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Abstract

In recent decades multifractal analysis has been successfully applied to

characterize the complex temporal and spatial organization of such diverse natural

phenomena as heartbeat dynamics, the dendritic shape of neurons, retinal vessels,

rock fractures, and intricately shaped volcanic ash particles. The characterization of

multifractal properties of closed contours has remained elusive because applying

traditional methods to their quasi-one-dimensional nature yields ambiguous

answers. Here we show that multifractal analysis can reveal meaningful and

sometimes unexpected information about natural structures with a perimeter well-

defined by a closed contour. To this end, we demonstrate how to apply multifractal

detrended fluctuation analysis, originally developed for the analysis of time series,

to an arbitrary shape of a given study object. In particular, we show the application

of the method to fish otoliths, calcareous concretions located in fish’s inner ear.

Frequently referred to as the fish’s ‘‘black box", they contain a wealth of information

about the fish’s life history and thus have recently attracted increasing attention. As

an illustrative example, we show that a multifractal approach can uncover

unexpected relationships between otolith contours and size and age of fish at

maturity.
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Introduction

The objects of classical shape analysis, such as Fourier analysis, wavelet analysis,

curvature-based analysis, and geodesic curve analysis [1, 2], are composed of

compact differentiable manifolds, smooth curves or surfaces that include their

boundaries. In this view, natural contours consist of a superficial coating of

texture or irregularity that is attached to a compact underlying structure. Hence,

rough contours can be decomposed into smooth differentiable trends and rough

additions [3]. In the case of fractal theory, roughness is considered as the main

feature evaluated, since it captures the complexity of the shape in terms of the

level of protrusions and cavities at different scales, rather than shape in the sense

of morphometry. This characteristics is important because variations in the

boundary of a natural structure during growth is a response to (i) external

boundary conditions (surface interaction) and (ii) the internal mechanisms of the

growth process. Therefore, the analyses of local and global fluctuations of the

contour may provide useful information on both.

However, when we assume a contour shape is a monofractal, we get only a

single scale exponent (fractal dimension), which cannot adequately describe

contour complexity. Thus a generalized multifractal approach is needed [4]. If we

consider the mass probability pi ‘ð Þ for regions of size (scale) ‘, and the partition

function Zq ‘ð Þ~
P

i pi ‘ð Þq for qth generalized moments, we can describe the

structure at different scales. Parameter q serves as a magnifying glass: for large

positive q the partition function Zq ‘ð Þ is dominated by those parts of the structure

with the largest values of pi ‘ð Þ, while for large negative q, Zq ‘ð Þ is dominated by

the parts of the structure with the smallest (non-zero) values of pi ‘ð Þ [5].

In recent decades multifractal analysis has been successfully applied to

characterize the complex temporal and spatial organization of very diverse natural

phenomena, including heartbeat dynamics [6], the dendritic shape of neurons [7],

retinal vessels [8], rock fractures [9], and intricate shapes of volcanic ash particles

[10]. Nevertheless, practical difficulties have thus far prevented the full use of

multifractal analysis to describe closed contours. The traditional techniques have

been demonstrated to be rather problematic because of the fact that boxes which

contain a small (or zero) number of particles (or pixels) give an anomalously large

contribution to the partition function, and consequently they do not yield reliable

results for negative q [7]. Another problem is that results turn out to be very

sensitive to the choice of the box size range. Tél et al. [11] proposed an alternative

method (the ‘‘Generalized Sand Box Method’’) to solve the first problem,

nevertheless the second issue still remains problematic. These methods also

assume the contour is a geometrical fractal, and thus important fine fluctuations

around the quasi-one-dimensional structure of the contour perimeter may be

ignored.

