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Purpose: Renal calculi are common extracolonic incidental findings on computed tomographic
colonography (CTC). This work aims to develop a fully automated computer-aided diagnosis system
to accurately detect renal calculi on CTC images.
Methods: The authors developed a total variation (TV) flow method to reduce image noise within the
kidneys while maintaining the characteristic appearance of renal calculi. Maximally stable extremal
region (MSER) features were then calculated to robustly identify calculi candidates. Finally, the
authors computed texture and shape features that were imported to support vector machines for
calculus classification. The method was validated on a dataset of 192 patients and compared to a
baseline approach that detects calculi by thresholding. The authors also compared their method with
the detection approaches using anisotropic diffusion and nonsmoothing.
Results: At a false positive rate of 8 per patient, the sensitivities of the new method and the baseline
thresholding approach were 69% and 35% (p < 1e−3) on all calculi from 1 to 433 mm3 in the testing
dataset. The sensitivities of the detection methods using anisotropic diffusion and nonsmoothing were
36% and 0%, respectively. The sensitivity of the new method increased to 90% if only larger and more
clinically relevant calculi were considered.
Conclusions: Experimental results demonstrated that TV-flow and MSER features are efficient means
to robustly and accurately detect renal calculi on low-dose, high noise CTC images. Thus, the
proposed method can potentially improve diagnosis. C 2015 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4903056]
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1. INTRODUCTION

Renal calculi are solid concretions or crystal aggregations in-
side kidneys, which are mainly caused by low fluid intake.
They cause a particular type of pain, called “renal colic,” which
is one of the most painful urologic disorders. The prevalence
of renal calculi was 8.8% in the United States in 2012, and
the male to female ratio for renal calculi is 4:1.1 30%–40% of
these patients will form another calculi after the first occur-
rence.2 Renal calculi disease is costly. Each year nearly 3.3
×106 Americans require medical care for renal calculus
removal and pain relief at a cost of $5.3×109.3 Most renal
calculi are found when renal colic forces patients to seek imme-
diate medical attention in the emergency department of a hos-
pital or an urgent care center. Renal calculi can also be found
incidentally in asymptomatic individuals undergoing tests for
other reasons, such as CT colonography (CTC) for colonic
polyp detection. In this setting, early detection of renal calculi

could prevent patients from suffering renal colic as well as
reduce the cost and uncertainty of diagnosis and treatment.

Although renal calculi are one common extracolonic find-
ing4–7 in CTC, belonging to C-RADS E2 category,8 computer-
aided diagnosis was seldom explored to detect them in CTC
images. Existing radiology research on extracolonic findings
focuses primarily on ascertaining the clinical importance and
downstream costs of extracolonic findings in asymptomatic
patients.8–10 Similarly, in urology research there are extensive
studies of clinical outcomes or impacts of renal calculi, such
as temporal trends of renal calculi,11–13 calculi size measure-
ments,14–17 and limitations of noncontrast CT images on size
measurements.18,19 A detailed survey of these clinical findings
can be found in Ref. 20.

There is limited work on computer-aided renal calculi detec-
tion. Tamilselvi21 identified renal calculi candidates on ultra-
sound images by using a region-growing algorithm. Texture
features were then constructed on calculi candidates, and the
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F. 1. Two calculi (solid white arrows) in the (a) left and (b) right kidneys on CTC images. Image noise (dashed arrows) poses the greatest challenge to detect
such calculi.

spatial gray level dependence of the texture features was evalu-
ated to classify the current patient into three categories, normal,
early detection (small stones that do not cause symptoms), and
kidney stones. Later, Tamilselvi22,23 improved their approach
with a learning process called adaptive neuro fuzzy inference
system (ANFIS) to improve calculi classification accuracy
and a contour-based method to enhance calculi segmenta-
tion. A similar approach could be found in Shah’s work24

except that comprehensive gray level statistical texture features
were constructed for classification. Lee et al.25 developed a
computer-aided diagnosis system to differentiate urinary stone
and vascular calcifications on precontrast CT images. In their
method, they semiautomatically chose calculi candidates using
a region-growing method followed by computation of statis-
tical and shape features. Urinary stone and vascular calcifi-
cations were differentiated using an artificial neural network.
To summarize, there is little published work on the automated
detection of renal calculi on CT images. In addition, all of these
works required considerable manual preprocessing.

