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Abstract

Sequencing the transcriptome can answer various questions such as determining

the transcripts expressed in a given species for a specific tissue or condition,

evaluating differential expression, discovering variants, and evaluating allele-

specific expression. Differential expression evaluates the expression differences

between different strains, tissues, and conditions. Allele-specific expression

evaluates expression differences between parental alleles. Both differential

expression and allele-specific expression have been studied for heterosis (hybrid

vigor), where the hybrid has improved performance over the parents for one or

more traits. The Allele Workbench software was developed for a heterosis study

that evaluated allele-specific expression for a mouse F1 hybrid using libraries from

multiple tissues with biological replicates. This software has been made into a

distributable package, which includes a pipeline, a Java interface to build the

database, and a Java interface for query and display of the results. The required

input is a reference genome, annotation file, and one or more RNA-Seq libraries

with optional replicates. It evaluates allelic imbalance at the SNP and transcript

level and flags transcripts with significant opposite directional allele-specific

expression. The Java interface allows the user to view data from libraries,

replicates, genes, transcripts, exons, and variants, including queries on allele

imbalance for selected libraries. To determine the impact of allele-specific SNPs on

protein folding, variants are annotated with their effect (e.g., missense), and the

parental protein sequences may be exported for protein folding analysis. The Allele

Workbench processing results in transcript files and read counts that can be used

as input to the previously published Transcriptome Computational Workbench,

which has a new algorithm for determining a trimmed set of gene ontology terms.

The software with demo files is available from https://code.google.com/p/allele-

workbench. Additionally, all software is ready for immediate use from an
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Atmosphere Virtual Machine Image available from the iPlant Collaborative (www.

iplantcollaborative.org).

Introduction

Sequencing the transcriptome can answer various questions such as determining

the transcripts expressed in a given species for a specific tissue or under a certain

condition, evaluating differential expression (DE), discovering variants, and

evaluating allele-specific expression (ASE). DE studies analyze the expression

similarities and differences between species, tissues and conditions. ASE studies

analyze the difference in expression between the parental alleles, where if one allele

has significantly greater expression, it is referred to as allele imbalance (AI). Both

ASE and DE require that the reads be trimmed and aligned to the reference

genome. ASE further requires variant calling, calculation of SNP and/or transcript

read coverage, and a test for AI. DE further requires the number of reads aligned

to each transcript and a test for significance. This manuscript is mainly focused on

allele imbalance, however, the data can also be used for DE analysis, and is briefly

discussed.

When mapping reads to a reference genome, there can be significant bias

against reads with alternative alleles. One solution has been to mask the alleles, but

as shown by Degner et al.[1], this can still lead to a 5–10% bias. GSNAP [2]

presents an alternative solution by allowing SNP-tolerant mapping, which takes

into account all combinations of major and minor alleles, however, their

README file [3] states ‘‘with longer reads now of 75 or more bp, GSNAP

alignments are generally fine without SNP-tolerant alignment’’. Satya et al. [4]

provide software for building an enhanced genome that contains every possible

haplotype of a length r segment (where r is a fixed read length). Stevenson et al.

[5] proposed limiting the number of mismatches to the number of differentiating

sites for the region. AlleleSeq [6] creates and aligns to the maternal and paternal

genome. MMSeq [7] aligns to a sample-specific transcriptome constructed with

phased or un-phased parental genotypes. Quinn et al. [8] discuss why variant-

calling is more accurate using genome data than RNA-Seq data, then present an

ASE protocol that uses RNA-Seq data and creates an alternative reference after

filtering SNPs not found in a high-quality SNP database.

SNP discovery is important for problems ranging from human disease studies

to species comparisons. Over 20 variant callers have been published in the recent

years. Many of them concentrate on the problems of finding rare variants in

pooled samples, genotype calling, tumor-normal pairs, exome studies, and low

coverage. These problems are found in human disease studies, i.e. most variant

software is written for human disease studies, though most have been used for

other SNP discovery challenges. The variant callers may incorporate quality,

alignment, experimental errors, and dbSNP alleles. Most of them use Bayesian
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statistics. Yu and Sun [9] compared four popular variant callers (SOAPsnp [10],

SAMtools [11], GATK [12], and Atlas-SNP2 [13]) and found low agreement

between the programs when focusing on between 3x and 10x coverage, though

agreement was good with high coverage and quality. It is now customary to read

as input the BAM alignment files and output a VCF (variant call format) file[14],

which can include the allele genotype counts.

ASE has been studied for imprinting and cis-regulation (reviewed in [15]) and

for heterosis [16–18]. ASE software has been written for humans and F1 hybrids.

For human ASE studies, there is only one genome involved but two parental

haplotypes, where the genotypes need to be phased to obtain the correct maternal

and paternal genome. For F1 studies, the parents are genetically distinct. The

parents may be inbreds (homozygous) where ideally one of them is the reference

strain, in which case, the alternative allele of a hybrid SNP automatically belongs

to the alternative parent. If the parents are heterozygous and there is no SNP file

representing the alleles of the parents, then the parental alleles cannot be assigned

unambiguously with only a reference sequence and hybrid RNA-Seq data.

However, if the transcriptomes of the parents are also sequenced, then the RNA-

Seq alignment may be used to determine if the parents are homozygous for hybrid

SNPs, and hence assign the parental allele. There are four published distributed

packages for ASE computation, where ASARP [19] and AlleleSeq [6] are

specifically written for human genomics. Allim [20] is the only pipeline written

for F1 individuals and takes various types of input to unambiguously assign

parental alleles. It uses GSNAP to map reads to the genome, SNPs are identified

and used to create a polymorphism-aware genome, and GSNAP is used again to

map the reads against it. MMSeq [7] works with diploid organisms where phasing

is optional; it creates heterozygous transcripts, maps the reads to the transcripts,

and simultaneously computes transcript-level expression and allele imbalance at

the transcript level. There are other transcriptome pipelines, such as

ArrayExpressHTS [21], which perform many of the same steps, but without taking

into account reference bias or computing ASE.