To overcome these technical problems, we propose here a new technique to

investigate whether fluctuations of the contour can reveal more information than

its bare morphological appearance, combining Regular Fourier Analysis (RFA)

and Multifractal-Detrended Fluctuation Analysis (MF-DFA). First, the contour is
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Fig. 1. Periodic series of otolith contour fluctuations. (A) Schematic representation of the superposition of the standard circular shape on an otolith ofM.
merlucius. The otolith radius was used to define the periodic series of the otolith contour fluctuations, derived from the normalized radius (rc) of the contour at
the angle Q for (B) M. curema and (C) M. merlucius, obtained from the image catalog of the project AFORO.

doi:10.1371/journal.pone.0115262.g001
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mapped onto a ‘‘time series’’ of distances from the central path, defined by

harmonic term zero (Fig. 1A) as observed by a virtual observer traveling along this

path at constant angular speed. The fluctuations from the central path of the

contour perimeter are registered as a ‘‘time series’’, and the MF-DFA is then

implemented to quantify the ‘‘temporal’’ (sequential angular) correlations of this

series.

To demonstrate the power of the proposed novel procedure, we apply it to

sagittal otoliths of two fish species (Fig. 1B and C). Otoliths are calcified

concretions found in a fish’s inner ear and are associated with the functions of

hearing, balance, and orientation [12]. They represent the ‘‘black-box’’ of teleost

fishes, i.e., they function as an encrypted source of life history, demographic, and

ecologic information [13], and are considered indispensable in fish stock

evaluation and management practice [14]. Information is stored in the otolith

during its biomineralization process, which starts at the otolith primordium [13]

and continues with the precipitation of calcium carbonate regulated by the

endogenous rhythm of calcium metabolism [15]. Over the fish’s life, the rhythm

of calcium aggregation changes, reflecting the growth pattern of the fish and such

periodic events as photoperiod variation, spawning, and migration [16]. These

changes are reflected in the formation of micro- and macro-structures around the

primordium [17], the chemical composition, thickness, and periodicity of

formation, which are correlated with historic events and with the age of the fish

[16].

Material and Methods

Data series construction

The data series is constructed using the values of the radius of the contour r at the

angle Q, normalized by the zero-th harmonic (Fig. 1A), with Q varying between

{p and p . The normalized (dimensionless) contour radius rc at point i of the

contour (i~1,:::,k) is defined as

rc Qð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

(i,Q)zy2
(i,Q)

q
a0

, ð1Þ

where x and y are the coordinates of the i th contour pixel at the angle Q, and a0 is

the coefficient of zero-th degree term, defined as the mean of the k radii observed

in the structure, a0~k{1Pk{1
i~0 ri [18]. The zero-th degree term represents the

contribution of a circle centered on the center of mass of the structure. Therefore

rc is less than one if the contour point lies inside the circle, and it is greater than

unity if the point lies outside the circle.

There are two advantages of using the RFA: (1) the multifractal analysis

becomes invariant to size, since the zero-th degree term is proportional to the size

of the image; (2) complex morphological contour may present multiple values for

a single angle due to protrusions and cavities. The last feature is in fact commonly
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considered a limitation for the use of RFA, but it is precisely the opposite in the

current approach, because this effect induces noise into the data series, and the

multifractal characteristics become more pronounced. That is, at the same angle,

the structure could present sites with high, moderate and low probability of

aggregation, that characterize the complexity of the analyzed structure.

The current mapping of the data may be considered as a time series of the

values of the distance from the actual contour to the basic regular shape (defined

by the zero-th harmonic), as seen by an observer traveling along the regular shape

at constant angular speed. Using this time series, the multifractal analysis is

carried out based on the MF-DFA method proposed by Kantelhardt et al. [19] to

analyze multifractal properties of non-linear temporal series.

Multifractal Detrended Fluctuation Analysis (MF-DFA)

Let xk a periodic series of rc values between {p and p , of length N , corresponding

to the number of pixels that form the contour, having mean �x.

(i) First an integrated series Yi is calculated as

Yi:
Xi

j~1

xj{�x
� �

,i~1,:::,N; ð2Þ

(ii) The integrated series Yi is divided into N‘: N=‘½ � non-overlapping

segments of equal length ‘, where symbol :½ � stands for integer part.

(iii) For all of the N‘ segments the fluctuation function F2(‘,n) is calculated as

F2(‘,n)~
1
‘

X‘
i~1

Y n{1ð Þ‘zi½ �{yn(i)f g2
,n~1,:::,N‘, ð3Þ

where yn(i) is the fitting polynomial in segment n, representing the local trend.