In this work, we present a fully automatic computer-aided
system to detect renal calculi on CTC images. The main chal-
lenge is that CTC scans are obtained with low radiation dose
leading to noisy images of the kidneys because the primary
purpose of CTC protocols is not for the detection of renal
calculi, but for the screening of colon cancer. Figure 1 shows
examples of renal calculi. Despite the fact that renal calculi
have high intensity values in the CTC images, many bright
spots also exist in kidney regions due to image noise, which
easily yield false positives. To address this issue, we devised
two novel strategies, total variation (TV) flow to reduce im-
age noise and maximally stable extremal region (MSER) to
robustly extract renal calculi candidates with high intensity
values. We then built shape and texture features in calculi
candidates to train a support vector machine26 to identify true
calculi and remove false positives. The shape features include
candidate volume size, distance of the candidate to kidney
boundaries, and two aspect ratios of height/length and width/
length of a calculus candidate. Texture features include mean

and standard deviation of intensity values in the calculi candi-
date, local binary pattern,27 and histogram of oriented gradi-
ents.28 Experiments on 192 CTC images were used to validate
the method.

2. METHODS AND MATERIALS

Figure 2 summarizes our method for computer-aided detec-
tion of renal calculi, which consists of four main steps. First,
kidneys are segmented on CTC images, and a subimage
[Fig. 2(b)] is then extracted based on the bounding box of
the segmented kidney. The subimage defines the search range
for renal calculi. Second, TV-flow is established on the subim-
age to remove image noise while maintaining renal calculi
[Fig. 2(c)]. Third, MSER feature is employed to detect and
segment renal calculi on the smoothed subimage [Fig. 2(d)].
Fourth, shape and texture features are computed on the calculi
segmentations. These features are used to train a support vector
machine classifier to generate the final calculi detection and
reduce false positives. We will elaborate on these four main
steps in this section.

2.A. Kidney segmentation

The purpose of this step is to segment kidneys on CTC im-
ages and use the segmentation to constrain the search ranges
of renal calculi.

Instead of manually labeling kidney regions,21,24,25 we
developed an automated kidney segmentation method29 to
extract the left and right kidneys in CTC images. This approach
involves four steps. First, we automatically segment the liver
and spleen30 and ribs31 [Fig. 3(b)] to determine a few anatomic
landmarks that are used to define two subimages that mainly
contain the left and right kidneys. Second, five pairs of refer-
ence CT images and their corresponding kidney segmentations
are matched with each subimage to establish probabilistic at-
lases of left and right kidneys through a sequence of affine32
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F. 2. Process of renal calculi detection on CTC images. (a) Original CTC image, (b) subimage determined by kidney segmentation and used to constrain the
search range of renal calculi, (c) smoothed subimage using TV-flow, and (d) renal calculi detection by MSER feature.

and nonrigid33 registrations. Third, the probabilistic atlas in
conjunction with kidney intensity priors is embedded into a
belief propagation framework34 to extract kidney regions. Fi-
nally, kidney boundaries are smoothed with geodesic active
contours (GAC).35 The final kidney segmentation is illustrated
in Fig. 3(b).

After kidneys are segmented, bounding boxes of left and
right kidneys are determined, and two subimages are ex-
tracted based on these two bounding boxes. In these subim-
ages, only kidney regions with original intensity information
are preserved. Figure 2(b) illustrates the final subimage of the
right kidney that constrains the search for renal calculi.

