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Biodiversities can differ substantially among different wastewater treatment plant (WWTP) communities. Whether differences
in biodiversity translate into differences in the provision of particular ecosystem services, however, is under active debate. Theo-
retical considerations predict that WWTP communities with more biodiversity are more likely to contain strains that have posi-
tive effects on the rates of particular ecosystem functions, thus resulting in positive associations between those two variables.
However, if WWTP communities were sufficiently biodiverse to nearly saturate the set of possible positive effects, then positive
associations would not occur between biodiversity and the rates of particular ecosystem functions. To test these expectations, we
measured the taxonomic biodiversity, functional biodiversity, and rates of 10 different micropollutant biotransformations for
10 full-scale WWTP communities. We have demonstrated that biodiversity is positively associated with the rates of specific, but
not all, micropollutant biotransformations. Thus, one cannot assume whether or how biodiversity will associate with the rate of
any particular micropollutant biotransformation. We have further demonstrated that the strongest positive association is be-
tween biodiversity and the collective rate of multiple micropollutant biotransformations. Thus, more biodiversity is likely re-
quired to maximize the collective rates of multiple micropollutant biotransformations than is required to maximize the rate of
any individual micropollutant biotransformation. We finally provide evidence that the positive associations are stronger for rare
micropollutant biotransformations than for common micropollutant biotransformations. Together, our results are consistent
with the hypothesis that differences in biodiversity can indeed translate into differences in the provision of particular ecosystem
services by full-scale WWTP communities.

The microbial communities residing within wastewater treat-
ment plants (WWTPs) provide ecosystem services that are im-

portant for maintaining the quality of our environment. They
consume carbon-, nitrogen-, and phosphorous-containing sub-
strates and biotransform organic pollutants present within
WWTP influent (1, 2), thus mitigating the potentially deleterious
effects of these chemicals on receiving waters. The ability to per-
form these ecosystem functions is to some extent related to the
biodiversity present within WWTP communities (3). WWTP
communities are estimated to contain many thousands of differ-
ent microbial strains and to express tens of thousands of different
genes (e.g., 4–7), thus providing a supply of functional traits that
could enable and facilitate particular ecosystem functions.

While biodiversity is thought to be important for enabling and
facilitating particular ecosystem functions (3), biodiversity can
also differ substantially both among different WWTP communi-
ties (4, 5, 7, 8) and over time for a single WWTP community (9,
10). In one recent investigation, the taxonomic richness measure-
ments among 10 full-scale WWTP communities differed by 4- to
6-fold (4). These differences in biodiversity underscore one of the
most general and debated questions in ecology: how do differ-
ences in biodiversity translate into differences in the rate of a par-
ticular ecosystem function (11, 12)? Stated alternatively, what is
the shape of the association between biodiversity and the rate of a
particular ecosystem function? Determining the shape could be
important for understanding why some WWTP communities
perform a particular ecosystem function at higher rates than oth-

ers. It could also be important for predicting how differences or
changes in biodiversity are likely to affect the rate of that particular
ecosystem function.

The emerging view from experiments with other types of com-
munities is that the association between biodiversity and the rate
of an ecosystem function is positive (11, 12) (Fig. 1). The positive
association is thought to result from the accumulation of strains
that have unique niche partitioning or facilitative interaction ef-
fects on a particular ecosystem function (i.e., complementarity
effects) (11, 13, 14). Niche partitioning effects occur when differ-
ent ecological niches are inhabited by different specialist strains
rather than by any single generalist strain, and the collection of
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specialist strains achieves a greater aggregate rate of a particular
ecosystem function than any single generalist strain. Facilitative
interaction effects occur when the presence of some strains stim-
ulates the activities of other strains (e.g., by providing growth-
limiting nutrients, detoxifying local environments, etc.), thus
leading to higher rates of a particular ecosystem function. The
positive association could also result from sampling effects (11,
13, 14). Briefly, communities with more strains are more likely to
contain strains that provide niche partitioning or facilitative in-
teraction effects or have large trait values for a particular ecosys-
tem function. Sampling effects not only could modify the rates of
particular ecosystem functions but could also result in qualita-
tively different capabilities among different communities (i.e.,
sampling effects could affect the presence or absence of a particu-
lar ecosystem function).

While the association between biodiversity and the rate of a
particular ecosystem function is thought to be positive, the asso-
ciation could have one of two different shapes (11, 12) (Fig. 1). A
nondecelerating shape is expected when different strains have
complementarity and sampling effects that are unique rather than
the same as those of other strains (Fig. 1, dashed line). This might
occur if there were far less biodiversity present than would be
needed to begin saturating the set of possible positive effects. Con-
versely, a decelerating shape is expected when different strains
have to some extent the same complementarity and sampling ef-
fects as other strains (i.e., functionally redundant effects) (Fig. 1,
solid line). This would occur if there were sufficient biodiversity
present to begin saturating the set of possible positive effects. An
important consequence of deceleration is that at some point, dif-
ferences in biodiversity might no longer translate into differences
in the rate of that particular ecosystem function (Fig. 1, far right
region of the solid line).

