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Chronic periodontitis is an inflammatory disease of the periodontium affecting nearly 65 million adults in the United States.
Changes in subgingival microbiota have long been associated with chronic periodontitis. Recent culture-independent molecular
studies have revealed the immense richness and complexity of oral microbial communities. However, data sets across studies
have not been directly compared, and whether the observed microbial variations are consistent across different studies is not
known. Here, we used 16S rRNA sequencing to survey the subgingival microbiota in 25 subjects with chronic periodontal disease
and 25 healthy controls and compared our data sets with those of three previously reported microbiome studies. Consistent with
data from previous studies, our results demonstrate a significantly altered microbial community structure with decreased heter-
ogeneity in periodontal disease. Comparison with data from three previously reported studies revealed that subgingival microbi-
ota clustered by study. However, differences between periodontal health and disease were larger than the technical variations
across studies. Using a prediction score and applying five different distance metrics, we observed two predominant clusters. One
cluster was driven by Fusobacterium and Porphyromonas and was associated with clinically apparent periodontitis, and the sec-
ond cluster was dominated by Rothia and Streptococcus in the majority of healthy sites. The predicted functional capabilities of
the periodontitis microbiome were significantly altered. Genes involved in bacterial motility, energy metabolism, and lipopoly-
saccharide biosynthesis were overrepresented in periodontal disease, whereas genes associated with transporters, the phospho-
transferase system, transcription factors, amino acid biosynthesis, and glycolysis/gluconeogenesis were enriched in healthy con-
trols. These results demonstrate significant alterations in microbial composition and function in periodontitis and suggest genes
and metabolic pathways associated with periodontal disease.

Periodontal disease is a common disease affecting many adults
in the United States. If left untreated, chronic periodontitis

(CP) can lead to serious problems such as tooth loss. Indeed, peri-
odontal disease is the number one cause of tooth loss in the United
States, accounting for half of all tooth loss in U.S. adults (1). There
is considerable evidence that the clinical impact of periodontal
disease extends beyond the oral cavity (2). Strong associations
have been found between periodontitis and a number of systemic
conditions, including cardiovascular disease (3, 4), preterm deliv-
ery and low-birth-weight babies (5), diabetes mellitus (6–8), and
rheumatoid arthritis (9–11).

The activity of periodontal disease is determined by a complex
interplay between the immune system and periodontal pathogens
(12, 13). Alterations in subgingival microbiota have long been
associated with the development and progression of periodontitis
(14). In susceptible individuals, perturbations in host homeostasis
are induced by changes in the polymicrobial community, with
several microorganisms frequently being associated with peri-
odontal lesions. These microorganisms include the red complex,
consisting of Tannerella forsythia, Porphyromonas gingivalis, and
Treponema denticola, and the orange complex, consisting of Fuso-
bacterium nucleatum subspecies, Fusobacterium periodonticum
subspecies, Prevotella intermedia, Prevotella nigrescens, and Mi-
cromonas micros (15). While the presence of these putative peri-
odontal pathogens in periodontal pockets correlates with clinical
measures of periodontal disease, the extremely complex microbial
populations in the oral cavity, which include many uncultivable or
unnamed species, suggest that additional organisms may be in-

volved (16). Indeed, thanks to recent advances in high-through-
put sequencing technologies, �700 oral bacterial species have
now been identified (17). Many of these bacteria are uncultivable,
and their impact on periodontal health remains unexplored.

Over the past 3 decades, numerous studies have investigated
the polymicrobial communities in subgingival pockets in an at-
tempt to elucidate the role of microbiota in periodontal disease
(15, 17–20). Early studies using culture-based techniques were
labor-intensive (21), and many organisms remained uncultivable
despite improvements in culturing techniques (22). Subsequent
molecular approaches based on DNA-DNA hybridization and
microarray techniques substantially improved our understanding
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of these microbial communities (23–27). However, since knowl-
edge of nucleic acid signatures or hybridization probes are re-
quired a priori, these methods precluded detailed analyses of
entire microbial communities. Recently, culture-independent
molecular methods targeting small-subunit rRNA sequences (16S
rRNA) in combination with high-throughput DNA sequencing
have emerged as a popular approach to profile microbial flora
from diverse sites of the human body. By amplification and deep
sequencing of 16S rRNA gene segments, this approach has pro-
vided an unprecedented view of human-associated microbial
communities and has uncovered novel or previously unrecog-
nized microbes associated with health and disease (16, 28–31).
The Human Microbiome Project (HMP) data set is currently the
largest reference data set (143 individuals) for the subgingival mi-
crobiome (32). However, because this data set was generated from
individuals with minimal or no periodontal disease, the entire
spectrum of the subgingival microbiota was not captured. Several
groups have since used the 16S rRNA and metagenomic ap-
proaches to survey subgingival microbiota from subjects recruited
in the community (30, 33). These “community” data sets have
demonstrated a difference between periodontitis-associated and
health-associated microbiota in both the overall microbial com-
munity structure (30, 31) and the predicted functional capabilities
(34, 35). A number of bacterial taxa and genes were found to be
differentially abundant between health and disease. However,
data sets across studies have not been directly compared, and
whether the observed microbial variations are consistent across
different studies is not known.

