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Abstract

Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic 

cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy 

and neuropathy. Despite the broad availability of antidiabetic therapy, glycaemic control still 

remains a major challenge in the management of diabetic patients. Hyperglycaemia triggers 

formation of advanced glycosylation end products(AGEs), activates protein kinase C, enhances 

polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and 

leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH 

oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion 

interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, 

which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum 

stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates 

autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/

contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent 

pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, 

AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. 

Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, 

metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic 

cardiomyopathy, which will be overviewed in this brief synopsis.
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1. Introduction

Incidence of metabolic diseases, especially of obesity and type II diabetes is constantly 

growing worldwide. Diabetes is a well-recognized risk factor for cardiovascular diseases 

and heart failure [1]. The term of diabetic cardiomyopathy has been introduced by Rubler et 

al. back in 1972 [2]. Later the Framingham Heart Study has also demonstrated that the 

occurrence of heart failure in male and female diabetics is twice and five times more 

common, respectively, compared to age-matched control subjects [3]. Similar cross-

sectional studies confirmed increased risk for heart failure development in diabetics, even 

when corrected for other confounding variables such as coronary artery disease, 

hypercholesterolemia, hypertension, and obesity [4-7]. Notably, the higher occurrence of 

biventricular dysfunction and cardiomyopathy in diabetics is also suggestive of the fact that 

diabetes is an independent risk factor or cause of cardiomyopathy [7-9].

Although it is established that multiple factors may collectively contribute to the 

development and progression of diabetic cardiomyopathy (e.g. hyperglycaemia, insulin 

resistance, increased fatty acid metabolism, microcirculatory changes, sympathetic 

dysfunction, myocardial inflammation, remodelling and fibrosis), the exact molecular 

mechanisms that trigger and fuel these major pathological processes are not entirely clear 

(Figure 1).

Accumulating recent evidence suggests that the complex interplay of oxidative, nitrosative 

and nitrative stress [10-12] with major proinflammatory, metabolic[13] and cell death 

pathways [14-17] play an essential role in the development of complex biochemical[18, 19], 

mechanical, and structural alterations associated with diabetic cardiomyopathy[8, 20, 21], 

which will be overviewed in this brief synopsis.

2. Oxidative, nitrosative and nitrative stress in diabetic cardiomyopathy

Oxidative and subsequent nitrosative damage of the myocardium and vasculature have been 

described as major primary mechanisms leading to pathologic alterations associated with 

diabetic cardiovascular complications [22-29]. Factors such as hyperglycaemia, glucose 

autoxidation, accumulation of advanced glycosylation end products (AGEs), enhanced 

receptor for advanced glycation end product (RAGE) and angiotensin II receptor type 1 

(AT1R) signaling, elevated levels of free fatty acids and leptin, have been reported to 

contribute to increased production of reactive oxygen and nitrogen species production (ROS/

RNS) in diabetic vessels and myocardium [22, 24], among others. In spite of the broad 

availability of antidiabetic therapy, glycaemic control still remains a major challenge in the 

management of diabetic patients [30]. Inadequate glycaemic control likely accounts for the 

high prevalence of diabetic complications, since high glucose or fluctuating glucose levels 

[31] can induce acute oxidative stress that might be a critical factor in the initiation of 

pathologic alterations eventually leading to development of diabetic cardiomyopathy [16, 
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24]. Oxidative protein modifications play a pivotal role in the development of diabetic 

myocardial dysfunction. Oxidation of proteins involved in contractility, excitation-

contraction coupling, protein folding, antioxidant defence, metabolism (mainly fatty acid 

and glucose), and Ca2+ handling have been reported in diabetic hearts (see Table 1.). 

Oxidative modification may result in potentially harmful events including dissociation of 

catalytic subunits of enzymes, local or global unfolding, aggregation or fragmentation. 

Proteins can be oxidized directly by ROS, or by products of secondary oxidation reactions 

formed during lipid peroxidation (e.g., malondialdehyde or 4-hydroxynonenal). Moreover, 

oxidative protein modifications may also occur by reactive sugars in glycation or 

glycoxidation reactions [32]. Depending on the amount of modified proteins and the extent 

of oxidation, different degradation mechanisms are activated. Mildly oxidized proteins are 

broken down primarily by the proteasome, while heavily oxidized proteins (potentially 

forming aggregates) are degraded by the endosomal-lysosomal pathway thereafter [33]. 