(iv) The fluctuation function of q th degree for segment size ‘ is given by

Fq(‘)~
1

N‘

XN‘
n~1

F2(‘,n)
� �q=2

( )1=q

ð4Þ

In theory q can assume values between {? and z?, but in practical

applications it is truncated at some large positive and negative values. In this

work, the multifractal properties were analyzed in the interval of q between 210

and 10, with steps of 1.0. The minimum segment size used was 15 data points

(corresponding to otolith contour pixels) and the maximum was adopted as one

fourth of the total number of points of the series.

(v) The function Fq(‘) represents the partition function for this multifractal

analysis and follows a power law

Fq(‘)*‘h(q), ð5Þ
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where the generalized exponent h(q) is the slope of the linear regression between

log(‘) and log(Fq(‘)) (see Fig. 2A). For a monofractal process h(q) is constant

(independent of q), and for a multifractal process h(q) is a decreasing function of

q (Fig. 2B).

As is common in the literature using the MF-DFA approach, besides the

functional form h(q), the multifractal properties of contours are also investigated

based on the so called singularity spectrum f (a), achieved through the Legendre

transform

f a q,‘ð Þ½ �~qa qð Þ{t qð Þ, ð6Þ

where

Fig. 2. Multifractal plots derived from the MF-DFA of otolith periodic series. (A) The linear regression between log(‘) and log½Fq(‘)�. (B) The q th moment
versus the generalized exponent h(q) determined as the slope of (A). (C) The singularity spectra f (a) derived from the fluctuation contour of two M.
merluccius (blue) and two M. curema (green) otoliths. (D) Schematic representation of the multifractal parameters extracted from the singularity spectrum.

doi:10.1371/journal.pone.0115262.g002
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a qð Þ~ dt(q)

dq
ð7Þ

and t(q) is the mass correlation exponent of the q th moment, defined as

t(q)~qh(q){1. The singularity spectrum provides a mathematically precise and

naturally intuitive description of the multifractal measure in terms of interwoven

sets with singularity strength a, whose Hausdorff dimension is f (a) (see Ref. [5]

for more details). In the case of a monofractal structure, the singularity spectrum

produces a single point in the f (a) plane, whereas multifractal objects yield a

single humped function (Fig. 2C).

A set of parameters can be extracted from the multifractal spectra (cf. Fig. 2D)

for characterizing contour complexity, each with a clear intuitive interpretation.

For example, a0, the position of the maximum, is low if the signal is uncorrelated

and the underlying process ‘‘loses fine structure" (i.e. the dominant fractal

structure has more energy at larger fluctuation, since fine fluctuations become less

frequent). The width Da measures the range of the fractal exponents in the signal,

i.e., the wider the range, the more multifractal are the contour fluctuations. Daz

and Da{ measure the dominance of low and high fractal exponents, respectively:

a larger Da{ indicates strong weight of high fractal exponents, corresponding to

a fine structure in the contour, while a larger Daz indicates higher fluctuations in

the series, i.e., there are large structures in the contour. Finally, the ratio between

Da{ and Daz, labeled R, represents the relative dominance of these two

parameters. This five-dimensional parameter space may therefore be used to

characterize the complexity of the contour.

Image Sample

The sample was composed of 65 high-resolution otolith images of Mugil curema

(Fig. 1B) from the north region of Pernambuco (Brazil), and 32 of Merluccius

merluccius (Fig. 1C) from Port de La Selva (n~13) and Galcia (n~19). All M.

curema were collected from landings of the artisanal fleet operating in the state of

Pernambuco (northeastern Brazil) from November 2003 to January 2006.

Specimens of different sizes were purchased directly from fishermen and taken to

laboratory to posterior measurement of the total length and otolith extraction.

After cleaned and dried, otolith images were captured using a charge-coupled

device camera mounted on a microscope and processed using an image-analysis

system developed for calcified structures (TNPC: Visilog software platform,

NOESIS, France). M. merluccius otolith images were obtained from the open

online catalogue of otolith images of the project Anàlisi de FORmes d9Otòlits -

AFORO [20].