Allele imbalance has been computed using a variety of statistical tests, such as

chi-square [18, 19], binomial test [1, 6, 22], Bayesian model [23, 24] and g-test

without replicates and ANOVA with replicates [20]. ASARP [19] show that a

minimum of 20 reads is required to get adequate statistical power, which is the

typical cutoff used by most studies. AI may be computed for SNPs, exons,

transcripts, or genes. If AI is computed for the transcript, then it is typical to sum

the heterozygous SNP coverage to represent heterozygous transcripts; if a read

covers multiple SNPs, it should only be counted once. A consideration when

summing the SNP coverage is that there may be SNPs that have the opposite

direction from the majority. In a related problem, Skelly et al. [23] address

variable ASE by labeling such genes, where variable ASE is due to alternative

splicing, start site or poly-adenylation. To obtain the full heterozygous read count,

MMSeq [7], Cufflinks [25], and eXpress [26] compute it by assigning each read

containing a SNP to the (putatively) correct parental transcript isoform along
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with assigning all non-SNP reads according to the ratios inferred from the SNP-

containing reads.

To our knowledge, there is no freely available graphical interactive package for

exploring allele imbalance data. This is complex data that may contain one or

more libraries, one or more replicates per library, unique and shared exons

between transcripts, variants with their computed effects, and allele imbalance for

SNPs, transcripts and/or genes. Though pipelines can produce the ‘list of allelic

imbalance’’ genes, transcripts or SNPs, that does not allow the scientist to explore

the data for complex relations and novel discovery. This is a tremendous amount

of data and processing steps, and there are many places where errors can arise and

genomic data typically has measurement error; it is extremely hard to detect

insidious problems when viewing flat files of information. Therefore, next

generation sequencing results should be stored in a database with a query

interface. Having the data in a queryable database provides a much more

organized methodology for subsequent research involving the data and results,

and allows scientists to gain a better understanding of their data. Moreover, when

using a language such as Java that can be executed on the web, the data and results

can be easily shared with the scientific community.

For a heterosis study, we sequenced the transcriptome of two inbred mice and

their hybrid progeny using four different tissue types in order to study the

hypothesis that the hybrid can discriminate between alleles encoding proteins that

do not fold efficiently or are unstable for a substantial saving of metabolic energy

during folding of the protein [27]. To test this hypothesis, we wanted to discover

transcripts with allelic imbalance to determine if the higher expressed allele folds

correctly and the lower expressed allele does not. We also wanted to study the

differential expression between the inbreds and the hybrid. This study necessitated

installing numerous software programs, and developing our own database with an

interactive Java interface (referred to as Allele Workbench (AW)) to explore this

wealth of information. The software has been engineered such that it can be used

by other projects, is fully documented, and includes a demo dataset.

This manuscript presents the AW pipeline, interface to build the AW database,

and the AW interactive graphics program. The AW pipeline is specific to F1

hybrid processing with inbred parents, but the database and interactive graphics

can be used for any ASE data. As discussed above, there are a range of programs

that can be used for each step of the pipeline; our pipeline provides a default set

along with the necessary workflow, and each step can be replaced with an

alternative program with the condition that the output be provided as specified by

the pipeline. The AW reduces allele bias by creating a variant masked genome and

aligning with Bowtie2 [28] via Tophat2 [29], which allows a reduced penalty for

masked bases. The AW provides both heterozygous SNP coverage and isoform-

aware read counts. It uses the binomial test to determine the allele imbalance for

the genes, transcripts and SNPs, where the test is applied to both SNP coverage

and read counts for the genes and transcripts. Transcripts are labeled that have

significantly opposite-directional SNP imbalance or replicate values. The

interactive graphics allows the user to query the AI by SNP or transcript. To study
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the folding of proteins encoded by AI transcripts, it computes SNP effects and the

parental protein sequences. This manuscript also briefly discusses the

Transcriptome Computational Workbench [30], as it can be used with the output

of the AW pipeline to study the differential expression of the same libraries that

are analyzed for ASE in the AW interactive display. Both the AW and TCW are

written in Java, use MySQL databases, and can be executed either stand-alone or

as a web applet. Results from our full mouse study will be published elsewhere,

but the mouse data is used here to demonstrate the utility of the software and

provide some initial results. The Discussion section covers three published studies

and how they could have used the AW and TCW to make their processing more

efficient.

Materials and Methods

The naming of the raw files is very important (described in the AW

documentation), as the name will be retained through each step of the pipeline,

and then used in the AW program to build the database, which maps each file to

its respective library conditions, e.g. strain and tissue. The AW pipeline steps and

Java processing are listed in Table 1.

AW Pipeline

The Allele Workbench comes with a number of scripts and third-party tools

organized to facilitate batch processing of NGS data for DE and ASE studies.

These fall into four categories:

1. Sequence preparation

2. Variant calling, if necessary

3. Alignment to reference genome and extraction of heterozygous SNP coverage

4. Alignment to transcripts and quantification of heterozygous and total

transcript read counts

The batch scripts are designed in a modular fashion so that the user can easily

substitute steps with an alternative method, and verify the results of each step

before continuing. The exact steps will vary somewhat depending on data, as

described below. Each script takes as its primary input a directory of files, calls one

or more underlying tools to process these files, performs any necessary post-

processing, and outputs to a standardized directory named "Results". Most of the

scripts generate an overall summary, which should be checked before going to the

next pipeline step. For tools that are not natively threaded, the scripts implement

multiprocessor operation by splitting the set of input files. All necessary tools are

supplied with the package (or local installations may be used). Table 1 describes

the steps of the pipeline, and the following provides a brief description of each.

Allele Workbench
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1. Sequence Preparation

NGS reads should be trimmed to remove barcodes, adapters, and/or low quality

sequence from the beginning and end of the reads. Unless these sections are

identified and trimmed off, the majority of reads will not align properly. To

identify regions needing trimming, the AW provides a batch script QC.sh. The

script calls the underlying tool FastQC [31], which generates HTML reports and

images showing quality metrics; the script then collects the individual reports into

one large HTML output showing all samples. The most important metrics are

Per-Base Sequence Quality, which reveals how much leading/trailing trimming is

needed to get to good quality sequence, and Overrepresented sequences, which

can show if adaptors or other protocol remnants are present on the ends.

To perform the trimming, a batch script trim.pl is provided, which runs

Trimmomatic [32]. Trimmomatic has a number of trimming modes, which are

described in its documentation; all modes are available through the batch script.

The batch script also checks for pairing of the files, if they are specified as paired-

end. After trimming, the quality should be re-verified using QC.sh, and additional

trimming performed if necessary.

Table 1. Steps of the AW pipeline and Java processing.