Thus, an increase in oxidative stress might produce substrates that fuel autophagic protein 

degradation, at least in the first stages of oxidative injury [34]. In addition, certain proteins 

involved in autophagosome formation and maturation (Atg4, LC3-II) require oxidative 

posttranslational modifications [35, 36], thus, activity of these proteins are also strongly 

influenced by their redox status [35]. However, the accumulation of oxidized and nitrated 

proteins and lipids suggest abrogated autophagic processes in diabetic cardiomyopathy that 

may significantly contribute to myocardial dysfunction.

Several cellular and subcellular sources were described that may account for enhanced ROS 

production in diabetic cardiovascular system and at other sites of diabetic complications 

(e.g. in the retina and kidneys) (Figure 2). This list includes nicotinamide adenine 

dinucleotide phosphate oxidases (NADPH oxidases) [37-39], xanthine oxidase/

oxidoreductase (XO)[40, 41], enzymes of the arachidonic acid cascade (cyclooxygenase and 

lypoxygenase enzymes), microsomal enzymes, the uncoupled nitric oxide synthases (NOS) 

[10], and the mitochondrial respiratory chain[24]. Among these, increased mitochondrial 

ROS generation initially was considered to represent the primary source of high glucose-

induced oxidative stress in several tissues and cell types, including cardiomyocytes [24, 37, 

42] and endothelial cells [43, 44]. Luo et al. recently showed, that mitochondrial oxidants 

significantly contribute to the oxidation of the multifunctional enzyme, Ca2+/calmodulin-

dependent protein kinase II (CaMKII) [45]. Diabetic mice treated with a mitochondria-

targeted antioxidant, MitoTEMPO, showed reduced levels of oxidized-CaMKII, 

subsequently with preserved heart rates, and improved survival after myocardial 

infarction[45]. Mitoquinone, a mitochondrially targeted ubiquinone that can act as an 

antioxidant, also improves cardiac dysfunction [46] and activates autophagy in an Nrf2-

dependent manner in a non-cardiac system [47], suggesting an interaction between 

mitochondrial redox balance and protein quality control mechanisms, such as autophagy.

There is also evidence for increased production of ROS from non-mitochondrial sources. 

NADPH oxidases (NOX) are unique enzymes that may be responsible for large amounts of 

superoxide and hydrogen peroxide (H2O2) production under various pathological conditions. 

Activity or expression of various NOX isoenzymes (that are involved in superoxide or H2O2 

generation, has been found to be significantly higher in the heart with metabolic 

derangements such as diabetes [37-39, 48, 49] and hypercholesterolemia [50]. The increased 
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activity and expression of NOX4 in the diabetic heart [49] is therapeutically targetable, and 

NOX4 inhibitors are indeed in preclinical development for various cardiovascular 

indications [51]. Diabetes induced increase in NADPH activity is further accentuated by the 

increased production of NADPH by glucose-6-phosphate dehydrogenase, as it was described 

in the heart and aorta of Zucker diabetic fatty rats [52]. Elevated concentration of hydrogen 

peroxide has been shown to modulate autophagy by several mechanisms. For example, 

H2O2, activates the LKB1/AMPK pathway which leads to inhibition of the mTORC1 

complex and induced autophagy [53]. NOX4-mediated production of hydrogen peroxide 

also induces autophagy in human umbilical vein endothelial cells [54] and in 

cardiomyocytes [55] after induction of endoplasmic reticulum stress. Although, it is 

plausible that excessive amounts of ROS might incapacitate certain players of autophagy. 

Vascular NADPH oxidase is also an important downstream target of angiotensin II, which 

has been proposed to play a pivotal pathological role in the development and progression of 

diabetic cardiovascular [56-59] and other diabetic complications. This is supported by 

convincing evidence obtained from preclinical rodent models of STZ (streptozotocin) -

induced type 1 diabetes, as well as from human myocardial biopsy specimens, suggesting 

that the renin-angiotensin system is up-regulated in diabetes and angiotensin II locally 

through AT1R, which is overexpressed in diabetic hearts or in cardiomyocytes exposed to 

high glucose, importantly contributes to the development of diabetic cardiomyopathy [38, 

57-60]. The beneficial effects of AT1R blockade in diabetic hearts involve, but are not 

limited to, the attenuation of myocardial NADPH oxidase-dependent (such as p47phox) 

