFD as compared to SAT HFD. However, the distribution of macrophages

was markedly different with less CLS and less perilipin-free lipid droplets in the

adipose tissue of mice given the PUFA HFD as compared to mice given SAT HFD.

However, we did not observe any difference between the genotypes in terms of

CLS or presence of perilipin-free lipid droplets. The lower number of CLS
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following treatment with n-3 PUFA as compared to a diet enriched in saturated

fatty acids is in line with previous studies [5, 12, 36]. In contrast to our findings,

these studies also showed reduced number of adipose tissue macrophages as a

consequence of increase in n-3 PUFA [5, 12, 36]. Instead of a reduced number of

macrophages, we observed that n-3 PUFA treatment resulted in accumulation of

macrophages as multinuclear giant cells aggregation (MNGCA). The mechanism

responsible for the n-3 PUFA induced aggregation of macrophages into

multinuclear giant cells instead of prevention of migration of macrophages into

the adipose tissue is at the present unknown. In summary, the n-3 PUFA enriched

diet showed reduced number of CLS and dead adipocytes, while no apparent

difference between WT and Gpr120 KO mice was observed.

We observed a markedly lower liver triglyceride content in mice on PUFA diet

compared to the saturated/monounsaturated diet, independent of genotype. If

anything, the liver lipid content was lower in the Gpr120 deficient than in WT

animals fed PUFA diet. This result is in sharp contrast to the finding that Gpr120

deficient mice were refractory to the n-3 PUFA diet with respect to liver fat in

another study [5]. We observed markedly higher plasma adiponectin levels in the

mice given the PUFA-enriched diet, an effect in line with previous studies [26, 37].

Further, the effect was similar in WT and Gpr120 deficient mice. Adiponectin is an

important regulator of glucose homeostasis and liver fat content [38, 39], and

therefore is a plausible mediator of the positive effects of n-3 PUFA on glucose-

and lipid metabolism.

The Langerhans islets in mice fed PUFA HFD were smaller and contained fewer

macrophages than those from mice fed the SAT HFD. This effect was, if anything,

more pronounced in the Gpr120 deficient mice. A number of factors might have

contributed to this effect. First, body weight and total body fat was lower in the

PUFA diet mice. Second, since glucose tolerance was improved in spite of reduced

insulin response, the demand for insulin production and therefore that aspect of

beta-cell stress was clearly reduced in mice given the PUFA diet as compared to

the SAT HFD. Certainly, our results are consistent with the earlier work showing

PUFA, or more specifically EPA, reduces the negative effects of long-chain

saturated fatty acids on beta-cell function and survival [40]. Our results thus

contrast with the study by Ichimura et.al. who reported that islets from Gpr120

deficient mice were larger than those from WT mice on HFD, probably reflecting

the worse insulin sensitivity in those mice [6]. In this study, we found no evidence

for larger islet size in the Gpr120 deficient mice than in WT animals, rather the

opposite. Hence, the present results do not support negative effects of Gpr120

deficiency on islet health in vivo.

An obvious question is the extent to which the present study protocol differs

from other published protocols suggesting the importance of GPR120 for glucose

and energy metabolism and whether this might explain the differing results [5, 6]

[8]. Oh et.al. switched from a 60 energy% saturated HFD to a 27% menhaden oil

replacement of the HFD during 5 weeks resulting in 25 mol% EPA and DHA in

plasma lipids whereas in our study the mice were given the n-3 PUFA enriched

diet for 18 weeks and the diet resulted in 38–39 mol% EPA, DHA and ALA
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(C18:3n-3) of total fatty acids in plasma lipids. Thus, in our work, the menhaden

diet was given in larger quantities during a longer period of time which might

have resulted in a larger effect on body weight gain. It is well know that reduced

body weight gain and increased energy expenditure will improve metabolic

impairments. Hence, it is conceivable that the effect on body weight gain in PUFA