2.B. TV-flow smoothing

In this step, TV-flow is employed to reduce image noise
while preserving renal calculi in the subimages because image
noise is the primary challenge to hinder accurate renal calculi

detection in CTC images. TV-flow is superior to conven-
tional anisotropic diffusion methods36–38 because it requires
no constant parameters in the diffusivity function and gener-
ates diffused images close to piecewise constant segmentation
results. It is a nonlinear diffusion process that denoises an
image I using the partial differential equation39

∂tu= div(g(|∇u|)∇u),
g(|∇u|)= 1

|∇u| ,
u(t = 0)= I . (1)

The fundamental idea of TV-flow is to minimize the global
total variation


Ω
|∇u|dx of the diffused image u in the image

domain Ω while not deviating too much from the original
signal I. Note that the diffusion process is controlled by
the diffusivity function, g(|∇u|), and it is inverse to image
gradient magnitudes. Homogeneous image regions will be

F. 3. Kidney segmentation for constraining the search range of renal calculi. (a) Original CTC image and (b) segmentations of liver (blue), spleen (green),
spine and ribs (red), and kidneys (yellow).
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highly diffused because they have large diffusivity values,
while image edges will be preserved due to small values.
This characteristic of TV-flow leads to several desirable prop-
erties for renal calculi detection. First, image edges between
calculi and tissues are well kept because the diffusion process
stops at these edges. Second, TV-flow can efficiently remove
both Gaussian and non-Gaussian noise due to the diffusivity
function g(|∇u|) described by the L1 norm.39 Third, no addi-
tional parameters are required to be optimized in g(|∇u|). The
only unknown parameter is the scale t to smooth image. The
process of determining t is iterative. We initialize t = 1 and
perform MSER feature detection, as described in Sec. 2.C, to
determine the potential calculus candidates on the smoothed
image. We keep increasing t by 1 until the number of MSER
regions detected on the smoothed images is less than 10.
The selected scale t is considered as the optimized scale
because (1) a MSER region corresponds to a potential cal-
culus candidate; (2) experimental results show that a kidney
containing more than ten calculi is rare; and (3) the param-
eter of ten MSERs optimally balances the reduction of the
number of false positives and the avoidance of missing actual
renal calculi. The optimized scale t can be determined for
each patient through this iteration process. Last but not the
least, TV-flow yields a smoothed image similar to a piecewise
constant segmentation in Fig. 2(c). Image noise in the non-
calcified regions is substantially reduced, while the calculus
is preserved. This desirable property makes it tractable to
extract true renal calculi in CTC images.

Let us now consider some implementation issues related
to the TV-flow. There is a stability issue when the image
gradient tends to zero. We stabilize Eq. (1) by adding a small
positive constant ϵ = 0.01 to the image gradient in the diffu-
sivity function g(|∇u|)39

g(|∇u|)= 1
u2
x+u2

y+u2
z+ ϵ

2
. (2)

Another important issue is the efficient numerical computation
of TV-flow. Equation (1) can be explicitly represented as

∂tu= ∂x (g(|∇u|)∂xu)+∂y(g(|∇u|)∂yu)+∂z (g(|∇u|)∂zu),
∂u
∂t
=

gx+1, y,z+gx, y,z

2
(ux+1, y,z−ux, y,z)

−
gx−1, y,z+gx, y,z

2
(ux, y,z−ux−1, y,z)

+
gx, y+1,z+gx, y,z

2
(ux, y+1,z−ux, y,z)

−
gx, y−1,z+gx, y,z

2
(ux, y,z−ux, y−1,z)

+
gx, y,z+1+gx, y,z

2
(ux, y,z+1−ux, y,z)

−
gx, y,z−1+gx, y,z

2
(ux, y,z−ux, y,z−1). (3)

The discretization of Eq. (3) with respect to boundary condi-
tions is given by

uk+1−uk

τ
=A(uk)uk+1, (4)

where k is the iteration index, and τ is the time step size,
which defines scale t = kτ. A(uk)= (ai j(uk)) is a diffusion

matrix in terms of the diffusivity function g(|∇u|)

ai j(uk)=




gki +g
k
j

2
j ∈ N(i)

−


n∈N (i)

gki +g
k
n

2
j = i

0 else.