While both nondecelerating and decelerating associations have
been observed for some types of ecosystem functions and micro-
bial communities (e.g., see references 3 and 15 to 18), associations
have not been observed for other types (e.g., see references 19 to
21). Moreover, the associations among full-scale WWTP commu-

nities remain largely unexplored. It is plausible that full-scale
WWTP communities are sufficiently biodiverse to nearly saturate
the set of possible complementarity and sampling effects for a
particular ecosystem function. If this were the case, then a decel-
erating association would be expected, and differences in biodi-
versity might not translate into differences in the rate of that par-
ticular ecosystem function (Fig. 1, far right region of the solid
line). On the other hand, full-scale WWTPs contain considerable
spatial, temporal, and resource heterogeneity, thus providing a
large set of possible complementarity and sampling effects. It is
therefore plausible that full-scale WWTPs are insufficiently
biodiverse to substantially saturate the set of possible comple-
mentarity and sampling effects. If this were the case, then a non-
decelerating association might be expected, and differences in bio-
diversity would translate into differences in the rate of that
particular ecosystem function (Fig. 1, dashed line). Indeed, recent
studies demonstrated that nondecelerating associations are more
likely to occur as spatial and temporal heterogeneity increase (e.g.,
see references 16, 17, and 22).

Our main objective was to test for and measure the shapes of
the associations between biodiversity and the rates of 10 different
micropollutant biotransformations among 10 independent and
full-scale WWTP communities, thus addressing an important gap
in our knowledge about their ecology and functioning. We use the
term micropollutant to refer to a synthetic organic chemical that is
present at trace concentrations in WWTP influent (23). We pre-
viously measured the rate at which each WWTP community bio-
transforms each micropollutant (24). In parallel, we measured the
taxonomic and functional biodiversity of each WWTP commu-
nity from bacterial 16S rRNA and mRNA sequence reads, respec-
tively (4). In this study, we tested for associations between differ-
ent aspects of biodiversity and the rates of each individual
micropollutant biotransformation. We then asked whether a de-
celerating or nondecelerating shape more accurately describes
each of the observed positive associations. We finally proposed a
hypothesis and obtained evidence for why the positive associa-
tions are stronger for some micropollutant biotransformations
and weaker for others.

MATERIALS AND METHODS
WWTP communities and biotransformation rate constants. We previ-
ously collected WWTP communities from 10 independent and full-scale
WWTPs located across north-central Switzerland. We sampled each
WWTP using a standardized protocol (24). Briefly, we collected 1 liter of
activated sludge directly from the biological aeration basin of the WWTP,
transported the activated sludge to the laboratory in a loosely capped
2-liter amber glass bottle, and added a magnetic stir bar to the 2-liter
bottle immediately upon arrival at the laboratory.

We initiated a biotransformation experiment with each WWTP com-
munity within 3 h of collecting the activated sludge samples from the
WWTP (24). We dissolved a defined mixture of 10 micropollutants in
methanol to obtain a stock concentration of 100 mg per liter of each
micropollutant, added 70 �l of the stock mixture into empty triplicate-
stirred batch reactors, and allowed the methanol to completely evaporate.
We next seeded the batch reactors with 70 ml of activated sludge to obtain
an initial concentration of 100 �g per liter of each micropollutant (24).
We then periodically removed 2-ml liquid samples from the stirred batch
reactors over 4 days, filtered the liquid samples using a glass-fiber filter,
stored the liquid samples at 4°C, and analyzed the samples using high-
performance liquid chromatography-mass spectrometry (HPLC-MS)
chemical analyses (24). We performed abiotic controls in parallel using
twice-autoclaved activated sludge (24). We quantified the biologically
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FIG 1 Possible shapes of the positive associations between biodiversity and
the rates of particular ecosystem functions. A nondecelerating shape (dashed
line) is expected when different strains have unique complementarity and
sampling effects on that ecosystem function. A decelerating shape (solid line) is
expected when different strains have, to some extent, functionally redundant
complementarity and sampling effects on that ecosystem function.
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mediated rate of disappearance of each micropollutant and determined
the observed first-order rate constant using Bayesian parameter inference
and Monte Carlo sampling as previously described (24). We normalized
the biotransformation rate constants to empirical estimates of active bio-
mass as described by Majewsky and colleagues (25) (see Table S1 in the
supplemental material). We further normalized the biotransformation
rate constants to total suspended solids (TSS) and obtained qualitatively
similar outcomes. Because active biomass and TSS normalization gener-
ated qualitatively similar results, we only present data using active bio-
mass normalization for the remainder of the article.

RNA sample collection and processing. We collected 1.5-ml liquid
samples for RNA analyses from each of the WWTP communities at 2 h
after mixing the WWTP communities with the micropollutants (4). We
analyzed RNA rather than DNA because RNA analyses consider only met-
abolically active strains and transcriptionally expressed genes, thus ex-
cluding metabolically inactive strains and nonexpressed genes, which are
unlikely to have contributed to the measured micropollutant biotransfor-
mations. We collected samples for RNA analyses at 2 h for three reasons.
First, 2 h provided time for the WWTP communities to respond to the
addition of the micropollutants. Second, because the micropollutants
were typically biotransformed without an observable lag period and fol-
lowed first-order kinetics, 2 h coincided with a rapid period of micropo-
llutant biotransformation. Third, the micropollutants were not com-
pletely biotransformed after 2 h (24). We provide full descriptions of the
RNA isolation and purification methods elsewhere (4).