Program description Input1 Output1,2 Tool used; Postprocessing

QC3 Raw read files HTML files with quality measures FastQC [31]; Merge to single HTML
file

Trim3 Raw read files Trimmed read files Trimmomatic [32]

Align to GS3,4 Trimmed read files, GS files, annotation file Alignment files Tophat2 [29], Samtools [11]

Variants3,4 Alignment files Variant files Samtools, bcftools [11]; Merge sample
results into the consensus VCF

Mask GS3 GS, variant files Masked GS Bedtools [33]

Align to masked GS3 Trimmed read files, masked GS, annotation file Alignment files Tophat2, Samtools

SNP coverage3 Alignment files, variant file SNP coverage files Samtools; Parse counts from mpileup
output

Transcripts counts3 Parental transcript files5 Heterozygous count files5, total
count files

STAR [34], eXpress [26]; Create total
count files

AW build database
(runAW)6

SNP coverage files, annotation file, variant file;
Optional: GS files, heterozygous count files5,
NCBI annotation

AW database, parental protein files,
parental transcript files5

-

TCW build database6 Transcript or protein file; total count files TCW database BLAST [44], edgeR [39], GOseq [42]

1Raw read files (.fastq), GS (genome sequence, fasta), annotation file (.gtf), alignment file (.bam), variant file (.vcf), SNP coverage (.bed), transcript counts
(.xprs).
2Though not listed in their output column, all scripts output an.html summary file. The two Java build programs enter summary information into their database
for display by their Java query program.
3Pipeline scripts are Perl, except QC is shell. Each script executes one or more tools on all input files, renames the result files with their library abbreviations,
puts them into the/Results directory, and writes the summary.html file.
4These steps are only necessary if the variant file is not available.
5runAW must be executed before the ‘‘Transcripts counts’’ step to produce the parental transcript files and again afterwards to update the database with the
transcripts heterozygous count files. The optional AW build files are not needed for the initial build.
6Java graphical interface.

doi:10.1371/journal.pone.0115740.t001
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2. Variant calling

If variants are not already known for the species, then they must be called using

the samples. The RNA-Seq reads must first be aligned to the reference genome

using the Align.pl script, preferably using alternative inbred reads, if available. For

variant calling, the batch script Variants.pl runs the samtools caller on each sample

alignment file (.bam), generating one call set (.vcf file) per alignment, and then

combines all of these into a single consensus call set using a user-adjustable

threshold (by default, called in at least 5 of samples; the expected genotype can

also be set, e.g. 11 for calling on inbred alternate reads, or 01 for hybrid reads).

The alignment files from this step are not suitable for ASE computation because

they were not built from a masked genome, hence will suffer from reference bias.

3. Alignment to reference genome and extraction of heterozygous SNP coverage

As mentioned in the Introduction, mapping two species to a reference genome

will be biased toward the reference. Therefore, the SNPs should be masked before

aligning the hybrid RNA-Seq reads to reduce reference bias, which is performed

by the GSmask.pl script (using Bedtools [33]).

The trimmed read files are aligned to the reference using the batch script

Align.pl, which calls Tophat2 to perform the alignment. Tophat2 uses Bowtie2

[28] which has a new parameter (—np, not available in Bowtie1) to set a lower

penalty for ambiguous characters, allowing more reads to be mapped. The script

snpASE.pl then calculates the heterozygous coverage counts for each SNP location

by calling "samtools mpileup" and parsing the output. Using runAW, the SNP

heterozygous counts are loaded into the AW database; indels are loaded into the

AW database for informational purposes but their heterozygous counts are not

computed.

4. Alignment to transcripts and quantification of heterozygous and total

transcript expression

The script transASE.pl computes read counts using the programs STAR [34] and

eXpress [26]. Before running this step, a set of parental transcripts must be

generated, where the alternative transcripts are obtained by substituting the

known SNPs and indels into the reference transcript sequences. As described in

the next section, these transcripts sets are generated by runAW once the initial

database has been created with the genome reference, annotation, and variants.

The trimmed read files must then be aligned to the parental transcript set. It is

essential in this alignment to allow multi-mapping since the transcripts will

include splice variants having many shared segments; moreover, the eXpress

documentation recommends setting very relaxed multi-mapping parameters and

allowing eXpress to determine the correct assignment weights using its statistical

models. Bowtie2 is not well-suited for this purpose since it runs very slowly with

multi-mapping options enabled (-k, -a); for this reason the alternate aligner STAR

has been included in the package, and the batch script transASE.pl runs both

STAR and eXpress in succession to generate the transcript expression levels.
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The eXpress-generated count files (extension ".xprs") are placed into the

"Results" directory, and may be loaded into the AW database using runAW. A

directory "ResultsTCW" contains the total counts, i.e. the transcript counts

summed over both alleles and counts where there are no variants. These read

count files may be loaded into TCW for DE analysis between samples.

Build the AW database

The runAW graphical interface builds the AW database using no external

programs. The required input is the genome annotation file, VCF file, genome

sequences files, and SNP coverage.bed files. Optional input is the NCBI gene

annotation file, a variant effect file, and the eXpress transcript count files. The user

defines the library conditions and abbreviations, which are used to map the SNP

coverage and transcript read count files to their respective libraries. The runAW

program is first run to build the database and provide the computations discussed

below, but can then be run again to add or update any of the optional files. The

initial build populates the libraries, gene, transcripts, exons and variant tables, and

provides the relations between these entities as shown in Fig. 1. An overview

summary is computed, where many of the results in the summary are presented in

the Results Section.

The AW represents read coverage per SNP, summed SNP coverage per

transcript and gene, read counts per transcript, and summed transcript read

counts per gene. SNP coverage counts are summed to approximate transcript and

gene allele-specific expression. The corresponding p-value has the caveat that

counts for nearby SNPs are not fully independent; AW mitigates this problem by

only counting one representative SNP from each cluster of closely spaced SNPs.

For the summed SNP coverage, all transcripts that contain a SNP include its

count. In contrast, the read count computation only assigns any given read to one

transcript taking into account variants and alternative isoforms. The transcript

with the highest read count represents the most likely expressed transcript.

Both SNP and read counts are performed per replicate, which are summed for a

total count. Each gene is assigned a start coordinate of its leftmost 59 transcript

start and an end coordinate of its rightmost 39 transcript end, includes all SNPs

within that range, and uses the summed read counts from its transcripts. The p-

values for each SNP, transcript, and gene are calculated using the respective

heterozygous counts and applying the binomial test. SNPs must have

heterozygous counts $20, and genes and transcripts must have at least one SNP

with heterozygous counts mg20, otherwise the p-value is marked undefined. For

genes and transcripts, the heterozygous read counts must be $20, otherwise the p-

value is undefined. The transcripts for a gene are ranked according to the number

of reads, where rank51 is the most likely transcribed isoform.