Ethics Statement

The artisanal fisheries of M. curema represent a legal activity in the state of

Pernambuco (Brazil), since this species is not classified as endangered or
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protected. All non-living specimens was purchased directly from fishermen,

avoiding the use of any method of sacrifice by the authors. Consequently, no

specific permission was required from animal ethics committee to conduct the

present work, including fish sampling and posterior otolith extraction.

Results and Discussion

The multifractal analysis of otolith contours in two species reveals clear

multifractal behavior. The generalized exponent h(q) presents a monotonic decay

with q (Fig. 2B), and the singularity spectrum has a humped shape (Fig. 2C). An

observation of individual length and age provides solid proof that the multifractal

properties of an otolith contour reflects life history events. For M. curema, the a0

distribution shows a peak at 23.9 cm fork length (Fig. 3A) and age of 3 years

(Fig. 3B). We fitted two lines (using ordinary least square method) to both length

and age data (Fig. 3). The first line was fitted to individuals with a0 left to the

observed maximum, and the second one was fitted to individuals with a0 right to

the maximum. The intercept of these two lines was found at 23.4 cm (Fig. 3A)

and 2.4 years (Fig. 3B). Thereby obtained peaks closely correspond to the

expected length (23.3 cm) and age (2.8 years old) at first sexual maturity for both

sexes, as documented previously by Santana et al. [21] using gonads. Note that

here we observed no difference between the growth of males and females.

On the other hand, plotting a0 versus length/age for M. merluccius reveals two

different sub-patterns. We attribute this behavior to the fact that this species has

different growth rates between sexes, with males growing more quickly than

females [22, 23] and reaching maturity at different sizes and ages. From the

biological point of view, the maximum a0 observed for each species, or sex/

population within one species, seems to be a function of the growth rate, i.e. faster

growth implicates a higher maximal a0 (rougher otoliths).

For the Mediterranean population a0 values show two peaks around 15.0 cm

and 30.0 cm (total length) (Fig. 4A) and the corresponding peaks in age were at

one and two years respectively (Fig. 4B). A recent study of the reproductive

pattern of M. merluccius from the Mediterranean Sea estimated the length at first

maturity of females to be approximately 35.0 cm [24], which is very close to the

second peak in our analysis. Using the growth parameters determined by Mellon-

Duval et al. [22] for females, the corresponding age at first maturity is two years,

precisely the age with the highest a0 value in our analysis. The two maximal a0

values for the Atlantic population were found at 30.0 and 45.0 cm total length

(Fig. 4C), which match closely the lengths of first maturity estimated by Piñeiro

and Saı́nza [23] for males (32.8 cm) and females (45.0 cm) respectively. The

linear fitting procedure was not carried out here because of the small available

number of experimental observations.

Factors that influence somatic growth, such as temperature, salinity (environ-

ment), and hormone levels during development, growth and reproduction of

fishes (physiology), also affect otolith growth [25]. In function of these factors,
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fishes and other organisms change the metabolism rate to assimilate and utilize

energy for maintenance, growth, development and reproduction throughout their

life cycle, all of which reflect on the otolith growth [26]. It is likely that there is

limited precision in the M. merluccius analysis due to the reduced number of

individuals in the available dataset. Nevertheless, it is clear that changes in the

otolith contour during the fish’s life caused by alteration of the metabolic rate

between reproduction and somatic growth is captured by the multifractal analysis.

For these species, the changes are reflected in the a0 parameter, meaning that the

sagittal otolith roughness level follows the fish growth, as illustrated in Fig. 3C,

while the general shape is kept unchanged.

For all species, the rhythm of calcium carbonate precipitation, controlled by the

fish metabolism, increased the roughness of the otolith contour until the maturity

of the fish, due to a faster growth during this phase. Then, from this point

onwards, the growth of the fish and the otolith become slower, and, consequently,

the otolith becomes smoother, despite the more complex shape (larger

Fig. 3. Plot of a0 parameter against length and age of M. curema. (A) Length and (B) age variation of individuals from the north region of Pernambuco
(Brazil). Green lines represent the linear fit to the two subsets of the data (1-left and 2-rigth to the maximal a0), with respective parameters of the fit (a -
intercept and b - slope) and 95% confidence bands (dashed lines). The black arrow indicates the interception between the two lines. (C) Schematic
representation of the roughness variation of the sagittal otolith contour of M. curema as a function of age.

doi:10.1371/journal.pone.0115262.g003
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fluctuations). Furthermore, different growth rates for sexes due to the

physiological factors are also indicated by the a0 plots (Fig. 4), as well as different

observed growth between different populations.