Preparation, sequencing, and analysis of bacterial 16S rRNAs. We
reverse transcribed bacterial 16S rRNAs, amplified the B27F-B534R re-
gion of the reverse transcription products, and sequenced the reverse
transcription products using the 454-GS FLX platform (Roche 454 Life
Sciences, Branford, CT, USA) as described elsewhere (4). All of the result-
ing 16S rRNA sequence reads are publically available in the NCBI Se-
quence Read Archive (see below). We analyzed the 16S rRNA sequence
reads using mothur software (26) and assigned those reads that passed all
of the quality control steps into operational taxonomic units (OTUs)
using a sequence similarity threshold of 97%. We chose 97% because this
threshold has been widely used in comparable studies and reduces the
probability that sequencing errors could lead to artifactual estimates of
biodiversity. We provide a full description of the 16S rRNA sequencing
methods and quality control parameters elsewhere (4).

Preparation, sequencing, and analysis of mRNAs. We enriched
mRNAs and sequenced the enriched mRNAs using the HiSeq2000 plat-
form (Illumina, San Diego, CA, USA) as described elsewhere (4). All of the
resulting mRNA sequence reads are publically available in the MG-RAST
database (see below). We analyzed the mRNA sequence reads using the
MG-RAST metagenomics analysis server (version 3.2) (27) and assigned
those reads that passed all of the quality control steps into level 3 SEED
subsystems functional categories (28). We provide a full description of the
mRNA sequencing methods, quality control parameters, and annotation
parameters elsewhere (4).

Biodiversity measurements. Prior to measuring biodiversity, we cor-
rected for differences in sequencing depth across the 10 WWTP commu-
nities by rarefying the 16S rRNA sequence reads that were assigned to
OTUs to 2,500 and the mRNA sequence reads that were assigned to level
3 functional categories to 300,000. We measured the observed richness of
each WWTP community as the observed number of unique OTUs or
unique level 3 functional categories. We measured the Chao1 extrapolated
richness (29), the abundance-based coverage estimation (ACE) extrapo-
lated richness (29, 30), the Shannon diversity, and the Shannon evenness
of each WWTP community from the same sets of OTUs or level 3 func-
tional categories. We reported the Shannon diversity and Shannon even-
ness measurements in terms of the Hill numbers H1 and H0, which pro-
vide more intuitive interpretations of the measurements (31). All of the
reported biodiversity measurements are the average values from 1,000
independently rarefied 16S rRNA or mRNA sequence read data sets. We
further rarefied the 16S rRNA sequence reads that were assigned to OTUs

to 1,000, 1,500, and 2,000 and found that the rank orderings of the biodi-
versity indices were identical to those when we rarefied the16S rRNA
sequence reads to 2,500 (data not shown). We therefore present only the
data obtained when we rarefied the 16S rRNA sequence reads to 2,500. We
performed rarefaction and calculated all biodiversity measurements in the
R software environment (32) using functions from the vegan package
(33).

Micropollutant multifunctionality measurements. We measured
the collective rates of multiple micropollutant biotransformations using
the multifunctionality measure described by Zavaleta and colleagues (34).
Briefly, we scaled the rate constants for each individual micropollutant
biotransformation to an average value of 0 and a standard deviation of 1.
We then calculated micropollutant multifunctionality as the average
value of the scaled rate constants among the 10 individual micropollutant
biotransformations. The advantages and limitations of this measure of
multifunctionality have been discussed in detail elsewhere (34, 35).

Linear and logarithmic models. We fit linear (y � [m � x] � b) and
logarithmic (y � [m � LN(x)] � b) models to the biodiversity measure-
ments in order to gain insight into the underlying relationships between
biodiversity and micropollutant biotransformations, where the depen-
dent variable y is the rate constant for an individual micropollutant or
micropollutant multifunctionality, the independent variable x is a mea-
sure of biodiversity, m is the slope, and b is the intercept. We fit each
model, estimated the model parameters, and calculated the coefficient of
determination (R2) and the root mean squared error (RMSE) in the R
software environment using functions from the stats package (32).

Bioinformatic analyses. We used the UM-BBD database (36) to pre-
dict sets of bacterial enzymes that could hypothetically catalyze each of the
experimentally measured micropollutant biotransformations. We used
the NCBI protein search tool (www.ncbi.nlm.nih.gov/protein/) to re-
trieve all taxonomically identified protein sequences for each predicted
enzyme. We performed the protein search across eight publically available
sequence databases (RefSeq, GenBank, EMBL, DDBJ, PDB, UniProtKB/
Swiss-Prot, PIR, and PRF).

Statistical methods. Because the underlying distributions of our mea-
surements are unknown, we used nonparametric methods for all of our
statistical hypothesis tests. We used the two-sided Spearman rank corre-
lation test to test whether the biodiversity measurements associate with
the rate constants of each individual micropollutant biotransformation or
with micropollutant multifunctionality. We used the Benjamini-Hoch-
berg method to account for multiple comparisons (37). We used the one-
sample two-sided Wilcoxon test to test whether the Spearman rank cor-
relation coefficients of all 10 of the individual micropollutant
biotransformations significantly deviate from zero and whether the values
of R2

linear � R2
logarithmic significantly deviate from zero. For the last two

tests, we assumed that the individual micropollutant biotransformations
are independent of each other (see Results). We performed all of the
statistical tests in the R environment using functions from the stats pack-
age (32).