SNPs and transcripts are flagged if at least one replicate has a significantly

opposite direction (chi-square p-value ,0.05) from their summed value.

Transcripts are flagged if, for any library, they have at least two AI (p-value,0.05)

SNPs in different directions.
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The genome sequence, GTF annotation and VCF variants are used to create files

of the parental transcripts and protein sequences. If variant effect annotations are

not input from an external program, the runAW computes basic variant effects

(i.e. 59UTR, 39UTR, missense, non-synonymous). It does not assign the effect

terms to the same detailed level as snpEFF [35] or Ensembl Variant Effect

Predictor (EVP) [36], so these files are optional input to the runAW program.

Depending on the genome, the EVP file may include SIFT [37] information,

which the AW marks as ‘damaging’ SNPs. The snpEFF file tags some variants as

‘high’ (e.g. frameshifts), which are marked as damaging in the AW. The EVP and

snpEFF are not part of the AW package, but EVP is executed from the web, and

the snpEFF is downloadable and easily executed, especially if using one of

their.2500 known genomes.

AW query and display

The AW query interface (called viewAW) has a BioMart [38] style interface, with

the exception that the columns can be dynamically selected on the table (see

Fig. 2), which eliminates the tedious step of having to reproduce the table to

change columns. The interface has many of the details that make querying the

database easy, such as maintaining selected columns when a new table is

Fig. 1. viewAW tables. The blue circles represent tables that can be queried in viewAW. From each table, one
or more rows may be selected to view the associated table of data, which is indicated by the pointed-to circles.
The ‘‘LibList’’ is the library counts for a selected set of genes, transcripts or SNPs, which link to the associated
replicate counts.

doi:10.1371/journal.pone.0115740.g001
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generated. The different viewAW tables are shown on the AW website ‘AW tour’

pages, and a diagram is shown in Figure 1. The transcript and variant queries may

be performed on selected sets of libraries, where they can be filtered on user

specified coverage and p-value. For example, the user may request to view all

transcripts with rank51 with at least one missense SNP, and both SNP coverage

and read counts AI (p-value,0.01) for both kidney and muscle (results shown in

Fig. 2), and then download the corresponding parental transcripts for further

analysis in a protein folding program. To support more complex queries, the

union, intersection or difference can be computed from two transcript tables. To

show the complex architecture of a gene, the AW provides a drawing of the

transcripts and variants of a gene, as shown in Fig. 3. It also provides a graphical

alignment of parental protein sequences for a specific transcript.

Fig. 2. viewAW transcript table. The columns are shown in the lower panel; when an adjoining box is checked, the corresponding column is shown in the
table. Selecting ‘‘Hide’’ closes the column listing. The SpNYfKid and SpNYfLiv columns are the SNP coverage p-values. The RpNYfKid and RpNYfLiv are
the read counts p-values. The #SNPCov is the number of SNPs with $20 reads for any library, #SNPAI is number of SNP that are AI (p-value ,0.05) for
any library, and #Mis is the number of missense SNPs. #SNPCov and #SNPAI take into account all four libraries, where only two are shown but the others
can be viewed by selecting their respective column box next to ‘‘Tissue’’.

doi:10.1371/journal.pone.0115740.g002
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The various views are necessary to help understand the complexities of the data.

There will be inconsistencies, as they are inherently part of genomic data. Fig. 2

shows that just because the transcript is AI, that does not mean that the SNPs are

all AI; the #SNPAI column is the number of SNPs that are AI (p-value,0.05) for

any library, which is typically less than the #SNPs column. The user can view the

SNP p-values and locations using the Draw (Fig. 3) or Variants (Fig. 4a) options.

Fig. 4a shows a gene that has two AI SNPs in opposite directions. Fig. 4b shows

the consistency of the counts across replicates.

Transcriptome Computational Workbench (TCW)

Though the TCW has been previously published, it will be briefly summarized

here for DE analysis. The TCW takes as input a transcript file and total count files

(as provided by the AW pipeline). The runSingleTCW program for building the

Fig. 3. viewAW drawing of a gene with three transcripts and 11 variants. The black exons are non-coding. The coding exons that are stacked but are
different colors have different coordinates, e.g. the stack with two pink exons (the same) and a blue (different). The long vertical lines represent SNPs (black)
and indels (red); if the number below the variant line is followed by an ‘‘*’’, then it is AI (p-value ,0.05) for at least one library, e.g. variant #2 is AI for libraries
NYfBr and NYfLiv.

doi:10.1371/journal.pone.0115740.g003
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TCW database includes an interface to edgeR [39], DEGseq [40] and DESeq [41]

for computing the differential expression, GOseq [42] for computing the

differential expression for gene ontologies, and compares sequences against

UniProt [43] using Blast [44]. The TCW query interface also uses the Biomart

style and has queries and resulting tables for the transcripts, protein annotations

and gene ontologies.

Since there are many GO terms, "GO slim" sets [45] are often used to view the

major relevant groups; however, it is difficult to define systematic criteria for

selecting these, and predefined sets may be poorly adapted to the project in

question. For example, a predefined set may entirely leave out part of the

hierarchy that shows DE enrichment in the given experiment. To avoid this

problem while still condensing the GO information, the TCW computes a project-

specific ‘trimmed’ set, which is designed to highlight non-redundant DE

information.

Higher level GO nodes contain lower levels, where a lower level node has either

a ‘part-of’ or ‘is-a’ relation to the higher level node. Therefore, there is

considerable redundancy in DE enrichment scores between different levels of the

hierarchy; hence, the TCW trim algorithm singles out those GOs that appear to be

primarily responsible for the enrichment in a given sub-tree using the following

rules:

N If a parent (i.e. higher level node) has a better DE score than any of its children,

that indicates that the differential effect is happening biologically at the level of

the parent, and being inherited by those children, if any, which also are DE-

enriched.

N Conversely, if a parent has a worse DE score than one of its children, it indicates

that the differential effect is happening biologically at the child level (or below),

and being seen in diluted form on the parent.