(5)

Here, i and j are two neighboring pixels, N(i) denotes the
6-neighborhood of the pixel i, and a gradient approximation
by central differences defines

gki = g
*.
,


p,q∈N (i)

*
,

uk
p−uk

q

2
+
-

2

+ ϵ2+/
-
. (6)

The stability condition for the time step τ of Eq. (4) is τ
≤ 0.25 ϵ ,40 so for small ϵ , many iterations are required. How-
ever, if we increase the value of ϵ , it will break beneficial prop-
erties of TV-flow due to L1 norm. A much more efficient ap-
proach is to use a semi-implicit additive operator splitting
(AOS) scheme,40 which is proven to be unconditionally stable
even with large time step τ. Thus, we set τ = 1 in this work. In-
stead of directly computing Eq. (1), AOS subdivides the diffu-
sion process into separate computations along each image
dimension. Letting the number of image dimensions be D
(D = 3 in our work) and the current image dimension be l-
direction, Eq. (3) can be implicitly represented as

(1−DτAl(uk))uk+1
l = uk, (7)

where 1 is the identity matrix, and uk+1
l

is the diffused value
along l-direction. Al(uk)measures the diffusion between neigh-
boring pixels only along l-direction and its definition can be
found in Ref. 40. The Thomas algorithm41 is applied to solve
Eq. (7) and obtain uk+1

l
along l-direction, and the final solution

is represented as

uk+1=
1
D

D
l=1

uk+1
l . (8)

Figure 4 illustrates the results of TV-flow on a right kidney
with a small calculus. Note that the image noise in Fig. 4(a) is
substantially suppressed while the calculus is well preserved
in Fig. 4(b). Figure 4(c) shows the smoothed image using Per-
ona’s approach36 with the same scale t as for Fig. 4(b) and us-
ing constant parameters as recommended by the ITK software
guide.42 Although the image noise was reduced, the calculus
is very difficult to distinguish.

2.C. MSER feature for calculi detection

After kidney regions are smoothed, another critical problem
is the identification of renal calculi on the smoothed image.
The characteristic of renal calculi is their high intensity values
in comparison with surrounding tissues [Figs. 2(c) and 4(b)].
Thus, the problem of calculi detection is equivalent to find-
ing stable image blobs with high intensity values. The MSER
feature43 is well suited for the detection of renal calculi because
it exploits the extreme intensity values to detect image blobs.
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F. 4. TV-flow results on a right kidney. (a) Original CT image with a small calculus (white arrow), (b) smoothed results using TV-flow (t = 2), and (c) smoothed
results using Perona’s approach (Ref. 36) (t = 2).

Let us now define MSER features. Assuming Ω to be the
image domain, a region Q ⊂Ω is called an extremal region if
for all points p ⊂Q and all boundary points q ⊂ bd(Q), the
intensity value I(p)> I(q) or I(p)< I(q), where bd means
the boundary of an image region. Let Q1,. . .,Qi−1,Qi, be a
sequence of nested extremal regions Qi ⊂Qi+1. Extremal re-
gion Qi is maximally stable if and only if f (i) has a local
minimum, where

f (i)= |Qi+∆\Qi−∆|/|Qi |. (9)

“\” indicates the region difference between Qi−1 and Qi, and
|∗ | in Eq. (9) denotes cardinality. The process of MSER
feature detection is essentially a thresholding process, and
an image region is considered as a MSER feature candidate if
it can exist within a threshold range [i−∆,i+∆].

For calculi detection, we only select MSER detections with
intensity values larger than 100 HU. MSER detection is used to
initialize the GAC (Ref. 35) to improve renal calculi segmen-
tation due to GAC’s superior accuracy to segment data with
homogeneous texture. Figure 2(d) illustrates the segmentation
result after MSER detection on the smoothed subimage, which
corresponds exactly to the renal calculus in Fig. 2(c).

2.D. Calculi classification

The last step in computer-aided renal calculi detection was
to compute texture and shape features at every segmented
calculi candidate by GAC to train a support vector machine
classifier44 to reduce false positives. The texture features
include mean and standard deviation of intensity values at a
segmented candidate, local binary pattern27 (64 dimensions),
and histogram of oriented gradients28 (124 dimensions). The
shape features include the volume of a candidate, two aspect
ratios of height/length and width/length of the candidate, and
the distance of the current candidate to the kidney boundary.
Shape and texture features are fed into the SVM classifier,
which yields the final classification results.