ROS generation, inflammation, cell death, fibrosis, and contractile dysfunction [57-60]. AT1 

receptor blockade also prevents glucose-induced cardiac dysfunction directly in ventricular 

myocytes via attenuating the AT1-NADPH oxidase signaling [61]. Consistently with the 

important pathological role of NADPH oxidases-derived ROS generation in diabetic hearts, 

apocynin (a putative non-specific NADPH oxidase inhibitor) not only attenuated the 

enhanced superoxide generation in diabetic hearts, but also improved the diabetes-associated 

cardiac dysfunction in type I diabetic mice[39].

Increased activation of another ROS generating enzyme, the XO, has also been shown in 

different organs [62] of diabetic rats or mice, including in the heart [41]. Conversely, 

inhibition of XO by allopurinol significantly attenuated most pathological features of 

diabetic cardiomyopathy (e.g. myocardial ROS/RNS generation, iNOS expression, cell 

death, and fibrosis) and improved both systolic and diastolic dysfunctions in type I diabetic 

mouse[41] or rat [63] hearts. Importantly, there is also current evidence, coupled with 

numerous previous studies[40], for the beneficial cardiac effects of allopurinol in humans 

[64]. Rekhraj at al. recently described, that in patient with ischemic heart disease, high dose 

off allopurinol was capable to reduce left ventricular muscle mass and improve the 

symptoms of the disease[65].

A substantial amount of experimental evidence suggests that there is reduced nitric oxide 

(NO) availability in diabetic tissues. Different mechanisms have been proposed to be 

responsible for the diabetes-induced dysfunction of NO production, bioavailability and/or 

signaling. A generally accepted mechanism is the alterations in nitric oxide synthases 

(NOS), particularly in its endothelial isoform (eNOS), function [10, 66]. The composition of 

the eNOS complex is critical for the relative formation of NO or superoxide. The 

Varga et al. Page 4

Biochim Biophys Acta. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



mechanisms by which eNOS dysfunction develops remain elusive, however, a decrease in 

the dimer to monomer eNOS ratio within the myocardium of diabetic animals has been 

reported [67]. Monomerization i.e. uncoupling of NOS results in increased oxidative stress 

and decreased NO bioavailability (since uncoupled NOS generates superoxide anion instead 

of NO), which has been implicated in the pathophysiology of numerous cardiovascular 

diseases. Accordingly, eNOS uncoupling has also been reported in diabetic hearts, while 

administration of the tetrahydrobiopterin precursor, sepiapterin inhibited uncoupling of NOS 

and improved LV function [68]. Similarly, ascorbic acid or N-acetyl-cystein is also capable 

to increase BH4/BH2 ratio and prevent NOS uncoupling in the diabetic heart [69]. In 

addition to uncoupling the major cardiac NOS isoforms, iNOS and eNOS expression has 

been shown to be increased (particularly iNOS) in the diabetic hearts [37, 38, 70, 71]. The 

increase in NOS expression in the diabetic heart is associated with an increase in lipid 

peroxidation and 3-nitrotyrosine formation (marker of peroxynitrite generation and nitrative 

stress), which might be related to the uncoupled and monomer state of the enzyme, which 

most likely produces superoxide instead of NO, as well as triggers the formation of 

peroxynitrite. Interestingly, peroxynitrite itself also causes NOS un-coupling by selectively 

targeting and disrupting caveolae-NOS interaction [72].

The rapid diffusion-limited reaction of superoxide with NO indeed forms peroxynitrite, a 

very strong cytotoxic oxidant, which attacks and damages various biomolecules via multiple 

mechanisms [10]. In agreement with these, inhibition of NOS activity (by L-NAME or L-

NMMA) improves myocardial performance in diabetic hearts, suggesting that the increased 

production of superoxide and peroxynitrite rather than NO is a major contributor of 

suppressed contractile performance in diabetes [39, 66, 73, 74]. NO and peroxynitrite has a 

very complex relation to autophagy. Nitric oxide donors have been shown to decreased 

autophagy in HeLa cells, which has been confirmed by the overexpression of eNOS [75]. 