The goal of this study was to compare the subgingival micro-
biomes between subjects with chronic periodontitis and healthy
controls (HCs) and to consolidate our data with data from previ-
ous studies to determine whether differences in subgingival mi-
crobiota between health and disease are conserved across studies.
We used 16S rRNA deep sequencing to analyze subgingival micro-
biota from 25 subjects with chronic periodontal disease and 25
periodontally healthy controls and compared our data set with
previously reported data sets from the HMP, Griffen et al. (30),
and Abusleme et al. (31). In addition, we used PICRUSt (phylo-
genetic investigation of communities by reconstruction of unob-
served states) (36), a bioinformatics tool designed to predict meta-
genome functional content from marker gene surveys and full
genomes, to predict functional compositions of subgingival meta-
genomes in healthy and diseased individuals.

MATERIALS AND METHODS
Subjects. A total of 50 subjects were entered into the study, 25 with
chronic periodontitis and 25 without evidence of periodontal disease
(healthy controls). Study participants were recruited from the Periodon-
tal Disease Research Center at the University of Florida, Gainesville, FL,
over a 6-month period between August 2010 and January 2011. Clinical
evaluation and data, including pocket depths, were collected by a single
periodontist. Exclusion criteria included a history of systemic diseases
that could interfere with clinical characteristics, incidence, or progression
of periodontal disease; periodontal treatment within the previous 6
months; and chronic treatment with any medication known to affect peri-
odontal status within the previous 3 months (i.e., antibiotics, nonsteroidal
anti-inflammatory drugs [NSAIDs], and contraceptives). Clinical diag-
nosis and selection of subjects were based on clinical and radiographic
criteria proposed by the American Academy of Periodontology (37). Two
sites were sampled for each of the 50 subjects. Samples from the healthy
group had a clinical attachment loss (CAL) of �3 mm, whereas samples

from the CP group had a CAL of �5 mm. Pertinent information concern-
ing the study protocol was explained to each subject, and informed con-
sent was obtained from all participants as required by the study protocol
approved by the University of Florida Institutional Review Board.

Sample collection. Subgingival microbiota was collected from two
different sites in each subject by inserting a sterile absorbent paper point
to the depth of the sulcus and moving it laterally along the surface of the
tooth and the sulcular epithelial lining. The paper point sample was placed
directly into a bead-beating tube containing 750 �l buffer (PowerSoil
DNA extraction kit; Mobio, Carlsbad, CA) and stored at �20°C until
further processing. The probing depths of subgingival pockets were 6.8 �
1.1 mm for the 50 diseased sites (24 sites at 6 mm, 18 sites at 7 mm, and 8
sites at �8 mm) and �3 mm for all 50 healthy sites.

Sample preparation and PCR amplification. Genomic DNA was ex-
tracted from each sample by using the Mobio (Carlsbad, CA) PowerSoil
DNA extraction kit according to the manufacturer’s instructions. For
each sample, the bacterial 16S rRNA V1-V3 gene segment was amplified in
quadruplicates by using composite primers 27F (5=-AGAGTTTGATCCT
GGCTCAG-3=) and 534R (5=-ATTACCGCGGCTGCTGG-3=). The for-
ward and reverse primers contained a Lib-A unidirectional Titanium tag
sequence required for Roche/454 sequencing, and each reverse primer
also included a unique barcode to allow multiplex deep sequencing. Each
20-�l PCR mixture contained 2 �l of the purified DNA template, 1�
Accuprime PCR buffer II, 5 �M the forward primer, 5 �M the reverse
primer, and 1 U of Accuprime Taq High Fidelity polymerase. PCR ampli-
fication was performed as follows: a denaturation step at 95°C for 30 s
followed by 25 cycles of denaturation at 95°C for 30 s, annealing at 56°C
for 30 s, and extension at 68°C for 5 min.