2.E. Validation datasets and methods

The dataset consisted of CTC scans from 1186 patients
from three institutions.45 Each patient was scanned during a

single breath hold using a four- or eight-channel CT scanner
(General Electric Light Speed or Light Speed Ultra, GE
Healthcare Technologies, Waukesha, WI). CT scanning param-
eters included 1.25–2.5 mm section collimation, 15 mm table
speed, 1 mm reconstruction interval, 100 mA s, and 120 kVp.
Retrospective analysis of these images was approved by our
Office of Human Subject Research. In prospective readings by
experienced radiologists, 91 patients were found to have renal
calculi. We chose 90 of them as positive training samples and
excluded one patient with a 13 cm renal lesion in the right kid-
ney, which caused kidney segmentation failure. 102 patients
without lesions were chosen from the remaining CTC images
as the negative samples. These 192 CTC images (patient age
range, 43–77 yr; mean age, 58±7 yr) compose the validation
dataset to evaluate our renal calculi detection framework.

The total number of calculi from the 90 patients was 176.
All calculi were marked by an experienced radiologist as the
reference standard and confirmed by a second radiologist.
The renal calculi volumes were measured using a commer-
cially available standard coronary artery calcium scoring tool
(Vitrea Core fX v6, Vital Images, Minnetonka, MN). The
default settings of the tool for measuring calcium were a den-
sity threshold of 130 HU and a pixel threshold of 3 pixels, as
recommended by Patel et al. to assess the volumes of calculi
on noncontrast CT images.17 The size range of calculi was
1–433 mm3 and mean size was 38±66 mm3. The calculi CT
attenuation ranged from 86 to 1684 HU with a mean of 528
±377 HU. We evenly divided the 192 patients into training
and testing datasets (96 each). 46 patients with renal calculi
were assigned to the training dataset, and the remaining 44 to
the testing dataset. In the training and testing datasets, there
were 95 and 81 renal calculi, respectively. Figure 5 shows the
calculus size and intensity histograms in the testing dataset.

We compared the MSER method with a baseline threshold-
ing method. The thresholding method identifies calculi candi-
dates with intensity values more than 100 HU and size larger
than 5 mm3 on images smoothed by TV-flow. We chose 100 HU
as the threshold to select calculus candidates in the baseline
approach because we also used the same threshold to perform
MSER segmentation in Sec. 2.C. 5 mm3 was another opti-
mized threshold to distinguish actual calculi from noise foci
with high intensity values and was determined in the training
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F. 5. Histograms of calculus (a) size and (b) intensity in the testing dataset.

dataset. Clinical studies indicate that calculi less than 27 mm3

usually do not cause obstruction of the ureter.46 Similar to the
MSER method, the selected candidates from the thresholding
method were also imported into a support vector machine clas-
sifier44 to reduce false positives. Therefore, the threshold of
5 mm3 retains clinically relevant calculi, and two same thresh-
olds (100 HU and 5 mm3) used in MSER and the baseline
thresholding methods ensure fair comparison between them.
In addition, we compared TV-flow, anisotropic diffusion36

[Fig. 4(c)], and not using diffusion to understand the effects
of image smoothing on the renal calculi detection. Here, we
chose the same scale parameter t for both TV-flow and aniso-
tropic diffusion for the fair comparison.

We also evaluated the influence of size, intensity, noise level,
and signal-to-noise ratio (SNR) on the detection accuracy of
renal calculi because these four parameters are important fac-
tors that determine detectability. We modified Pyatykh’s algo-
rithm47 to estimate the noise level (HU) in the kidneys. This
method assumed that intensity variances in the homogeneous
image regions are approximately equal to the image noise level.
Noise estimation consists of seven steps. First, the subimage
[Fig. 2(b)] containing the left or right kidney was decomposed
into many 5×5×5 voxel image cubes, where the 5 voxel di-
mension was suggested in Ref. 47. Second, the intensity vari-
ances of all image cubes were computed and sorted in an
increasing order. Third, the first 6% image cubes with the
smallest image variances were chosen because they correspond
to the most homogeneous kidney regions. Again, the param-
eter of 6% was determined in Ref. 47. Fourth, a 125-dimension
feature vector was constructed on every selected image cube,