Fig. 4. viewAW drilling down into the data. (a) The table shows the variants for an AI transcript. The
S:NYfMus column displays the ref:alt SNP coverage for library NYfMus, and the SpNYfMus column shows the
corresponding p-values. There are three AI SNPs, where two are ref. alt and the other is alt ,ref. (b) The
table shows the replicate counts for a transcript. The ‘‘SNP Rep’’ column contains a p-value for any replicate
that has significantly different counts from the other replicates.

doi:10.1371/journal.pone.0115740.g004
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By applying the computation to all GO terms for biological process with a

GOseq p-value ,0.001 for DE between all B6 reference and hybrid liver and

muscle libraries, it reduced 76 terms to 24 (see Fig. 5).

iPlant Atmosphere Images

Two atmosphere images have been created, one for all the AW software and the

other for all TCW software. To run the AW the user only needs to upload their

data to their iPlant account and start up an AW instance. The user interacts with

the AW software through a desktop emulator. The demo files are part of the

image, so the user can immediately try the software. To run the AW software on

their own files, they may need to increase their iPlant resource allocations, and

then they link to their files on their account and start the pipeline. The user can

download the MySQL database to their computer from their iPlant account,

download the viewAW executable from the AW website, and make the data and

results available to the public for query and display.

Mouse dataset

Though this manuscript is not intended to provide heterosis mouse results (Goff,

in preparation), we used the mouse data from the F1 hybrid progeny in order to

demonstrate the AW features and provide some performance results. The dataset

has 4 tissues and 4 replicates of Illumina RNA-Seq data (paired end reads,

100 bp); deposited to the Short Read Archive (SRA) at GenBank under accession

Fig. 5. TCW trimmed GO set. All 76 DE-enriched GOs are shown in the table, and the 24 green rows are the trimmed set.

doi:10.1371/journal.pone.0115740.g005
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SRP050309. The hybrid parents are the mouse inbreds (C57BL/6J and BALB/

cByJ). The reference genome GRCm38 (strain C57BL/CJ) was downloaded from

Ensembl [46]. The variant VCF file was downloaded from the Sanger Centre [47].

Variant effects were obtained from Ensembl Variant Effect Predictor [36].

The processing used the AW-pipeline. Variant calling was only performed for

timing since a VCF file was available that was created from genome data. A

masked reference genome was created using the VCF file, and trimmed reads were

aligned to it and SNP coverage was computed. An AW database was created,

which produced the parental transcripts. The trimmed reads were aligned to the

transcripts and read counts (reference, alternative and total) were computed and

entered into the AW database. The reference protein sequences (output from AW)

and the total read counts from both inbreds and the hybrid were entered into a

TCW database and annotated with the UniProt [43] mouse taxonomic database.

The AW database was used for the analysis in the Results section; the TCW

database was only used for Fig. 5.

Results

The hybrid dataset comprised 15 paired files (one replicate failed). The raw read

files were between 7 and 14 gigabytes each, approximately 157 total gigabytes,

whereas the final AW database was 400 Mb. Table 2 shows time and memory

usage for the different steps, which were performed on an AMD 2.2Ghz system,

with 32 CPU and 128 gigabytes of RAM.

The following results are from the AW database overview (shown by selecting

the AW Overview tab, see Fig. 2). There were 22,538 genes where 8,785 had at

least one SNP and 3,121 had at least one Indel, and 47,234 transcripts where

16,731 had at least one SNP and 4,790 had at least one InDel. Of the 66,529 total

SNPs that fall within gene boundaries (excluding introns), 30,432 (46%) were

covered by at least 20 reads in at least one library, of which 15,166 (50%) had

allele imbalance in at least one library (p-value,0.05). Transitions were the most

common SNP substitution type at 72% for CT and its complement GA. There

were 232 SNPs and 720 transcripts with a replicate in the opposite direction, and

2,032 transcripts with opposite direction SNPs.

From the overview’s variant effect table, the major SNP effects are shown in

Table 3. The snpEFF computation provides similar results, but there is some

variation (e.g. 7,922 synonymous_variant for #Lib AI). The UTRs had

significantly more AI compared to missense (chi-square,0.004), whereas

missense SNPs did not have significantly more AI compared to synonymous. The

trimming can make a significant difference; using looser parameters produced

results where the number of AI missense was greater than the number of AI

synonymous SNPs with a p-value ,0.0001.

After masking the known SNP locations on the B6 reference genome, the SNP

coverage counts showed a bias of 51.4%/48.6% in favor of the reference. In

comparison, when aligning to an un-masked genome, the bias was 58.5%/41.5%.
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Even though the residual bias is small in overall terms, it can still result in

significant bias in individual detections of AI. Using the viewAW variant query,

the total number of AI SNPs with ref.alt for at least one library was 9,226

whereas it was 6,863 for alt.ref (0.74 ratio). Performing the same comparison on

transcripts with rank 51 using the SNP coverage, there were 2,255 ref.alt and

1,773 alt.ref (0.79 ratio); using the read count, there were 4,392 ref.alt and

3,849 alt.ref (0.88 ratio). Residual reference bias can result from several causes:

SNPs that are false-positives (i.e. the alt genome does not actually differ at those

loci); SNPs that are uncalled (false-negatives), and hence unmasked, leading to

mapping problems at those loci; or indels, which can only be partially addressed

by masking even where they are known accurately. These problems may be

exacerbated in this dataset since the VCF file was created for alternative genome

BALB/cJ, whereas the RNA-Seq data was from the related strain BALB/cByJ.

Of the 47,234 transcripts, 7,843 had rank 51. The following queries were

performed using filter rank 51 so that only one transcript per gene was reported.

There is a difference between querying for all transcripts that have at least one

SNP with coverage $20 (5,575) versus having the summed SNP coverage $20

(6,011), where the latter can include transcripts where all SNPs have ,20

coverage. There were 2,659 transcripts with SNP AI (p-value ,0.01) for at least

one library and 5,653 with read AI (p-value ,0.01) for at least one library. Using

Table 2. Timing and memory of steps.

Script Time Memory CPUs Output

QC 2 h 2 G 4 7 M

Trim 2 h 4 G 4 22 G1

Align 41 h 4 G 10 38 G

Variants 7 h 1 G 4 50 M

GS Mask 10 m 600 M 1 4 G2

SNP coverage 10 m 1 G 4 12 M

Read counts 4 h 3 G 4 300 M

runAW 30 m 2 G 1 400 M

1Gzip, singletons not saved.
2Same as the original genome sequence.

doi:10.1371/journal.pone.0115740.t002

Table 3. Allele imbalance of major variant effect categories.