Sample pooling and pyrosequencing. Four replicates of barcoded
PCR products for each sample were pooled and analyzed on a 1% SYBR
Safe (Invitrogen, Carlsbad, CA) agarose gel. Gel slices containing ampli-
cons of the expected size (�600 bp) were excised and purified by using the
Qiagen gel extraction kit (Qiagen, Valencia, CA). Purified PCR products
were quantified by using a Qubit HS DNA quantification kit (Invitrogen,
Carlsbad, CA) and pooled with an equal molar concentration. The use of
barcodes allowed multiplexing and sequencing on the Roche/454 pyrose-
quencing platform in five pools, generating a total of 406,502 raw reads.
After trimming of primer and barcode sequences and quality control (see
the supplemental material), 352,682 V1-V3 16S rRNA sequence reads
were available for analysis (averaging 3,343 � 1,925 reads per sample and
an amplicon length of 495 nucleotides [nt]). Good’s coverage estimates
were �0.95 for all samples (0.9905 � 0.0081). Rarefaction analysis indi-
cates that the sampling effort was sufficient for the majority of the sam-
ples, and further sampling would yield few additional operational taxo-
nomic units (OTUs) (see Fig. S1 in the supplemental material).

Sequence analysis. Pyrosequence reads were demultiplexed based on
barcode and reverse primer 534R sequences by using custom scripts. Bar-
code and primer sequences were removed and trimmed to a minimum
length of 423 bp. Trimmed reads were compared against the Human Oral
Microbiome Database (HOMD) (38) by using USEARCH (39) with
�97% sequence identity and �80% alignable query criteria. OTUs were
formed by collapsing hits by their human oral taxon (HOT) identifica-
tion. Additional statistical, alpha diversity, and beta diversity analyses
were performed by using linear discriminant analysis coupled with effect
size measurements (LEfSe) (40), R, and Qiime (41). Enterotype analysis
was implemented in R. Prediction of metagenome functional content was
performed based on 16S rRNA sequences by using the PICRUSt software
package (36).

Comparison of microbiome data sets. Raw sequencing reads were
obtained from three other studies: the HMP (42), Griffen et al. (30), and
Abusleme et al. (31). The reads were downloaded from the HMP DACC
website and the Sequence Read Archive (SRA) (SRA accession number
SRP009299 for data reported by Griffen et al. and SRA accession number
SRP012422 for data reported by Abusleme et al.). Because of the differ-
ences in amplified 16S rRNA regions and read lengths across studies, all
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raw sequence reads were reprocessed. The common region V1-V2 (27F-
342R) shared among the four studies was used for direct comparison. The
filtering step was adjusted by using the following criteria: average per-base
quality score of 25, no ambiguous bases, and a minimum length of 200 bp.
Reprocessed reads were then integrated into our existing pipeline.

Nucleotide sequence accession number. The reads are available in the
SRA database under BioProject accession number PRJNA269205.

RESULTS
Microbial community structure. A total of 457 operational tax-
onomic units (OTUs) were identified from 100 subgingival mi-
crobial communities (50 communities in the CP group and 50
communities in the control group), which belonged to 122 differ-
ent genera in 10 different phyla. Subgingival microbial communi-
ties between sites within subjects were more similar to one another
than sites between subjects (Jaccard similarity index) (see Fig. S2
in the supplemental material). In the following analyses, microbial
communities in different sites within each subject were treated
independently. Analysis of microbial diversity, composition, and
structure using pooled data sets yielded similar results.

We first compared microbial diversity, evenness, and species
richness of subgingival microbial communities between CP and
healthy control (HC) subjects. Microbial diversity (determined by
the Shannon diversity index) was not significantly different be-
tween the diseased and control sites (P � 0.69 by Student’s t test)
(Fig. 1A). Similarly, no significant difference in evenness or spe-
cies richness (number of OTUs) was observed. When CP sites
were stratified by pocket depth, the Shannon diversity index, spe-
cies richness, and evenness values were significantly higher in
6-mm pockets than in 7-mm/8-mm pockets (P � 0.05) (Fig. 1B).
Compared to healthy sites, species richness but not diversity was
significantly high in 6-mm pockets (P � 0.03). No significant
difference in species richness, diversity, or evenness was observed
between 7-mm/8-mm pockets and healthy sites (P � 0.05).