Although, LPS-induced up-regulation of NOS izoenzymes were followed by an accelerated 

autophagy in HL-1 cells and in mice [76]. Since LPS induces the production of not only NO, 

but peroxynitrite, these seemingly opposing results can be explained. It is further evidenced 

by other studies, where peroxynitrite exerted inhibitory effects on autophagy. For example, 

peroxynitrite induced autophagy in endothelial cells and increased LC3-II protein [77]. 

These data well demonstrate that sub-physiological NO levels and nitrosative/nitrative stress 

which are characteristic to diabetes, might facilitate autophagic processes in the heart, 

however, direct observations are yet to be made. Peroxynitrite formation and consequent 

protein nitration (nitrative stress) have been suggested to play a central role in the 

development of cardiovascular dysfunction associated with diabetes, as well as in the 

development of diabetic retinopathy, nephropathy and neuropathy. Peroxynitrite in hearts 

not only promotes apoptotic or necrotic cell death in cardiomyocytes and endothelial cells 

via activation of stress signaling pathways (e.g. mitogen activated protein kinases (MAPKs) 

and poly ADP ribose polymerase 1 (PARP-1)-dependent pathways), but also induces 

nitration and consequent inactivation of key proteins involved in intracellular calcium 

cycling, energy homeostasis, antioxidant defense, and myocardial contractility (see Table 2.) 

[10]. Peroxynitrite, in concert with other oxidant may also activate matrix 

metalloproteinases (MMPs) in the failing hearts to promote pathological remodeling [23, 37, 

78] and may impair the NO-soluble guanylate cyclase signaling pathway rendering NO to 
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unable to activate its primary protective signaling machinery [79, 80]. Furthermore, 

peroxynitrite decomposition catalysts have been shown to restore the normal contractile 

phenotype of high glucose treated cardiomyocytes and attenuate cardiac dysfunction in 

diabetic hearts [74]. The importance of peroxynitrite has also been shown in diabetic 

patients. Increased serum and/or vascular 3-nitrotyrosine levels were positively correlated 

with increased blood pressure, and or endothelial dysfunction in diabetic patients [29, 81]. 

The persistently increased myocardial oxidative and nitrative stress in diabetic hearts 

eventually also leads to dysfunction of important antioxidant defense mechanisms [10] (e.g. 

inactivation of important antioxidant enzymes such as superoxide dismutases and catalase, 

depletion of endogenous antioxidants (e.g. metallothionein, glutathione) [37, 82-84]) and 

dysregulation of important redox-dependent transcription factors (e.g. NFE2L2 nuclear 

factor, erythroid 2-like 2 (Nrf2)) [85, 86], among others. Increased oxidative and nitrative 

stress in diabetes may also promote oxidation and/or nitration of various insulin receptors in 

peripheral tissues, which may contribute to the development of insulin resistance [87].

Hyperglycemia and/or hyperglycemia-induced ROS has been reported to increase 

accumulation of products of nonenzymatic glycation/oxidation of proteins/lipids (AGE) and 

enhanced the expression of their receptor (RAGE) in cardiovascular tissues, which thought 

to play a key role in the development and progression of cardiovascular complications of 

diabetes [88, 89]. Accumulation of AGEs and increased expression of RAGE have been 

associated with diabetes-induced dysfunction and structural alterations in hearts of type 1 

diabetic rodents [88, 89]. Furthermore, in diabetic heart failure patients with reduced LV 

ejection fraction, the accumulation of AGEs and fibrosis appear to contribute to the 

increased diastolic stiffness, but not in patients with normal LV ejection fraction, where the 

increased cardiomyocyte resting tension is responsible for this phenomenon[90].

3. Autophagy and cell death mechanisms in diabetic cardiomyopathy

It has extensively been documented that increased oxidative and nitrative stress in diabetic 

hearts may trigger activation of stress signalling pathways facilitating apoptosis in 

cardiomyocytes and endothelial cells [14]. However, recent evidence also suggests that in 

addition to apoptosis, other processes such as autophagy, mitophagy and PARP-dependent 

cell death pathways may also play an important role in controlling the cell demise during the 

course of cardiovascular disease[91] and diabetic cardiomyopathy [17], which will be 

discussed in the following part.