Effect Count Covered1 AI2

3_prime_UTR_variant 32,628 32,288 10,896 (34%)

5_prime_UTR_variant 6,848 4129 1,384(34%)

Missense_variant 10,732 9,647 2,818(29%)

Synonymous_variant 18,998 27,388 7,751(28%)

1The number of libraries with SNP coverage $20 (since there are 4 libraries, the maximum would be 4 x count).
2The number of libraries with allele imbalance (p-value ,0.05); the percent is in relation to the number covered.

doi:10.1371/journal.pone.0115740.t003
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SNP coverage, kidney and liver shared the most AI transcripts with 514, and brain

and liver shared the least with 362, whereas with read count, brain and muscle

shared the most with 1,732 while again brain and liver shared the least with 1,604.

To select parental transcript sequences for protein folding analysis, there must

be at least one missense SNP in order to have any difference in the amino acid

sequences. Setting the filters for rank 51, at least one missense, and any library

with read count p-value ,0.01, there were 2,265 transcripts. Since the SNP effects

came from Ensembl EVP, they included SIFT annotations, which predicts whether

the missense SNP will effect protein function. Adding the filter that at least one

SNP must be (SIFT) damaged, there were 451 transcripts.

Discussion

Publications on both allele specific expression and heterosis include a wide range

of analyses. Though the AW and TCW could strive to cover every possible

analysis, clever labs will come up with new types of analysis and questions to ask.

Moreover, trying to cover every possibility can create confusing software.

Therefore, providing the basic analysis allows the user to concentrate on what

makes their study unique, i.e. only use custom software on the unique aspects of a

study. The following three studies addressed very different problems yet used

similar upstream computations of RNA-Seq trimming, determining SNPs,

alignment, and performing DE and ASE studies. Bell et al. [48] studied a hybrid

crossed from an invasive and native population of the weed Cirsium. Pemrumba

et al. [49] studied infected and non-infected chickens in two F1 lines, outbred

broilers (meat-type) and inbred layer (egg-type), to further their understanding of

Marek’s disease. Zhia et al. [17] studied heterosis in two stages of roots using the

super-rice Xieyou9308 derived from a cross between R9308 (25% japonica) and

Xieqingzao B (indica).

As shown in Table 4, these three studies all use the same basic steps until the

project specific computations. All three studies require special processing to

compute the SNPs, which is the most variable step since the variant calling

depends on the attributes of the parents and what genome sequences are available.

The following describes what would have to be changed in order for each of these

three studies to use the AW and TCW software. Bell et al. would substitute the

AW pipeline Align.pl in place of using MOSAIK with the 454-contigs. From the

AW and TCW graphical interfaces, they could export the contig names and

associated values (i.e. AI and DE p-values from AW and TCW respectively) for

their project specific analysis. The TCW would at least partially provide their GO

analysis. Pemrumba et al. could use the pipeline as is except for the variant calling.

The AW and TCW would provide the union queries and variant annotation, but

they would need to export information for the DAVID pathway analysis. Zhai et

al. could use the pipeline as is except for the variant calling. The AW and TCW

would provide their comparison between stages. To compare the DE and AI

transcripts, they could export the two tables to further analyze with a custom
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script. The AW overview provides SNP substitution counts, and the TCW GO

analysis would provide much of the GO classification.

Whether these pipeline substitutions would be adequate is hard to say since

Method sections in biology publications rarely cover the analysis to the depth

necessary for a user to repeat the analysis; given that they are not software

publications, one would not expect that level of detail and justification. However,

it is a good reason to use published software when possible, as the software

publication should provide the details. Moreover, one must assume that the

custom scripts are correct, whereas published software is typically well tested and

benefits from feedback from many users. The lack of computational detail also

makes it hard to compare results between publications, for example, Zhai et al.

identified 480(17%) of 2,793 transcripts with SNP coverage $20 to have

significant AI (p-value ,0.01) in either stage, whereas the AW mouse database

shows 2,659 (44%) of the 6,011 transcripts with SNP coverage $20 to have

significant AI (p-value ,0.01) in any library; is this difference real or an artifact of

the difference in processing?

Most studies, including the three cited here, do not consider the correlation

between ASE SNPs and transcription and translation. A synonymous SNP can

have an effect on transcription (reviewed in [50, 51]) and non-synonymous SNP

may affect protein folding (reviewed in [52]). Interestingly, in this study, the

UTRs had significantly more AI SNPs than the missense SNPs. Though in depth

analysis is not provided here, the AW provides the information to further study

these phenomena.

Table 4. AI and DE processing for three studies.

Bell et al. [45] Pemrumba et al. [49] Zhia et al. [17]

Input Reference 454-contigs (invasive) Chicken genome Nipponbare rice genome

RNA-seq libraries Parents, 2 hybrid pools 2 lines, 2 types, 7 replicates Parents and hybrid, 2 stages, 2
replicates

Processing Trimming Custom script FASTQC [53], Sickle [54] Custom script

Align MOSAIK [55] Tophat [29] RSEM [56]

Variant Call Samtool [11], custom
script

Freebayes [57], Merged with
VCFtools [14]

Custom script

Trans counts Assume custom script HTSeq [58]

Allele Imbalance Binomial + FDR ANOVA Binomial

Differential exp. Binomial + FDR DEseq [41] EdgeR

Project specific (for major
results only)

SNP analysis Cis-, trans-acting Union between types Comparison between stages,
substitutions

DE analysis Additive, dominance Union between types Comparison between stages

Other GO (TAIR [59], Amigo
[60])

ANNOVAR [61], DAVID [62] Comparison between AI and DE,
WEGO [63]

doi:10.1371/journal.pone.0115740.t004
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Conclusions

The AW is designed for versatility. By providing the AW pipeline scripts, it

provides a ‘bare bones workflow’ for the user, even if the user wants to deviate at

any point in the processing. Fortunately, there is now a fair amount of

standardization in file formats. Hence, the user can substitute a different program

for any of these steps, with the stipulation that they need to adhere to naming

conventions. Since there are bound to be questions that a scientist wants to answer

which are not in the viewAW, it provides the output of any table in tab delimited

format, which the researcher can use for further analysis. This allows the user to

have all analysis automated except for the unique questions they are asking. The

source code is available, which allows computational biologists to add columns of

data or change existing computations. For example, it is very likely that there will

be more research on the allele imbalance statistical test, where the Java method for

computing the p-values can be altered to experiment with new tests, and then the

results can be easily viewed through viewAW.