Accession numbers. The 16S rRNA sequence reads obtained in this
work are publically available in the NCBI Sequence Read Archive (http:
//www.ncbi.nlm.nih.gov/sra) under BioProject number PRJNA232662.
mRNA sequence reads are publically available in the MG-RAST database
under project number 6015 (http://metagenomics.anl.gov/).

RESULTS
Micropollutant biotransformation measurements. We previ-
ously measured the rates of 10 different micropollutant biotrans-
formations by 10 independent and full-scale WWTP communi-
ties (24). We selected the WWTPs in order to obtain a set with
substantial differences in their environmental and operational
metrics, including total suspended solids, solid retention time,
and influent source (24). We postulated that greater differences in
those metrics would translate into greater differences in biodiver-
sity and in turn into greater differences in the rates of micropoll-
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utant biotransformations. We summarized the environmental
and operational metrics for each WWTP in Table S2 in the sup-
plemental material and elsewhere (24). We selected the micropo-
llutants to have diverse chemical structures and to putatively un-
dergo different types of biotransformations (24). We summarized
the experimentally observed biotransformation types and bio-
transformation products for each micropollutant in Table S3 and
elsewhere (24). We measured the rate of each micropollutant bio-
transformation as the active biomass-normalized first-order rate
constant (liters g�1 day�1) (see Table S1). We used active biomass
normalization because the biodiversity measurements were
obtained for a fixed number of 16S rRNA or mRNA sequence
reads, which are themselves surrogate measures of active bio-
mass (38, 39).

Taxonomic biodiversity and individual micropollutant bio-
transformations. We first tested for associations between the tax-
onomic richness aspect of biodiversity and the rates of each indi-
vidual micropollutant biotransformation. To accomplish this, we
assigned the previously analyzed 16S rRNA sequence reads into
operational taxonomic units (OTUs) using a sequence similarity
threshold of 97% (4). We then measured the observed taxonomic
richness of each WWTP community as the observed number of
unique OTUs among 2,500 randomly sampled 16S rRNA se-
quence reads. We additionally measured the extrapolated taxo-
nomic richness of each WWTP community using the Chao1 and
abundance-based coverage estimation (ACE) indices (29, 30)
from the same 2,500 randomly sampled 16S rRNA sequence reads.
We summarized the taxonomic richness measurements in Table
1. We then used the Spearman rank correlation test to test whether
the taxonomic richness measurements associate with the rate con-
stants for each individual micropollutant biotransformation. This
is a nonparametric test that does not make any assumptions about
the underlying shape of the association; it is therefore valid for
both nondecelerating and decelerating associations (Fig. 1). We
plotted the taxonomic richness measurements against the rate
constants for each individual micropollutant biotransformation
in Fig. S1 to S3 in the supplemental material. We summarized the
Spearman rank correlation coefficients in Fig. 2A.

We observed significant positive associations between the tax-
onomic richness aspect of biodiversity and the rates of specific
individual micropollutant biotransformations, regardless of
whether we used observed or extrapolated measures of taxonomic
richness. This is based on two lines of evidence. First, the Spear-
man rank correlation coefficients are themselves significant and
positive for 6 of the 10 individual micropollutant biotransforma-

tions (Fig. 2A) (Benjamini-Hochberg-adjusted two-sided P value
of �0.05). Second, when all 10 of the individual micropollutant
biotransformations are considered together, the Spearman rank
correlation coefficients are more often positive than one would
expect by chance (Fig. 2A) (one-sample Wilcoxon test, two-sided
P value of 0.0039). These outcomes would only be expected if
differences in taxonomic richness tend to translate into differ-
ences in the rates of specific individual micropollutant biotrans-
formations. Taken together, our data indicate that WWTP com-
munities with greater taxonomic richness are indeed more likely
to biotransform specific individual micropollutants at higher
rates.

We next tested for associations between the Shannon taxo-
nomic diversity and Shannon taxonomic evenness aspects of bio-
diversity and the rate of each individual micropollutant biotrans-
formation. As opposed to taxonomic richness, these aspects of
biodiversity consider the proportional abundances of different
taxa and place less weight on low-abundance taxa (40). We mea-
sured Shannon taxonomic diversity and Shannon taxonomic
evenness using the same 2,500 randomly sampled 16S rRNA se-
quence reads that we used for measuring taxonomic richness. We
summarized the Shannon taxonomic diversity and Shannon tax-
onomic evenness measurements in Table 1 and plotted the mea-
surements against the rate constants for each individual micropo-
llutant biotransformation in Fig. S4 and S5 in the supplemental
material, respectively. We summarized the Spearman rank corre-
lation coefficients in Fig. 2B and replotted the Spearman rank
correlation coefficients for observed taxonomic richness to facili-
tate comparison.