HFD fed animals could have obscured other, subtle, effects on glucose control

which occur as a result of Gpr120 deficiency. Two of the previously published

Gpr120 KO mouse lines were developed on a mixed 129SV and C57BL/6 genetic

background and it is not clear if and to what extent these lines were bred towards

one genetic background [5, 6]. However, a recent study used mice from Taconic

backcrossed onto C57Bl/6 for 6 generations [8]. The Gpr120 KO mouse line

studied in this paper had a pure C57BL/6N genetic background and it is well

established that the genetic background will affect the phenotype of experimental

mice [41, 42]. Another technical factor is whether the DNA selection marker used

to identify positive ES-cells is maintained or removed in the mice, as it is known

that selection markers can influence phenotypes [43]. In the present study, the

selection marker was removed from the Gpr120 KO mouse line by a Cre-LoxP

breeding program. A third possible difference between the Gpr120 null mouse

lines is the targeting strategy. The mice used by Oh et.al. and Suckow et.al.

disrupted exon 2, whereas the line studied by Ichimura et.al and ourselves have

targeted parts of exon 1. We ensured that no Gpr120 transcript was present in the

Gpr120 deficient animals, either from exon 1 or from downstream exons, by

designing the RT-PCR primers to amplify over the deleted DNA region as well as

over exons 2–3. Moreover, the inhibition of glucose stimulated somatostatin

secretion by a Gpr120 agonist occurred in WT animals, but was lost in Gpr120 KO

animals [7], indicating lack of functional Gpr120 expression in our Gpr120

deficient model. Finally, the X-gal staining showed the expected tissue distribution

as compared to mRNA expression of the receptor [2, 4–6] [1].

In summary, the present study shows that the major effects of n-3 PUFA diet on

energy, lipid and energy metabolism, including any increases in plasma

adiponectin levels, are not mediated by GPR120. However, we cannot exclude the

possibility that there may be less pronounced effects of n-3 PUFA mediated by the

GPR120 receptor that were not revealed in this study because of the marked effect

of n-3 PUFA on energy metabolism.

Supporting Information

S1 Fig. (A) Gpr120 gene targeting strategy. Schematic diagram over the native 59

region of Gpr120 gene, targeting vector, targeted allele and the disrupted Gpr120

gene. A region of 0.567 kb of the Gpr120 exon 1 CDS was replaced in frame with a

nuclear bGal expression cassette followed a loxP floxed PGK neo selection marker.

Filled rectangles indicate 59 un-translated region (UTR), horizontal bar indicates

probe used for southern blotting and triangles indicate loxP sites. (B) Southern

blot analysis of the targeted ES clones. Genomic DNA was digested with SexAI or
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SspI and probed with a probe shown in (A). Expected sizes of DNA fragments of

the targeted allele are indicated in (A). Lane 1-6 represent targeted clones, lane 7

represent 1 kb marker.

doi:10.1371/journal.pone.0114942.s001 (TIF)

S2 Fig. Indirect calorimetry assessment. Energy expenditure assessed in

kilocalories per hour per mouse (kcal/h) is shown in panel A for WT fed SAT

HFD (n58, filled square) and PUFA HFD (n58, open square), and in panel B for

Gpr120 KO mice fed SAT HFD (n57, filled circle) and PUFA HFD (n57, open

circle). Energy expenditure relative to lean body mass (LBM) is shown in panel C

for WT fed SAT HFD (n58, filled square) and PUFA HFD (n58, open square)

and in panel D for Gpr120 KO mice fed SAT HFD (n57, filled circle) and PUFA

HFD (n57, open circle). Thick black lines at the X-axis represent light off.

doi:10.1371/journal.pone.0114942.s002 (TIF)

S3 Fig. Adipose tissue histology. Representative slides of epididymal WAT

stained for Mac2 (Macrophage 2 antigen, Galectin-3) from WT and Gpr120 KO

mice fed either the SAT HFD or the PUFA HFD as indicated.

doi:10.1371/journal.pone.0114942.s003 (TIF)

S1 Table. Details of diet compositions and degree of lipid saturations in the

PUFA and SAT HFD’s.

doi:10.1371/journal.pone.0114942.s004 (DOCX)

S1 Supplementary experimental procedures. Outlining details in experimental

procedures

doi:10.1371/journal.pone.0114942.s005 (DOCX)
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