Autophagy is a cellular housekeeping process that is essential for removal of damaged or 

unwanted organelles, protein and lipid aggregates. It is a dynamic process which is tightly 

regulated by the availability of nutrients and the metabolic balance of the cell, and functional 

autophagy is indispensable for cellular survival in low-energy conditions [92]. Since in 

diabetes, where oxidative stress, protein- and lipid oxidation are elevated and cellular energy 

balance is disturbed, functional autophagy might have even higher importance in the 

maintenance of cardiac cellular integrity. In the heart, constitutive autophagy is a 

homeostatic mechanism for maintaining cardiac structure and function [93], while disruption 

of autophagy leads to heart failure [94]. Interestingly, in healthy animals, autophagy seems 

to be higher in males than in females suggesting that the male heart has a major constitutive 
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autophagy [95]. This gender difference may elucidate the observation of the Framingham 

Heart Study showing markedly increased occurrence of diabetic cardiomyopathy in females 

[3, 96]. Autophagy is suppressed at high glucose concentrations, such as present in diabetes, 

which might be associated with the development of diabetic cardiomyopathy [97]. In 

addition, the diabetic heart is characterized by excessive fatty acid uptake and oxidation, 

resulting in accumulation of toxic lipid intermediates (long-chain acyl-CoA, diacylglycerol, 

ceramides), known as lipotoxicity. Cardiac lipotoxicity contributes to insulin resistance, 

impairment of mitochondrial function, CM hypertrophy, and apoptosis, which may 

ultimately lead to left ventricular remodelling of the heart [98].

Elevated oxidative stress, apoptosis, inflammation, and ER stress by increased production of 

monocyte chemoatractic protein-1 (MCP-1) is suspected to contribute to the disruption of 

cardiac autophagy in diabetes [97, 99-101] Several upstream signalling pathways of 

autophagy are altered in diabetes or metabolic syndrome as well [102]. The mammalian 

target of rapamycin (mTOR) pathway, a negative regulator of autophagy is blunted in obese, 

hyperlipidemic rats fed a high cholesterol-high fructose diet showing most characteristics of 

type II diabetes [103]. Also, activity of AMP-activated protein kinase (AMPK) is reduced in 

high glucose conditions, leading to disturbed autophagy[104]. Although the majority of 

reports agree on the attenuation of the autophagy in diabetes, not all studies are equivocal 

(possibly due to the different experimental models used). For example, in a fructose-fed 

mouse model, induction of autophagy has been described[105], and milk fat-based chow 

blunted cardiac autophagy and facilitated cardiomyopathy more efficiently than a lard-based 

chow [106]. Further complicating the picture is the discrepancy that oxidative stress is 

elevated in diabetes, which is supposed to induce autophagy, however, the majority of 

studies evidence quite the opposite. This phenomenon and the lack of any direct evidence 

from diabetic patients warrant further investigations on the status of cardiac autophagy in 

disease models relevant to human pathological conditions.

Aiming to restore pathological cardiac consequences of diabetes modulation of autophagy 

has been attempted by different tools. Chronic activation of AMPK (therefore autophagy) by 

metformin or overexpression of ATG7 reduced cardiomyocyte apoptosis, cardiac fibrosis, 

and improved myocardial functions in streptozotocin (STZ)-induced diabetic mice [104]. 

Overexpression of hem oxygenase-1 in STZ-treated mice also induced autophagy, reduced 

oxidative stress and inflammation and prevented cardiac dysfunction [97]. In a recent report, 

inhibition of mTOR signalling by the overexpression of PRAS40 prevented the development 

of cardiomyopathy in high-fat diet-fed mice [107]. Furthermore, it was also demonstrated 

that disturbed autophagy undermine the benefit of exercise in protection against high-fat-

diet-induced glucose intolerance [108]. However, a few papers disagree with this 

conclusion. Suppression of autophagy prevented apoptosis in neonatal and adult 

cardiomyocytes in extremely high glucose conditions resembling to uncontrolled diabetes 

[109]. Furthermore, overexpression of beclin-1, an inducer of autophagy, worsened cardiac 

function and enhanced apoptosis in STZ-treated mice, while cardiac damage by STZ-

induced diabetes was blunted in beclin-1+/− mice [110]. In summary, although the 

usefulness of induction of autophagy in diabetes is still a controversial issue, the majority of 

reports implicate that the restoration of cellular energy household, induction of antioxidant 
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systems and reduction of the detrimental protein synthesis by the modulation of autophagy-

related pathways might serve as therapeutic targets in the treatment or prevention of diabetes 

and its cardiac complications, once we better understand these processes.