Next, we applied the UniFrac method to compare the degree of

phylogenetic overlap in the overall microbial community struc-
tures between the CP and HC groups. In both weighted and un-
weighted UniFrac analyses, subgingival microbial communities in
the CP group clustered separately from those in the HC group
(Fig. 2A). The separation between samples along the first principal
coordinate (PC1) explains �36% of the microbiome variations,
likely reflecting differences in clinical phenotype. Compared to
deep sites (7 mm and �8 mm), the shallow sites (6-mm pockets)
clustered closely with the HC group (Fig. 2B). This separation
according to clinical phenotype was also observed when data sets
reported by the HMP (healthy subjects only), Abusleme et al. (31),
and Griffen et al. (30) (both healthy and periodontitis groups)
were included in the analysis (Fig. 2C to G). The average weighted,
normalized UniFrac distance between pairs of samples within the
CP group was significantly lower than that in the HC group (Fig.
2H), indicating a decrease in microbial heterogeneity in subjects
with chronic periodontitis compared to HCs.

Subgingival microbial composition. The aggregate subgingi-
val microbiota in healthy sites was dominated by Actinobacteria
(26.6%) and Firmicutes (31.9%), while Bacteroidetes (15.1%), Fu-
sobacteria (15.0%), and Proteobacteria (8.8%) were less abundant
(Fig. 3A). Members of the Spirochaetes, TM7, Synergistetes, and
SR1 phyla were minor constituents of the healthy subgingival mi-
crobiota (each 	1.6%), and Chloroflexi sequences were com-
pletely absent. In the chronic periodontitis group, Bacteroidetes
(35.4%) and Synergistetes (6.0%) were more abundant (P 	
0.0001 by multivariate analysis). In contrast, the relative propor-
tions of bacterial phylotypes for most phyla did not differ signifi-
cantly (P � 0.3) (Fig. 3B). At the family level, Streptococcaceae,
Fusobacteriaceae, Micrococcaceae, and Actinomycetaceae were
dominant members of the healthy subgingival microbiota (17.9%,
15.0%, 11.9%, and 8.7%, respectively), constituting a combined
average of 53.5% among healthy samples (Fig. 3C). In the chronic
periodontitis group, 61.6% of reads belonged to members of the

FIG 1 Microbial diversity, evenness, and richness in subgingival microbiota in subjects with chronic periodontitis and healthy controls, shown in box plots. (A)
The Shannon diversity index was used to estimate microbial diversity for each group. The species evenness index was calculated by using the formula J= �
H=/H=max, where H= is the Shannon diversity index and H=max is the maximal value of H= (i.e., ln S, where S is the total number of species in the community).
Species richness was defined as the number of OTUs identified in each sample. Each point represents an individual subgingival sample. (B) CP sites were stratified
by pocket depths (6 mm or 7 mm/8 mm). P values (Student’s t test) are shown above the bars for each comparison.
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Fusobacteriaceae, Porphyromonadaceae, Prevotellaceae, and Spiro-
chaetaceae (Fig. 3D). Of the 457 total OTUs identified, 79 OTUs
(17.3%) were unique to CP sites, 34 OTUs (7.4%) were unique to
healthy sites, and 344 (75.3%) were shared between the two
groups. The majority of OTUs unique to healthy sites (22 of 34, or
64.7%) were members of the Proteobacteria, while the remaining
unique OTUs belonged to the Firmicutes, Bacteroidetes, and Acti-
nobacteria (8, 3, and 1 OTUs, respectively). In contrast, 18 of 79
OTUs (22.8%) unique to chronic periodontitis sites belonged to
the Spirochaetes phylum, and 27 and 18 OTUs were members of
the Firmicutes and Bacteroidetes, respectively.

To identify bacterial taxa that were differentially abundant be-
tween the two groups, we used LEfSe (linear discriminant analysis
coupled with effect size measurements) and a multivariate ap-
proach. LEfSe identified 36 OTUs (of 457 total OTUs [7.9%])
differentially enriched in the chronic periodontitis group and 50
OTUs (10.9%) enriched in the HC group. The multivariate ap-

proach (43) identified 19 OTUs as being significantly more abun-
dant in periodontitis patients and 5 OTUs as being significantly
more abundant in healthy controls (Table 1). Eighteen OTUs were
identified by both methods as being significantly abundant in
chronic periodontitis, and five OTUs (Actinomyces oral taxon 170,
Streptococcus mitis, Streptococcus sanguis, Gemella haemolysans,
and Granulicatella adjacens) were strongly associated with peri-
odontal health (Fig. 4). These five taxa combined represented
10.3% of the total reads in HCs (�76 to 100% of sites) but only
1.5% of the total reads in the CP group (ranging from 16 to 72% of
CP sites).