We observed two important outcomes. First, the Spearman
rank correlation coefficients for Shannon taxonomic diversity and
Shannon taxonomic evenness are significant and positive for
fewer of the individual micropollutant biotransformations than
for observed taxonomic richness (Fig. 2) (Benjamini-Hochberg-
adjusted two-sided P value of �0.05). Second, the median values
of the Spearman rank correlation coefficients among all 10 of the
individual micropollutant biotransformations are smaller for
Shannon taxonomic diversity (0.63) and Shannon taxonomic
evenness (0.61) than for observed taxonomic richness (0.70).
Thus, the positive associations between biodiversity and the rates
of individual micropollutant biotransformations appear to
weaken when the proportional abundances of taxa are considered
and less weight is placed on low-abundance taxa. Our data there-
fore lead to the hypothesis that low-abundance taxa are important

TABLE 1 Biodiversity measurements for each full-scale wastewater treatment plant community

Biodiversity measurementa

Value for full-scale wastewater treatment plant

DOM1 DOM2 DOM3 DOM4 DOM5 IND1 IND2 IND3 IND4 IND5

Observed taxonomic richness 906 821 1,057 535 1,014 474 592 680 481 230
Chao1 extrapolated taxonomic richness 2,020 1,729 2,703 1,135 2,630 1,064 1,344 1,596 1,185 487
ACE extrapolated taxonomic richness 1,352 1,209 1,759 774 1,680 670 857 1,058 754 327
Shannon taxonomic diversity (H1)b 401 349 529 137 421 108 147 108 75 22
Shannon taxonomic evenness (H1/H0)b 0.442 0.426 0.501 0.256 0.415 0.228 0.248 0.159 0.156 0.097
Observed functional richness 984 992 1,005 883 957 909 939 914 908 904
Chao1 extrapolated functional richness 1,010 1,044 1,047 935 1,006 952 986 981 961 953
ACE extrapolated functional richness 994 1,010 1,019 900 973 923 954 932 923 920
a All biodiversity measurements are the average values from 1,000 independently rarefied 16S rRNA or mRNA sequence read data sets.
b Shannon taxonomic diversity and Shannon taxonomic evenness are reported in terms of the Hill numbers H1 and H0 (31).
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for determining the rates of specific— but not necessarily all—
individual micropollutant biotransformations.

Taxonomic biodiversity and multiple micropollutant bio-
transformations. While investigating individual micropollutant
biotransformations is important for understanding the underly-
ing relationships between biodiversity and the rates of ecosystem
functions, the preferred outcome of wastewater treatment is typ-
ically not to remove any single micropollutant. Instead, the pre-
ferred outcome is typically to remove a large number and wide
variety of different micropollutants. We therefore next tested for
positive associations between the different aspects of biodiversity
and the collective rates of multiple micropollutant biotransforma-
tions. To accomplish this, we measured the collective rate of mul-
tiple micropollutant biotransformations using the multifunction-
ality measure proposed by Zavaleta and colleagues (34). We
summarized the micropollutant multifunctionality measure-
ments in Table S4 in the supplemental material. We plotted the
observed taxonomic richness, extrapolated taxonomic richness,
Shannon taxonomic diversity, and Shannon taxonomic evenness
measurements against the micropollutant multifunctionality
measurements in Fig. 3. We summarized the Spearman rank cor-
relation coefficients in Fig. 2.

We observed significant positive associations between all of the

measured aspects of biodiversity and the collective rates of multi-
ple micropollutant biotransformations (Fig. 3). The Spearman
rank correlation coefficients are always significant and positive
(Fig. 2) (two-sided P value of �0.016). Moreover, the Spearman
rank correlation coefficients are typically larger than or equal in
magnitude to the largest Spearman rank correlation coefficient
among the individual micropollutant biotransformations (Fig. 2).
Thus, the positive associations for the collective rates of multiple
micropollutant biotransformations are typically stronger than or
as strong as the positive associations for the rates of individual
micropollutant biotransformations. Furthermore, the positive as-
sociations for the collective rates of multiple micropollutant bio-
transformations are weaker when the proportional abundances of
taxa are considered and less weight is placed on low-abundance
taxa (i.e., they are smaller for Shannon taxonomic diversity and
Shannon taxonomic evenness than for taxonomic richness) (Fig.
2B). Thus, low-abundance taxa are also likely important for de-
termining the collective rates of multiple micropollutant biotrans-
formations.

Shapes of the observed associations. We next sought to gain
insight into the underlying shapes of the observed positive associ-
ations. More specifically, we determined whether a nondecelerat-
ing or decelerating model explains more of the variance and en-

FIG 2 Spearman rank correlation coefficients for the associations between different aspects of biodiversity and the rate constants for each individual micropo-
llutant biotransformation or micropollutant multifunctionality. The tested aspects of biodiversity include observed taxonomic richness, Chao1 extrapolated
taxonomic richness, and ACE extrapolated taxonomic richness (A) and observed taxonomic richness, Shannon taxonomic diversity, and Shannon taxonomic
evenness (B). �, Benjamini-Hochberg-adjusted two-sided P value � 0.05 for individual micropollutant biotransformations or two-sided P value � 0.05 for
micropollutant multifunctionality.
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ables more accurate predictions for the rates of individual or
collective rates of multiple micropollutant biotransformations.
To accomplish this, we used a linear model to describe a nonde-
celerating shape and a logarithmic model to describe a decelerat-
ing shape as proposed by Bell and colleagues (15). We fit the mod-
els to the micropollutant biotransformation measurements as a
function of biodiversity and plotted the best-fit models in Fig. S1
to S5 in the supplemental material and Fig. 3. We summarized the
best-fit models in Table S5. We then calculated the differences
between the coefficients of determination for the best-fit linear
and best-fit logarithmic models (R2

linear � R2
logarithmic) (Fig. 4).