Length at first maturity (L50) represents a reference point for fish biology and

its estimation is useful for fish stock management. For instance, the minor size of

capture can be established based on L50, aiming to avoid the over-exploitation of a

fish stock. Note that the determination of first sexual maturity of fish has to date

been possible only through costly and cumbersome experimental techniques [21].

Different methods have been proposed to estimate L50 [27, 28]. The differences

among these methods reduce to just the used statistical approach, however, the

Fig. 4. Plot of a0 parameter against length and age of M. merluccius. (A and B) Individuals from Port de La Selva (Mediterranean population) and (C and
D) individuals from Galı́cia (Northeastern Atlantic population). Blue and red arrows represent the variation pattern of the a0 for males and females,
respectively. Vertical red and blue lines indicate the length and age of first maturity for females and males, respectively, estimated earlier by different authors.

doi:10.1371/journal.pone.0115262.g004
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common biological structure for all of them was the gonad. In most of the

techniques, individuals are identified as reproductive or non reproductive,

through visual and subjective descriptions of macroscopic aspects of ovaries and

testicles at different maturation stages, or based on the Gonadosomatic Index

[28]. However, gonads are sometime unavailable for commercial species, since

fishes are eviscerated before landing. The method presented here appears to be a

useful alternative procedure, filling the information gap that could exist for any

fish populations based only on previously available data. Therefore, the

multifractal analysis of otolith contours should prove to be an important tool in

fish stock evaluation and management.

Fractal dimension of otolith contour was previously estimated by Piera et al.

[29] and Duarte-Neto et al. [30] for the purpose of otolith classification, using

box-counting method. Contradictorily, fractal dimension was found unable to

classify otoliths of M. merluccius of different ages in the first work, whereas it was

a powerful descriptor in discriminating otoliths of two stocks of Corypahena

hippurus in the second. This single exponent obtained in both works represents

global properties of the contour and says nothing about the local properties. C.

hippurus otolith presents in general a complex shape and low level of roughness.

On the other hand, M. merluccius otolith presents a simple ellipsoidal shape, with

few large fluctuations, and is very rough. Analyzing otolith contours on the basis

of multifractal method described here allows the description of the complexity of

their shapes in more detail, from fine to large scales, based on the distribution of

the multifractal morphological exponents.

Box-counting method may also be employed in the multifractal approach, as

well as the Sanding box method. Although the multifractal versions of these

methods are well established in the scientific community, they do not seem

appropriate for analyzing quasi-one-dimensional structures, with complexity far

from filling two dimensional space, but more complex than a line. For instance,

the contour that displays such characteristic is the one of the C. hippurus otolith

[30], with maximum fractal dimension of 1.248. On the other hand, the methods

commonly used for multifractal analysis of time series do not have these types of

problems [19, 31, 32]. Among them, MF-DFA yields reliable results both for large

negative q and for shorter signals [32], besides having lesser requirements for

computational power [19]. This method was demonstrated to be rather

satisfactory for analysis of otolith contour fluctuations in the current work, and

no problems have been experienced in the implementation. Still, image resolution

could be a limitation for it use, since a higher resolution should exhibit more

particularities of the images. To avoid possible complications due to such an

effect, all the images analyzed here were taken at the same resolution.

Since our current approach is essentially general, it could be applied to contour

studies of other natural structures. For example, the multifractality of mineral

particles has been assessed so far only in terms of their spatial arrangement in soil

[33, 34], and such a shape characterization would also be important in the

classification of different types of sediment [35] and ash particles [10], as well as

biological entities such as corals and cells. How the multifractal properties of
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contour fluctuations behave during particle formation, and how they relate to

various growth and parallel processes, is still not well understood, and the current

‘‘traveling observer’’ MF-DFA approach may prove useful for the elucidation of

such phenomena.
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