F. 6. FROC curves of renal calculi detection using MSER and thresholding
methods.

and each vector component corresponded to the intensity value
of an image point in the image cube. Fifth, we performed prin-
cipal component analysis on all 125-dimension feature vec-
tors and obtained the smallest eigenvalue λ. Sixth, we per-
formed principal component analysis again on all selected im-
age cubes in the images after smoothing by TV-flow [Fig. 2(c)],
and we obtained another smallest eigenvalue λ ′. λ ′ can be
considered as the actual image variance of the homogeneous
regions in the kidneys because smoothed images are approxi-
mately equal to the kidney region without image noise. Finally,
the noise level σ was defined as

σ =
√
λ−λ ′. (10)

After the noise level was estimated, SNR was computed as

SNR=
Icalculus

σ
, (11)

where Icalculus is the average intensity value in the current
renal calculus. Free-response receiver operating character-
istic (FROC) analysis48 was used to evaluate the accuracy
of renal lesion detection. Measures of performance, including
sensitivities and false positive rates for renal calculi detec-
tion, are reported on the testing dataset.

Finally, we reported the calculus segmentation accuracy
using calculus measurements from the second radiologist as
the reference. Because renal calculi in the testing dataset have a
wide variety of volume sizes, we chose relative volume differ-
ence (RVD) ratio to measure calculus segmentation accuracy.
For volume measurements VM from the second radiologist and
VS from our segmentation method,

RVD=
VS−VM

VM
. (12)

All computations were carried out on a Windows desktop
computer with a six-core 2.67 GHz Intel Xeon CPU and 24
GB memory executing /++ code. The computation time was
less than 2 min per patient.
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3. RESULTS

3.A. Comparison of MSER and thresholding methods

The MSER method significantly outperformed simple
thresholding (p < 0.001) (Fig. 6). At eight false positives per
patient, MSER achieved 69% sensitivity and thresholding only
35% sensitivity. The sensitivities of both methods were less
than 80% because 33 of 81 renal calculi in the testing dataset
were smaller than 8 mm3 [Fig. 5(a)]. Tiny calculi smaller than
5 mm3 were difficult to distinguish from image noise.

Figure 7 illustrates typical true positive, false positive,
true negative, and false negative renal calculi detections. In
Fig. 7(a), a renal calculus with 272 mm3 was successfully
detected by our method. Three types of false positives were
observed in our experiments, including image noise, bones due
to kidney segmentation errors, and image artifacts caused by
colon fluids, such as a large high intensity image artifact mis-
classified as a renal calculus in Fig. 7(b). Image artifacts were
the most common source of false positives and accounted for

478 of 764 (62.6%) false positives in our experiments. Fortu-
nately, small image artifacts were successfully excluded by our
detection system [Fig. 7(c)]. Figure 7(d) shows a false negative
missed due to its small size (only 3 mm3). 23/26 (88.5%) of
false negatives is caused by calculi less than 8 mm3.

3.B. Comparison of TV-flow, anisotropic diffusion,
and nonsmoothing

Figure 8 illustrates the comparison results of MSER
methods using TV-flow, anisotropic diffusion, and nonsmooth-
ing. At eight false positives per patient, TV-flow achieved 69%
sensitivity, anisotropic diffusion 36%, while nonsmoothing 0%
in Fig. 8(b). Nonsmoothing generated 660 false positive per
patient to achieve 69% sensitivity.

3.C. Influence of calculi sizes on the detection
accuracy

Figure 9 gives the detection results as a function of refer-
ence calculus volume. Our method tends to achieve higher

F. 7. Examples of true positive, false positive, true negative, and false negative detections from four patients. Detected renal calculus candidates are marked
with a white square and a tiny calculus with a white arrow.