ROS and RNS under pathological conditions may also lead to oxidative DNA injury and 

overactivation of the nuclear enzyme poly (ADP-ribose) polymerase 1 (PARP-1), the 

predominant isoform of the PARP enzyme family, which normally participates in the 

regulation of DNA repair, cell death, metabolism, and inflammatory responses [111]. 

Following binding to damaged DNA, PARP-1 forms homodimers and catalyzes the 

cleavage of its substrate NAD+ into nicotinamide and ADP-ribose resulting in formation of 

longbranches of ADP-ribose polymers on target proteins such as histones and PARP-1 itself, 

which results in cellular energetic depletion, mitochondrial dysfunction, and ultimately 

necrosis. Numerous transcription factors involved in controlling inflammation such as 

NFkB, and various signaling molecules have also been shown to become poly(ADP-

ribosylated) by PARP-1 [112]. Thus, overactivation of PARP-1 due to ROS/RNS formation 

not only promotes cell death by ATP and NAD+ depletion, but also stimulates 

proinflammatory mediator production. PARP inhibitors exerted marked tissue protective and 

antiinflammatory effects in preclinical models of ischemia-reperfusion injury, endothelial 

and cardiac dysfunction, circulatory shock, heart failure and diabetic complications [16, 

112]. More excitingly several recent studies have also suggested that PARP-1 and PARP-2 

(a minor isoform of the PARP enzyme family) are involved in regulation of mitochondrial 

function/biogenesis, and adipogenesis in various organ systems [113, 114], including in the 

liver, via modulation of NAD+ levels and consequently sirtuin 1 activity [111, 115]. 

Specifically, PARP inhibitors in rodent models of type I diabetes were very effective in 

improving endothelial [116, 117] and cardiac function [118], and the PARP activation from 

skin biopsies in microvessels positively correlated with the degree of endothelial 

dysfunction in prediabetic and diabetic human subjects [29]. PARP inhibition also prevented 

the hyperglycemia-induced pathological activation of PKC isoforms, hexosaminase pathway 

flux, and AGE formation in vitro, suggesting its key role in regulating pathological 

processes promoting the development of all major diabetic complications [16] .

4. Inflammation in diabetic cardiomyopathy

Tschope et al. found using a STZ-induced rat model of type I diabetes that the diabetic 

cardiomyopathy was characterized by significant increases in myocardial intercellular 

adhesion molecule 1 and vascular cell adhesion molecule 1 (ICAM-1 and VCAM-1) 

expressions, as well as of beta2-leukocyte-integrins+ (CD18+, CD11a+, CD11b+) and 

cytokine tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β))-expressing 

infiltrating immune cells. And these pro-inflammatory changes were positively correlated 

with oxidative stress and decline of left ventricular function [119]. Interestingly, transgenic 

activation of the kallikrein-kinin system inhibited intramyocardial inflammation, endothelial 

dysfunction and oxidative stress in diabetic hearts [119]. They found that the AT-1 receptor 

antagonists irbesartan attenuated cardiac failure by decreasing cardiac inflammation (IL1β, 

TNFα, and TGFβ levels) and normalizing MMP activity, leading to attenuated cardiac 

fibrosis in STZ-induced diabetic cardiomyopathy [57]. Using mouse or rat models of type I 

diabetes they also demonstrated that neutralization of TNFα [120] or genetic deletion of 
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kinin receptor B [121] attenuated the development of experimental diabetic cardiomyopathy 

associated with a reduction of intramyocardial inflammation and cardiac fibrosis. They also 

showed that inhibition of p38 mitogen-activated protein kinase attenuated left ventricular 

dysfunction by decreasing the level of myocardial pro-inflammatory cardiac cytokines in a 

mouse model of diabetes mellitus[122], and more recently they suggested that the STZ-

induced diabetic cardiomyopathy is a robust model for investigating cardiac immune 

response and LV remodeling processes under diabetic conditions [123]. Several studies from 

other groups have also found similar pro-inflammatory changes in the myocardium of 

diabetic rodent hearts [37, 38, 41]. Recently, using type I and II models of diabetes in mice 

several studies have also shown activation of the major pro-inflammatory transcription 

factor nuclear factor kappa B in diabetic hearts[37, 124] or in human cardiomyocytes or 

coronary artery endothelial cells exposed to high glucose concentrations which triggered 

enhanced ROS/RNS generation[37]. Both studies demonstrated that the anti-inflammatory 

compounds used for the treatments by attenuating inflammation also decreased oxidative/

nitrative stress, myocardial cell death, remodeling, and improved diabetes-induced 

contractile dysfunction in rodent hearts [37, 124]. On the other hand, it has been also 

reported that the clinically effective drugs (statins [125], RAAS inhibitors [57], metformin 

[126], and thiazolidinediones [127]) used in the treatment of metabolic syndrome attenuate 

the inflammatory response in diabetes.