Though the Methods section on the AW query and display program is short, we

consider it the most important part of the AW package. Whereas the AW pipeline

will aid scientists with ASE workflow, a person with good bioinformatics skills

could install and execute each program, and write scripts for intermediate

computations. In contrast, providing the database and versatile query and display

requires more sophisticated programming skills, and time that a biological funded

project typically does not have. The reasons that a queryable database is so

important are: (1) for organized and permanent storage of results, (2) to clearly

understand the data, (3) extensibility, and (4) to make it easy to share results with

collaborators. It is now typical that data is submitted to Genbank, but each large-

scale experiment generates large amounts of results that are only available from

the publication, whereas these should also be made publicly available in digital

format, preferably via a web-based queryable database. In summary, with the vast

amount of high-throughput sequencing results that are being published, it is no

longer good practice to have results in flat files and rely on many custom scripts.

The AW code is available from https://code.google.com/p/allele-workbench.

The AW and TCW packages (executable files, demo files and documentation) are

available from www.agcol.arizona.edu/software (aw and tcw subdirectories,

respectively), where each provides a ’tour’ of the software. The AW URL has a link

to the AW applet to view the hybrid mouse database used in the Results section.

The AW and TCW for the full mouse database (48 libraries) are available from

www.heterosis.iplantcollaborative.org. The AW and TCW packages are available

as Atmosphere Virtual Machine Images at www.iplantcollaborative.org.

Acknowledgments

Lomax Boyd provided the system support. R. A. Barthelson wrote the original QC

script for the iPlant Discovery Environment.

Allele Workbench

PLOS ONE | DOI:10.1371/journal.pone.0115740 December 26, 2014 18 / 21

https://code.google.com/p/allele-workbench
www.agcol.arizona.edu/software
www.heterosis.iplantcollaborative.org
www.iplantcollaborative.org


Author Contributions
Conceived and designed the experiments: SAG CAS. Analyzed the data: CAS

WMN. Contributed reagents/materials/analysis tools: SAG CAS WMN. Wrote the

paper: CAS. Developed the software: CAS WMN.

References

1. Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, et al. (2009) Effect of read-mapping biases on
detecting allele-specific expression from RNA-sequencing data. Bioinformatics 25: 3207–3212.

2. Wu TD, Nacu S (2010) Fast and SNP-tolerant detection of complex variants and splicing in short reads.
Bioinformatics 26: 873–881.

3. GSNAP README (version 2013-07-16). Available: http://github.com/julian-gehring/GMAP-GSNAP/
blob/master/README. Accessed 4 September 2014.

4. Satya RV, Zavaljevski N, Reifman J (2012) A new strategy to reduce allelic bias in RNA-Seq
readmapping. Nucleic Acids Res 40: e127.

5. Stevenson KR, Coolon JD, Wittkopp PJ (2013) Sources of bias in measures of allele-specific
expression derived from RNA-sequence data aligned to a single reference genome. BMC Genomics 14:
536.

6. Rozowsky J, Abyzov A, Wang J, Alves P, Raha D, et al. (2011) AlleleSeq: analysis of allele-specific
expression and binding in a network framework. Mol Syst Biol 7: 522.

7. Turro E, Su SY, Goncalves A, Coin LJ, Richardson S, et al. (2011) Haplotype and isoform specific
expression estimation using multi-mapping RNA-seq reads. Genome Biol 12: R13.

8. Quinn A, Juneja P, Jiggins FM (2014) Estimates of allele-specific expression in Drosophila with a
single genome sequence and RNA-seq data. Bioinformatics. doi: 10.1093/bioinformatics/btu342.

9. Yu X, Sun S (2013) Comparing a few SNP calling algorithms using low-coverage sequencing data. BMC
Bioinformatics 14: 274.

10. Li R, Li Y, Fang X, Yang H, Wang J, et al. (2009) SNP detection for massively parallel whole-genome
resequencing. Genome Res 19: 1124–1132.

11. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence Alignment/Map format
and SAMtools. Bioinformatics 25: 2078–2079.

12. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, et al. (2011) A framework for variation
discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: 491–498.

13. Shen Y, Wan Z, Coarfa C, Drabek R, Chen L, et al. (2010) A SNP discovery method to assess variant
allele probability from next-generation resequencing data. Genome Res 20: 273–280.

14. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al. (2011) The variant call format and
VCFtools. Bioinformatics 27: 2156–2158.

15. Pastinen T (2010) Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev
Genet 11: 533–538.

16. Guo M, Rupe MA, Yang X, Crasta O, Zinselmeier C, et al. (2006) Genome-wide transcript analysis of
maize hybrids: allelic additive gene expression and yield heterosis. Theor Appl Genet 113: 831–845.

17. Zhai R, Feng Y, Zhan X, Shen X, Wu W, et al. (2013) Identification of transcriptome SNPs for assessing
allele-specific gene expression in a super-hybrid rice Xieyou9308. PLOS ONE 8: e60668.

18. Wei X, Wang X (2013) A computational workflow to identify allele-specific expression and epigenetic
modification in maize. Genomics Proteomics Bioinformatics 11: 247–252.

19. Li G, Bahn JH, Lee JH, Peng G, Chen Z, et al. (2012) Identification of allele-specific alternative mRNA
processing via transcriptome sequencing. Nucleic Acids Res 40: e104.

20. Pandey RV, Franssen SU, Futschik A, Schlotterer C (2013) Allelic imbalance metre (Allim), a new tool
for measuring allele-specific gene expression with RNA-seq data. Mol Ecol Resour 13: 740–745.

Allele Workbench

PLOS ONE | DOI:10.1371/journal.pone.0115740 December 26, 2014 19 / 21

http://github.com/julian-gehring/GMAP-GSNAP/blob/master/README
http://github.com/julian-gehring/GMAP-GSNAP/blob/master/README


21. Goncalves A, Tikhonov A, Brazma A, Kapushesky M (2011) A pipeline for RNA-seq data processing
and quality assessment. Bioinformatics 27: 867–869.

22. Fontanillas P, Landry CR, Wittkopp PJ, Russ C, Gruber JD, et al. (2010) Key considerations for
measuring allelic expression on a genomic scale using high-throughput sequencing. Mol Ecol 19 Suppl
1: 212–227.

23. Skelly DA, Johansson M, Madeoy J, Wakefield J, Akey JM (2011) A powerful and flexible statistical
framework for testing hypotheses of allele-specific gene expression from RNA-seq data. Genome Res
21: 1728–1737.