Of the 18 most differentially enriched taxa in periodontitis
(Fig. 4), 3 belonged to the red complex, as defined by Socransky et
al. (15) (Porphyromonas gingivalis, Treponema denticola, and Tan-
nerella forsythia), and 1 was a member of the orange complex
(Fusobacterium nucleatum subsp. vincentii). Members of the red
and orange complexes (19 OTUs, or 4.2% of the 457 OTUs iden-

FIG 2 Comparison of subgingival microbial community composition. Weighted UniFrac analysis was used to generate distances among different samples.
Scattered plots were then generated by using principal coordinate analysis. The percentage of variation explained by each principal coordinate (PC) is indicated
on the axes. Each point represents a microbial community. (A) Microbial communities in subjects with chronic periodontitis versus healthy controls. (B)
Microbial communities in subjects with chronic periodontitis at pocket depths of 6 mm, 7 mm, and 8 mm versus healthy controls. (C) Subgingival microbial
communities in this study versus the subgingival data set from the Human Microbiome Project. (D) Bleeding sites and nonbleeding sites from the study by
Abusleme et al. (31) versus sites from subjects with chronic periodontitis in this study. (E) Healthy sites from the study by Abusleme et al. versus healthy sites from
this study. (F) Chronic periodontitis sites from the study by Griffen et al. (30) versus CP sites from this study. (G) Healthy sites from subjects with chronic
periodontitis and healthy sites from healthy controls from the study by Griffen et al. versus healthy sites from this study. (H) Average UniFrac distance between
pairs of samples within each group, indicating lower heterogeneity in subgingival microbial communities in the chronic periodontitis group. Error bars indicate
standard errors of the means.
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tified in this study) represented 44.9% of pyrosequence reads in
the CP group and 17.5% in the control group. In total, members of
the five major subgingival microbial complexes (43 OTUs), as
defined by Socransky et al. (15), accounted for 49.4% of all se-
quence reads in the CP group and 39.3% in the control group.
Two additional taxa, Filifactor alocis and Fretibacterium sp. (Syn-
ergistetes G-3 oral taxon 361), which are not part of the microbial
complexes, were significantly enriched in sites of subjects with
chronic periodontitis (86% and 3%, respectively). Interindividual
variations in the relative proportions of dominant taxa were ob-
served in both groups (see Fig. S3 in the supplemental material).

Clustering of subgingival microbial communities using dis-
tance metrics. The gut microbiome of an individual can be clas-
sified into one of three “enterotypes” or clusters based on the
abundance of key bacterial taxa (Bacteroides, Prevotella, and Ru-
minococcus) (44). More recent studies, however, suggest that most
HMP and published “community” microbiome data sets fall into
gradients rather than discrete clusterings of microbial communi-
ties (45). To examine whether distinct clusters of subgingival
communities, or “periodontotypes,” are present in our data set,
we utilized the same analytical approach as the one implemented
previously by Arumugam et al. (44) with our combined healthy
and chronic periodontitis data sets. By applying five different dis-
tance metrics (weighted and unweighted UniFrac distances, Jen-
sen-Shannon divergence, root Jensen-Shannon divergence, and
Bray-Curtis distance) (see Materials and Methods) to the com-
bined data set, the optimal number of clusters was found to be 2
according to both the Calinski-Harabasz (CH) index and predic-

FIG 3 Relative abundance of bacterial taxa at the phylum level in subjects with chronic periodontitis (CP) and healthy controls (HC). (A) Relative proportion
of sequence reads for each phylum. (B) Relative proportions of bacterial phylotypes for each phylum. (C) Top 10 most abundant families in HCs. (D) Top 10 most
abundant families in subjects with CP.