Thus, a positive difference indicates that the best-fit linear model

explains more of the variance than the best-fit decelerating model.
We further calculated the differences between the root mean
squared errors for the best-fit linear and best-fit logarithmic mod-
els (RMSElinear � RMSElogarithmic) (see Fig. S6). Thus, a negative
difference indicates that the best-fit linear model generates more
accurate predictions than the best-fit logarithmic model. We ex-
cluded the biotransformation of diazinon from the analyses be-
cause the slopes of the best-fit linear and best-fit logarithmic mod-
els were always negative (see Table S5).

We were unable to detect a common shape for the associations
between biodiversity and the rates of individual micropollutant
biotransformations. This is based on two observations. First,

FIG 3 Association between observed taxonomic richness (A), Chao1 extrapolated taxonomic richness (B), ACE extrapolated taxonomic richness (C), Shannon
taxonomic diversity (D), or Shannon taxonomic evenness and micropollutant multifunctionality (E). The solid lines are the best-fit linear models, and the dashed
lines are the best-fit logarithmic models.

FIG 4 The difference between the coefficients of determination for the best-fit linear and best-fit logarithmic models (R2
linear � R2

logarithmic) between biodiversity
(independent variable x) and the rate constants for individual micropollutant biotransformations or micropollutant multifunctionality (dependent variable y).
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among all of the individual micropollutant biotransformations,
one type of model does not generally explain more of the variance
(Fig. 4) or enable more accurate predictions (see Fig. S6 in the
supplemental material). Linear models are marginally more effec-
tive for four of the individual micropollutant biotransformations
(biotransformations of azoxystrobin, isoproturon, trinexepac
ethyl, and venlafaxine), logarithmic models are marginally more
effective for two of the individual micropollutant biotransforma-
tions (biotransformations of atenolol and valsartan), and neither
model is clearly more effective than the other for three of the
individual micropollutant biotransformations (biotransforma-
tions of ethofumesate, propachlor, and ranitidine) (Fig. 4; see also
Fig. S6). Second, the values of R2

linear � R2
logarithmic among all of

the individual micropollutant biotransformations do not signifi-
cantly deviate from zero (one-sample Wilcoxon test, two-sided P
value of �0.25). This is true regardless of the specific aspect of
biodiversity that is considered. It is also true regardless of whether
all of the individual micropollutant biotransformations are con-
sidered or only those individual micropollutant biotransforma-
tions that had both significant and positive Spearman correlation
coefficients (Benjamini-Hochberg-adjusted two-sided P value of
�0.05).

As opposed to the rates of individual micropollutant biotrans-
formations, we detected clear nondecelerating shapes for the pos-
itive associations between biodiversity and the collective rates of
multiple micropollutant biotransformations (Fig. 3). The best-fit
linear models consistently explain more of the variance and enable
more accurate predictions of micropollutant multifunctionality
than the best-fit logarithmic models (Fig. 4; see also Fig. S6 in the
supplemental material). Thus, at the levels of biodiversity that are
present within full-scale WWTP communities, the positive asso-
ciations between biodiversity and the collective rates of multiple
micropollutant biotransformations do not appear to decelerate
(Fig. 3).

Rarity of micropollutant biotransformations. We next asked
why the positive associations between biodiversity and the rates of
individual micropollutant biotransformations are stronger for
some micropollutant biotransformations (e.g., venlafaxine) and
weaker for others (e.g., trinexepac ethyl) (Fig. 2A). We hypothe-
sized that the rarity of the micropollutant biotransformation (i.e.,
the number of different taxa that perform the biotransformation)
is an important determinant. As a micropollutant biotransforma-

tion becomes increasingly rare, the probability that the set of pos-
sible complementarity and sampling effects is saturated should
decrease, thus leading to a stronger positive association. To pro-
vide a first test of this hypothesis, we used the database UM-BBD
(36) to identify bacterial enzymes that are predicted to perform
each of the experimentally observed biotransformations (see
Table S6 in the supplemental material). We next retrieved all
publically available and taxonomically identified protein se-
quences for each predicted bacterial enzyme and quantified
how many different bacterial taxa are predicted to perform
each micropollutant biotransformation (Table 2). This quan-
tity provides an estimate of how rare each micropollutant bio-
transformation is. We found that the positive associations for
the observed taxonomic richness, extrapolated taxonomic
richness, and Shannon taxonomic diversity measurements are
indeed significantly stronger for rare micropollutant biotrans-
formations than for common micropollutant biotransforma-
tions (Spearman rank correlation coefficients � �0.65; P �
0.05), thus providing evidence for this hypothesis.