Medical Physics, Vol. 42, No. 1, January 2015
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F. 8. FROC curves of renal calculi detection using MSER methods
with TV-flow smoothing, with anisotropic diffusion, and without image
smoothing.

detection accuracy on calculi 64 mm3 or larger and compa-
rable accuracy on lesions larger than 8 and 27 mm3. Note that
our method can achieve 95% sensitivity with only two false
positive per patients if we are only interested in renal calculi
larger than 125 mm3. This is an encouraging result because
most calculi under 125 mm3 pass spontaneously while larger
calculi require surgical management.49

3.D. Influence of calculi intensity on the detection
accuracy

Figure 10 depicts the detection accuracy as a function
of calculus intensity. Detection accuracy increased at higher

F. 9. Comparison of FROC curves of renal calculi detection as a function
of calculus volume.

intensities. At four false positives, the sensitivity was 90% on
calculi with intensity greater than 400 HU.

3.E. Influence of noise on detection accuracy

Figure 11 shows the influence of image noise on the detec-
tion performance. At four false positives per patient, the
detection sensitivity was 67% for noise levels greater than
10 HU. The sensitivity decreased with increasing noise level.
The sensitivity plateaued for noise levels more than 30 HU.

3.F. Influence of SNR on detection accuracy

The detection performance as a function of SNR is shown
in Fig. 12. Sensitivity increased with increasing SNR.

F. 10. Comparison of FROC curves of renal calculi detection with different
intensities.
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F. 11. Comparison of FROC curves of renal calculi detection with different
noise levels.

3.G. Renal calculus segmentation accuracy

The average of relative volume difference ratio was 115%
±127% and its range was 1%–343%.

4. DISCUSSION

We developed a fully automatic computer-aided diagnosis
system to detect renal calculi on CTC images. We presented
two efficient methods (TV-flow and MSER) to address the
challenge of image noise in this setting. TV-flow reduces im-
age noise in the kidneys while preserving the calculi. TV-flow
requires only one scale parameter t to optimize a desirable
property that improves generalizability of a computer-aided
diagnosis system. We also developed an automatic strategy to
determine the scale t in TV-flow computation based on the
assumption that the number of calculi in a kidney is less than

F. 12. Comparison of FROC curves of renal calculi detection with different
SNR values.

10. After TV-flow smoothing, MSER robustly extracts renal
calculi from smoothed images by choosing image blobs with
stable volume adaptable to a range of intensity thresholds.
Volumes of image blobs caused by noise are unstable for a
range of thresholds.

We compared the accuracy of MSER and thresholding for
the detection of renal calculi. At eight false positives per pa-
tient on the test dataset, the sensitivity of MSER was 69%
while thresholding only 35% (p < 0.001). The majority of false
positives was due to large image artifacts from adjacent high
attenuation colonic fluids. However, small image artifacts
could be excluded. Renal calculi less than 5 mm3 often are
not detected because they are too small to distinguish from
noise. Fortunately, such tiny calculi usually do not cause ure-
teral obstruction.46 Figure 8 also demonstrated that TV-flow is
effective to reduce image noise while keeping accurate calculi
detection, and it also yields higher detection accuracy in com-
parison with traditional anisotropic diffusion methods.

We also analyzed the effects of the size, density, noise level,
and SNR of calculi on the detection accuracy. Large calculi
with high intensity values are easier to detect compared with
small ones with low intensity values. Such properties are clini-
cally useful because large renal calculi are more likely to cause
symptoms. The detection performance falls as noise levels in-
crease. The sensitivity plateaued for noise levels larger than
30 HU. SNR is another important factor that affects the detec-
tion performance. The sensitivity increases with larger SNR
values.

The accuracy of calculus segmentation was relatively low.
One possibility is that the geodesic active contour tends to
over-segment small calculi. In addition, we purposely over-
segment small calculi to include more image points to stably
establish texture features for calculus classification.

In conclusion, we have developed and validated an accurate
method for the fully automated detection of renal calculi on
CTC images. The method can also segment the renal calculi
automatically,enablingmeasurementofsize,volume,andinten-
sity. The method may have important clinical utility for CT
colonography image interpretation, or potentially interpreta-
tion of any nonintravenous contrast enhanced abdominal CT
scan.
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