TABLE 1 Subgingival phylotypes significantly enriched in subjects with
chronic periodontitis and healthy controls

Phylotype associated with group

Healthy controls
Actinomyces oral taxon 170
Gemella haemolysans
Granulicatella adiacens
Streptococcus mitis
Streptococcus sanguis

Chronic periodontitis
Porphyromonas endodontalis
Porphyromonas gingivalisa

Tannerella forsythiaa

Prevotella oral taxon 526
Streptococcus constellatus
Eubacterium saphenum
Eubacterium minutum
Filifactor alocis
Mogibacterium timidum
Peptostreptococcaceae oral taxon 103
Fusobacterium nucleatum subsp. vincentiia

Desulfobulbus oral taxon 041
Treponema denticolaa

Treponema maltophilum
Treponema parvum
Treponema socranskii
Synergistetes oral taxon 360
Synergistetes oral taxon 363
Synergistetes oral taxon 452

a Organism in the orange or red complex, as defined by Socransky et al. (15).
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tion score (Fig. 5A and data not shown). The prediction score
indicated strong support for independent clusters (ranging from
0.81 to 0.92 for all distance metrics used). The species diversity
and richness estimates between the two clusters were similar (Fig.
5B). The two clusters were dominated by different taxa, with one
cluster being driven by Fusobacterium and Porphyromonas and the
second cluster being dominated by Rothia and Streptococcus

(Fig. 5C). Clinically apparent periodontal disease was significantly
correlated with Fusobacterium and Porphyromonas belonging to
the first cluster (88%, or 43 of 49 samples; P 	 0.001), whereas
healthy sites were predominant in the second cluster (86%, or 44
of 51 samples; P 	 0.001).

Functional profiling of subgingival communities. To identify
biologicalfunctionsdifferentiallyenrichedinthesubgingivalmeta-

FIG 4 Differentially abundant bacterial phylotypes identified by linear discriminant analysis (LDA) coupled with effect size measurements (LEfSe). Bacterial
taxa enriched in healthy sites are indicated with positive linear discriminant analysis scores, and taxa enriched in periodontitis sites are indicated with negative
linear discriminant analysis scores. Only taxa that met the significant linear discriminant analysis threshold of 3.5 are shown. Phylotypes that were also
significantly different between the two groups by multivariate analysis are indicated by an asterisk. The oral taxon numbers are derived from the Human Oral
Microbiome Database.

Kirst et al.

788 aem.asm.org January 2015 Volume 81 Number 2Applied and Environmental Microbiology

http://aem.asm.org


genomes of subjects with chronic periodontitis, we applied
PICRUSt (phylogenetic investigation of communities by recon-
struction of unobserved states) (36), a computational algorithm
that predicts functions based on 16S rRNA sequence information.
Analysis using PICRUSt revealed that genes involved with bacte-
rial motility, energy metabolism, lipopolysaccharide (LPS) bio-
synthesis, flagellar assembly, methane metabolism, bacterial che-
motaxis, and peptidases were significantly more abundant in the
subgingival metagenome of subjects with chronic periodontitis.
In healthy controls, genes involved with transporters, the phos-
photransferase system, transcription factors, amino acid biosyn-
thesis, and glycolysis/gluconeogenesis were overrepresented in the
microbiome (Fig. 6).

DISCUSSION

A detailed analysis of the subgingival microbiome is critical for
understanding the role of subgingival microbial communities in
chronic periodontitis. Recent work in the microbiome field has
revealed the immense richness and complexity of the oral micro-
biome. In this study, we used 16S rRNA sequencing to determine
the composition and structure of the subgingival microbiomes in
subjects with chronic periodontitis and healthy controls and com-
pared our data set with data reported previously by the HMP,
Griffen et al. (30), and Abusleme et al. (31). Comparison of the
four data sets revealed that subgingival microbiota clustered by
study, but differences in subgingival microbiomes between peri-
odontal health and disease were larger than the technical varia-

tions across the four studies. Using an algorithm that predicts gene
functions based on 16S rRNA sequence information, we identified
several gene categories that were highly abundant in chronic peri-
odontitis. Furthermore, we identified two major clusters strongly
correlated with clinical measures of periodontal disease. These
two clusters were distinguishable by species composition, with
one cluster driven by Fusobacterium and Porphyromonas and the
second cluster dominated by Rothia and Streptococcus. Our data
also indicate that subgingival microbial communities in subjects
with chronic periodontitis are more homogeneous than those in
healthy controls, suggesting that a limited repertoire of species or
genes is shared, which may play a role in the etiology and progres-
sion of periodontal disease.