Functional biodiversity and micropollutant biotransforma-
tions. The complementarity and sampling effects that give rise to
positive associations are not directly caused by taxa but are instead
caused by the phenotypes expressed by those taxa (41). These
phenotypes could emerge via the expression of a wide range of
different functions, including metabolic, motility, regulation, cell
signaling, resistance, and stress response functions. Thus, we ex-
pect that the number of functions expressed by a WWTP commu-
nity (i.e., functional richness) should also positively associate with
the rates of individual and the collective multiple micropollutant
biotransformations. Yet to our knowledge, this expectation has
not been extensively tested. To test this, we measured the observed
and extrapolated functional richness of each WWTP community
from 300,000 randomly sampled and functionally annotated
mRNA sequence reads that were assigned to level 3 functional
categories. We summarized the functional richness measure-
ments in Table 1. We then used the Spearman rank correlation test
to test for associations between the functional richness measure-
ments and the rate constants for each individual micropollutant
biotransformation or for micropollutant multifunctionality. We
summarized the Spearman rank correlation coefficients in Fig. 5.

We observed two important outcomes. First, as with taxo-
nomic richness, the Spearman rank correlation coefficients for

TABLE 2 Numbers of different bacterial taxa that are predicted to perform each of the experimentally observed micropollutant biotransformations

Micropollutant Experimentally observed biotransformationa

No. of different bacterial taxa
predicted to perform
biotransformationb

Atenolol Amide hydrolysis 4,516
Azoxystrobin Carboxylic acid ester hydrolysis 3,894
Diazinon Aromatic thiophosphate hydrolysis 2,56
Ethofumesate Ether dealkylation 131
Isoproturon Urea dealkylation and urea didealkylation 0
Propachlor Glutathione coupling, dehalogenation, and halosubstitution 939
Ranitidine S-oxidation and N-oxidation 8
Trinexepac ethyl Carboxylic acid ester hydrolysis 3,894
Valsartan Amide dealkylation 0
Venlafaxine Amine dealkylation and ether dealkylation 68
a The experimentally observed biotransformation types and biotransformation products were reported previously by Helbling et al. (24).
b The NCBI protein search tool was used to search eight publically available sequence databases and retrieve all taxonomically assigned protein sequences for each UM-BBD-
predicted enzyme.
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functional richness are themselves significant and positive for
both the rate constants of specific individual micropollutant bio-
transformations (Fig. 5) (Benjamini-Hochberg-adjusted two-
sided P value of �0.05) and for micropollutant multifunctionality
(Fig. 5) (two-sided P value of �0.003). Second, when considering
all 10 of the individual micropollutant biotransformations to-
gether, the Spearman rank correlation coefficients are more often
positive than one would expect by chance (Fig. 5) (one-sample
Wilcoxon test, two-sided P � 0.006). Thus, our data indicate that
WWTP communities with greater functional richness are also
more likely to biotransform specific individual and multiple mi-
cropollutants at higher rates.

Independence of micropollutant biotransformations. A key
assumption of our experimental design is that each individual
micropollutant biotransformation is independent of the others
(i.e., each individual micropollutant biotransformation is per-
formed by a different set of enzymes). This assumption is neces-
sary, for example, to test whether the distributions of the Spear-
man rank correlation coefficients among all 10 of the individual
micropollutant biotransformations significantly deviate from
zero. To test their independence, we used a combination of bioin-
formatic and empirical approaches. We first analyzed the sets of
bacterial enzymes that were predicted by the UM-BBD (36) to
catalyze each of the experimentally measured micropollutant bio-
transformations (see Table S6 in the supplemental material). We
found that unique sets of enzymes are predicted to biotransform
six of the 10 individual micropollutants (see Table S6), thus pro-
viding bioinformatic support that these biotransformations are
independent of each other. Of the remaining four, an identical set
of enzymes is predicted to biotransform both azoxystrobin and
trinexepac ethyl (see Table S6). However, the rate constants for
these micropollutant biotransformations are not related to each
other (Spearman rank correlation coefficient � 0.21; two-sided P
� 0.50), thus providing empirical support that they are also inde-
pendent of each other. Finally, an identical set of enzymes is pre-
dicted to biotransform both isoproturon and valsartan (see Table
S6). In this case, we previously demonstrated that acetylene, which
is an inhibitor of monooxygenase activity, completely eliminates

the biotransformation of isoproturon but has no effect on the
biotransformation of valsartan (24), thus providing empirical
support that these micropollutant biotransformations are also in-
dependent of each other. In conclusion, our assumption that the
different micropollutant biotransformations are independent of
each other is supported by bioinformatic or empirical evidence.

DISCUSSION

Our results revealed important insights into how differences in
biodiversity translate into differences in the rates of micropollut-
ant biotransformations among full-scale WWTP communities.
While we observed significant and positive associations between
biodiversity and the rates of some individual micropollutant bio-
transformations, the associations do not share a shape. Some as-
sociations are better described with a nondecelerating shape,
while others are better described with a decelerating shape (Fig. 2
and 4). Thus, for any individual micropollutant biotransforma-
tion, one cannot naively assume whether and how differences in
biodiversity will translate into differences in the rate of that eco-
system function. This outcome is consistent with those observed
for comparable investigations of other types of microbial commu-
nities (e.g., see references 19 and 20).