24. Graze RM, Novelo LL, Amin V, Fear JM, Casella G, et al. (2012) Allelic imbalance in Drosophila hybrid
heads: exons, isoforms, and evolution. Mol Biol Evol 29: 1521–1532.

25. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, et al. (2012) Differential gene and transcript
expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7: 562–578.

26. Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing
experiments. Nat Methods 10: 71–73.

27. Goff SA (2011) A unifying theory for general multigenic heterosis: energy efficiency, protein metabolism,
and implications for molecular breeding. New Phytol 189: 923–937.

28. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359.

29. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq.
Bioinformatics 25: 1105–1111.

30. Soderlund C, Nelson W, Willer M, Gang DR (2013) TCW: transcriptome computational workbench.
PLoS One 8: e69401.

31. FastQC: A quality control tool for high throughput sequence data. Available: http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 5 March 2012.

32. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data.
Bioinformatics 30: 2114–2120. doi: 10.1093/bioinformatics/btu170.

33. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features.
Bioinformatics 26: 841–842.

34. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. (2013) STAR: ultrafast universal RNA-
seq aligner. Bioinformatics 29: 15–21.

35. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, et al. (2012) A program for annotating and
predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila
melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6: 80–92.

36. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, et al. (2010) Deriving the consequences of
genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26: 2069–2070.

37. Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic
Acids Res 31: 3812–3814.

38. Smedley D, Haider S, Ballester B, Holland R, London D, et al. (2009) BioMart—biological queries
made easy. BMC Genomics 10: 22.

39. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics 26: 139–140.

40. Wang L, Feng Z, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially
expressed genes from RNA-seq data. Bioinformatics 26: 136–138.

41. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:
R106.

42. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq:
accounting for selection bias. Genome Biol 11: R14.

43. UniProt Consortium (2014) Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res
42: D191–198.

44. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402.

Allele Workbench

PLOS ONE | DOI:10.1371/journal.pone.0115740 December 26, 2014 20 / 21

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


45. GO slims and Subset Guide. Available: http://www.geneontology.org/page/go-slim-and-subset-guide.
Accessed 4 Sept 2014.

46. Mouse genome sequence (GRCm38). Available: http://www.ensembl.org/Mus_musculus/Info/Index.
Accessed 3 Aug 2013.

47. Yalcin B, Wong K, Bhomra A, Goodson M, Keane TM, et al. (2012) The fine-scale architecture of
structural variants in 17 mouse genomes. Genome Biol 13: R18.

48. Bell GD, Kane NC, Rieseberg LH, Adams KL (2013) RNA-seq analysis of allele-specific expression,
hybrid effects, and regulatory divergence in hybrids compared with their parents from natural
populations. Genome Biol Evol 5: 1309–1323.

49. Perumbakkam S, Muir WM, Black-Pyrkosz A, Okimoto R, Cheng HH (2013) Comparison and
contrast of genes and biological pathways responding to Marek’s disease virus infection using allele-
specific expression and differential expression in broiler and layer chickens. BMC Genomics 14: 64.

50. Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon
bias. Nat Rev Genet 12: 32–42.

51. Shabalina SA, Spiridonov NA, Kashina A (2013) Sounds of silence: synonymous nucleotides as a key
to biological regulation and complexity. Nucleic Acids Res 41: 2073–2094.

52. Mooney S (2005) Bioinformatics approaches and resources for single nucleotide polymorphism
functional analysis. Brief Bioinform 6: 44–56.

53. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets.
Bioinformatics 27: 863–864.

54. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files. Available: http://www.
github.com/najoshi/sickle. Accessed 27 September 2012.

55. Lee WP, Stromberg MP, Ward A, Stewart C, Garrison EP, et al. (2014) MOSAIK: a hash-based
algorithm for accurate next-generation sequencing short-read mapping. PLOS ONE 9: e90581.

56. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a
reference genome. BMC Bioinformatics 12: 323.

57. Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. arXiv:
12073907v2.

58. Anders S, Pyl PT, Huber W (2014) HTSeq — A Python framework to work with high-throughput
sequencing data. doi: 10.1101/002824.

59. Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, et al. (2012) The Arabidopsis Information
Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40: D1202–1210.

60. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, et al. (2009) AmiGO: online access to ontology
and annotation data. Bioinformatics 25: 288–289.

61. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Res 38: e164.

62. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists
using DAVID bioinformatics resources. Nat Protoc 4: 44–57.

63. Ye J, Fang L, Zheng H, Zhang Y, Chen J, et al. (2006) WEGO: a web tool for plotting GO annotations.
Nucleic Acids Res 34: W293–297.

Allele Workbench

PLOS ONE | DOI:10.1371/journal.pone.0115740 December 26, 2014 21 / 21

http://www.geneontology.org/page/go-slim-and-subset-guide
http://www.ensembl.org/Mus_musculus/Info/Index
http://www.github.com/najoshi/sickle
http://www.github.com/najoshi/sickle

	Section_1
	Section_2
	Section_3
	Section_4
	Section_5
	TABLE_1
	Section_6
	Section_7
	Section_8
	Section_9
	Figure 1
	Figure 2
	Section_10
	Figure 3
	Figure 4
	Section_11
	Section_12
	Figure 5
	Section_13
	TABLE_2
	TABLE_3
	Section_14
	Section_15
	TABLE_4
	Section_16
	Reference 1
	Reference 2
	Reference 3
	Reference 4
	Reference 5
	Reference 6
	Reference 7
	Reference 8
	Reference 9
	Reference 10
	Reference 11
	Reference 12
	Reference 13
	Reference 14
	Reference 15
	Reference 16
	Reference 17
	Reference 18
	Reference 19
	Reference 20
	Reference 21
	Reference 22
	Reference 23
	Reference 24
	Reference 25
	Reference 26
	Reference 27
	Reference 28
	Reference 29
	Reference 30
	Reference 31
	Reference 32
	Reference 33
	Reference 34
	Reference 35
	Reference 36
	Reference 37
	Reference 38
	Reference 39
	Reference 40
	Reference 41
	Reference 42
	Reference 43
	Reference 44
	Reference 45
	Reference 46
	Reference 47
	Reference 48
	Reference 49
	Reference 50
	Reference 51
	Reference 52
	Reference 53
	Reference 54
	Reference 55
	Reference 56
	Reference 57
	Reference 58
	Reference 59
	Reference 60
	Reference 61
	Reference 62
	Reference 63