Previous studies by Socransky et al. (46) and Griffen et al. (30)
reported greater microbial diversity and species richness in sites
with chronic periodontitis compared to healthy controls. In this
study, we observed no significant difference in microbial diversity
between healthy and periodontitis sites, although species richness
(i.e., number of OTUs) was slightly higher in diseased sites (Fig.
1A). Interestingly, when deep and shallow sites were analyzed sep-
arately, species richness and diversity were significantly higher in
shallow sites (i.e., 6-mm pockets) than in healthy control sites. In
deeper sites (�7-mm pockets), richness and diversity measures
were similar or lower than in healthy control sites (Fig. 1B). This
difference in microbial diversity and richness according to pocket
depths may explain the difference observed between our data set

FIG 5 Clustering for subgingival microbial communities. (A) Prediction scores based on weighted UniFrac distances showing strong support for two indepen-
dent clusters. One cluster is dominated by periodontitis sites (red), and the second cluster consists of mostly healthy microbial communities (blue). (B) Measures
of microbial diversity and species richness in the two clusters (P � 0.5). (C) Relative proportions of sequence reads according to the taxa indicated.
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and data from previous studies. However, these results also sup-
port a model of microbial succession, in which members of dis-
ease-associated bacteria initially invade the healthy microbiota,
resulting in a diverse community consisting of both health- and
disease-associated microbiota. As disease progresses, this tran-
sitional microbiota is then replaced by predominantly disease-
associated organisms, leading to a more homogenous microbi-
ota (Fig. 2).

Culture-independent 16S rRNA approaches have been utilized
to characterize subgingival microbiota in healthy and diseased
subjects in several studies (30, 31, 42). However, data sets from
these studies could not be readily compared because amplification
and sequencing strategies (e.g., 16S rRNA gene segments targeted)
were different across studies. The Human Microbiome Project
was the largest of the four data sets, including ours, consisting of
183 samples from 143 subjects with no or minimal periodontal

disease (pocket size of 	4 mm; some were collected from the same
subjects at different times). The community data set of Griffen et
al. (30) included a total of 87 samples from 29 subjects with
chronic periodontitis (one diseased site and one healthy site from
each subject) and 29 healthy controls (one sample each). The
community data set of Abusleme et al. surveyed 61 samples from
22 subjects with periodontitis (one bleeding site and one non-
bleeding site) and 17 healthy controls (multiple samples from
some subjects). The present study evaluated 25 subjects with
chronic periodontitis and 25 healthy controls (2 sites per subject).
In order to compare these four data sets, we obtained raw se-
quence reads from published studies, trimmed the reads to iden-
tical lengths, and reprocessed them by using the same analytical
pipeline (see the supplemental material). By using these proce-
dures, we observed modest differences in microbial composition
and community structure across the four data sets (Fig. 2C to G).

FIG 6 Differentially abundant gene functions in subjects with chronic periodontitis and healthy controls. Functional categories of genes of the subgingival
metagenome were predicted by using PICRUSt, and differentially abundant functions were then identified by using linear discriminant analysis (LDA) coupled
with effect size measurements (LEfSe). Gene functions enriched in healthy sites are indicated with positive linear discriminant analysis scores, and functions
differentially enriched in periodontitis sites are indicated with negative linear discriminant analysis scores. Only gene functions that have a linear discriminant
analysis score threshold of 2.75 are shown.
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These results suggest that technical procedures used in different
studies, such as amplified 16S rRNA regions (V1-V3 versus V1-
V2), sequencing chemistry (FLX versus Titanium chemistry), read
lengths (�250 bp versus �400 bp), and sampling techniques (pa-
per point versus scaling), likely account for the observed differ-
ences across the four studies. This observation is also consistent
with a recent meta-analysis of human microbiome studies (47), in
which the authors concluded that technical variability across dif-
ferent studies likely explains the observed variations in the com-
position of microbiota. Alternatively, our data may reflect genuine
differences in subgingival microbial communities across data sets.
Because the origins of samples were different for the four studies
(Europe, North America, and South America), host genetics, diet,
or other environmental factors may have contributed to the dif-
ferences in microbiota composition. We note that all three com-
munity data sets (30, 31; this study) display sufficiently large and
systematic microbial shifts in chronic periodontitis compared to
healthy control sites. This observation implicates a functional role
for dysbiosis of the subgingival microbiome in chronic periodon-
titis.