While we were unable to identify a common shape for the
positive associations between biodiversity and the rates of individ-
ual micropollutant biotransformations, we found that there is a
clear nondecelerating shape for the positive association between
biodiversity and the collective rates of multiple micropollutant
biotransformations (Fig. 3 and 4). The absence of apparent decel-
eration suggests that greater levels of biodiversity are likely re-
quired to maximize the collective rate of multiple micropollutant
biotransformations than are typically required to maximize the
rate of any individual micropollutant biotransformation. In other
words, WWTPs are insufficiently biodiverse to saturate the set of
possible complementarity and sampling effects when multiple mi-
cropollutant biotransformations are considered. Thus, engineer-
ing strategies that maximize biodiversity could be particularly ef-
fective when the preferred outcome of wastewater treatment is the
removal of a large number of different micropollutants. While

FIG 5 Spearman rank correlation coefficients for the associations between different aspects of functional richness and the rate constants for each individual
micropollutant biotransformation or micropollutant multifunctionality. The tested aspects of functional richness include observed functional richness, Chao1
extrapolated functional richness, and ACE extrapolated functional richness. �, Benjamini-Hochberg-adjusted two-sided P � 0.05 for individual micropollutant
biotransformations or two-sided P � 0.05 for micropollutant multifunctionality.
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there are only few comparable investigations of associations be-
tween biodiversity and multifunctionality among microbial com-
munities (e.g., see references 42 and 43), this outcome is consis-
tent with the outcomes observed for comparable investigations of
plant communities (34, 35).

An important question that emerges from our investigation is
why the observed positive associations are stronger for some mi-
cropollutant biotransformations than for others (Fig. 2). We
tested the hypothesis that the strength of the positive association
depends, at least in part, on the rarity of the particular micropol-
lutant biotransformation. As a micropollutant biotransformation
becomes increasingly rare, the probability that the set of possible
complementarity and sampling effects is saturated should de-
crease, thus leading to a stronger positive association. Our esti-
mates of the rarity of each micropollutant biotransformation are
consistent with this hypothesis and therefore provide a first test of
one of its main predictions. Such a hypothesis could reflect a gen-
eral rule that has important applications beyond wastewater treat-
ment. For example, it could be used to make specific predictions
about how changes or differences in biodiversity are likely to affect
the rates of particular types of ecosystem functions.

An important aspect of our experimental design is that all of
the investigated full-scale WWTPs had differences in their opera-
tional and environmental metrics (see Table S2 in the supplemen-
tal material). One consequence of this aspect is that we cannot
unequivocally test whether the observed positive associations re-
sulted from causal linkages between biodiversity and the rates of
particular micropollutant biotransformations. Nevertheless, we
have two lines of indirect evidence that the observed positive as-
sociations do indeed result from causal linkages between these two
variables. First, the positive associations are stronger for rare mi-
cropollutant biotransformations and weaker for common mi-
cropollutant biotransformations. If biodiversity were causally
linked with the rates of particular micropollutant biotransforma-
tions, we would expect this relationship (see the discussion
above). If biodiversity were not causally linked with the rates of
particular micropollutant biotransformations, we would not ex-
pect any relationship between the strengths of the positive associ-
ations and the rarity of the measured micropollutant biotransfor-
mations, which is inconsistent with our observations. Second, we
previously could not explain differences in the rates of particular
micropollutant biotransformations by differences in any of the
operational metrics of the WWTPs (24). Thus, a causal linkage
between biodiversity and the rates of particular micropollutant
biotransformations provides a plausible and parsimonious expla-
nation for our results.

Our experimental design also allows us to address an impor-
tant and largely unexplored gap in our knowledge about biodiver-
sity: can we translate biodiversity-ecosystem functioning relation-
ships derived from carefully controlled laboratory experiments
into real-world applications (12, 22)? Consider that, in the natural
environment, environmental conditions can differ dramatically
across small spatial and temporal scales. The consequence is that
for any set of real-world microbial communities (including full-
scale WWTP communities), there is inherent uncertainty about
differences in the environmental conditions from which those mi-
crobial communities were collected. If these differences in envi-
ronmental conditions have opposite effects on the rates of mi-
cropollutant biotransformations from those of biodiversity, then
the expected positive associations might be obscured and biodi-

versity would consequently be of limited predictive value. Our
results suggest that this is not the case. Even though the 10
WWTPs had differences in their operational metrics, we were nev-
ertheless able to observe the expected positive associations be-
tween biodiversity and the rates of individual and multiple
micropollutant biotransformations (Fig. 2 and 3). Our results
therefore suggest that biodiversity-ecosystem functioning rela-
tionships can indeed be of utility for predicting how differences in
biodiversity translate into differences in the rates of micropollut-
ant biotransformations among real-world WWTP communities.

In conclusion, we report three main outcomes that improve
our general knowledge about the ecology and functioning of full-
scale WWTP communities. First, differences in biodiversity trans-
late into differences in the rates of specific individual micropoll-
utant biotransformations. Second, there is a nondecelerating
shape for the positive associations between biodiversity and the
collective rate of multiple micropollutant biotransformations.
Biodiversity is therefore likely to be particularly important for the
removal of a large number and wide variety of different micropo-
llutants. Finally, we present evidence for a potential general rule
that determines how strongly biodiversity is likely to associate
with the rates of different types of micropollutant biotransforma-
tions, which could have applications that extend well beyond
wastewater treatment.
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