As in previous studies (30, 31, 48), a difference in microbial
composition was apparent between diseased and control sites at
all taxonomic levels from phylum to species. Of 457 bacterial taxa,
50 were identified as being significantly enriched in healthy sites
by using the LEfSe approach. Among these 50 taxa, 5 were signif-
icantly more abundant in healthy sites based on a conservative
multivariate analysis (43). Most of the health-associated organ-
isms identified in our study belong to the genus Streptococcus, and
several are oral commensals, such as Rothia. In periodontitis, 36 of
457 taxa were significantly enriched based on LEfSe analysis, 18 of
which were significantly more abundant, as determined by multi-
variate analysis (43). Among the 18 disease-associated taxa, most
were members of the red and orange complexes, as defined by
Socranski et al. (15) (Table 1). Two bacterial phylotypes, Filifactor
alocis and Synergistetes G-3, which were recently linked to perio-
dontitis (30, 31), were also identified in our data set. Filifactor
alocis is a fastidious, Gram-positive anaerobic rod found to be
highly prevalent and abundant in patients with generalized ag-
gressive periodontitis and chronic periodontitis (49). This organ-
ism encodes several virulence factors, which may play a role in the
pathogenesis of periodontal disease by enabling the organism to
persist in periodontal pockets (50). Members of the phylum Syn-
ergistetes, a newly recognized phylum of Gram-negative anaerobic
bacteria, were recently implicated in periodontal disease (51).

Recent gut microbiome surveys suggest that individuals can be
classified into clusters or “enterotypes” based on the abundance of
key bacterial species in the gut microbiota (44). Significant
changes in gut enterotypes have been associated with long-term
dietary changes (52). We examined whether subgingival microbi-
ota could also be classified into different clusters or “periodonto-
types” based on abundances of key bacterial genera. By using ap-
proaches described previously by Arumugam et al. (44) and Wu et
al. (52), our subgingival data sets clustered into two periodonto-
types distinguished primarily by levels of Fusobacterium/Porphy-
romonas and Rothia/Streptococcus bacteria. The majority of sam-
ples from subjects with chronic periodontitis belonged to one
cluster, characterized by high levels of Fusobacterium and Porphy-
romonas bacteria. The second cluster consists of predominantly
healthy sites, distinguishable by high levels of Rothia and Strepto-
coccus bacteria. Thus, these data support an association between

periodontotype and clinical measures of periodontal disease. Re-
cently, Koren et al. (45) examined the HMP data sets from healthy
volunteers who had minimal or no periodontal disease but failed
to identify discrete clustering of subgingival microbiota in this
population. Instead, those authors observed a continuous gradi-
ent according to the relative abundances of Prevotella, Fusobacte-
rium, and Treponema. We note that in the HMP data set, subjects
with periodontitis were not included, and although both healthy
and diseased sites were analyzed in the present study, subjects with
mild-to-moderate periodontal disease (i.e., subgingival pocket
depths of between 3 and 6 mm) were not included. Thus, while
our data support a model for periodontotypes, we could not ex-
clude the possibility of a continuous abundance gradient of key
bacteria within the human population. A larger number of sam-
ples encompassing the entire spectrum of periodontal health is
warranted in order to confirm our conclusions.

Our 16S rRNA analysis demonstrates significant interindi-
vidual variations in taxonomic profiles within both health- and
disease-associated microbiota (see Fig. S3 in the supplemental
material). In contrast, predicted functions encoded by the subgin-
gival metagenome were less variable within groups. For example,
no taxa were universally present in all subjects, although several
OTUs (e.g., Streptococcus and Rothia) were prevalent in healthy
sites. In contrast, unlike microbial taxa, most functional categories
or metabolic pathways were evenly distributed, and several were
ubiquitous among individuals. The most abundant gene catego-
ries were transporters, DNA repair and recombination proteins,
ribosomes, purine and pyrimidine metabolism proteins, and pep-
tidases, which likely reflect the basic requirements of microbial life
in the subgingival habitat. Despite the conservation of core func-
tions, the relative abundances of some gene functions differed
significantly between subjects with periodontitis and healthy con-
trols. Notably, functions related to bacterial motility, energy me-
tabolism, lipopolysaccharide (LPS) biosynthesis, flagellar assem-
bly, methane metabolism, bacterial chemotaxis, and peptidases
were abundant in chronic periodontitis cases. These results are
consistent with recent metagenomic data (34, 53). Going forward,
elucidating the role of key bacteria encoding these functions and
understanding the basis of individual variations in microbiomes
and metagenomes will be essential in future studies.
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