Cytokines can attenuate myocyte contractility and viability by various mechanisms. For 

example by formation of peroxynitrite, which was shown to be a major contributor to 

cytokine-induced myocardial contractile failure[128]. Peroxynitrite is also a major trigger of 

apoptosis in cardiomyocytes exposed to various insults in vitro or in vivo [129, 130]. Other 

proposed mechanisms may involve direct action on sarcoplasmic reticulum function and on 

the regulation on the SR calcium ATPase expression and activity by oxidation/nitration [10, 

131]. It is also known, that inflammatory cytokines may regulate the extracellular matrix 

composition and dynamics in the heart, which is a known important determinant of 

myocardial function [132]. In agreement with this, inhibition of TNFα signalling with an 

antibody for 6 weeks attenuated myocardial inflammation and fibrosis in experimental 

diabetes [120].

The role of myocardial cytokine signaling in the regulation of autophagy and protein quality 

control is unknown. In other cell types, autophagosomes are formed in response to a number 

of environmental stimuli, including both host- and pathogen-derived molecules, toll-like 

receptor ligands or various cytokines[133, 134]. In particular, the cytokines IFN-γ, TNF-α, 

IL-1, IL-2, IL-6 and TGF-β have been shown to induce autophagy, while IGF-1, IL-4, IL-10 

and IL-13 have inhibitory effect. In parallel, autophagy itself can regulate expression of 

several cytokines, including IL-1, IL-18, TNF-α, and IFN-γ (for an extensive review see 

[134]).

Recent preclinical and clinical studies have also highlighted the role of endocannabinoids 

(novel lipid mediators) and their G protein coupled cannabinoid receptors (CB1 and CB2 

receptors) in the regulation of food intake, energy balance, and metabolism (for extensive 

review see: [135]). The endocannabinoid system also plays a prominent role in the 

pathology of diabetes and obesity [136, 137]. We recently explored the role of 
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endocannabinoids and CB1 receptors in a type I model of diabetic cardiomyopathy. The 

diabetic cardiomyopathy was characterized by myocardial inflammation, increased 

expression of CB1, oxidative/nitrative stress, β-MHC isoenzyme switch, AT1R up-

regulation, myocardial RAGE and AGE expression/accumulation, MAPK activation, cell 

death, and cardiac dysfunction (both systolic and diastolic). Pharmacological inhibition or 

genetic deletion of CB1 receptors was associated with attenuated diabetes-induced 

myocardial inflammation, decreased MAPK activation, oxidative/nitrative stress, β-MHC 

isoenzyme switch, AT1R up-regulation, myocardial RAGE and AGE expression/

accumulation, MAPK activation, and largely diminished cell death and better preservation 

of cardiac function [38]. Recent studies indicate that cannabinoids (especially CB1 agonists) 

may be important inductors of autophagy in preimplantation mouse embryos [138] and in 

human epithelial colorectal adenocarcinoma cells (CaCo2) [139]. Although, the evidences 

outlined here clearly show that inflammation is one of the key therapeutically important 

components associated with diabetic cardiomyopathy, to see if pharmacologic modulation of 

cytokine as well as cannabinoid signalling and thereby autophagy has therapeutic potential, 

further experimental studies are required.

5. Conclusions

Despite our accumulating knowledge based on preclinical reports, the treatment of diabetic 

cardiomyopathy is still largely symptomatic once it fully develops, which inevitably 

progresses to heart failure (see Figure 3 for the progression of diabetic cardiomyopathy to 

heart failure). Therefore, an early diagnosis of this condition and rigorous glycaemic control 

is very important to try to slow down the progression of the disease as much as possible. 

From preclinical and human studies it has become clear that oxidative/nitrative stress and 

inflammation are central components in triggering and driving the pathological processes 

associated with diabetic cardiomyopathy and other cardiovascular complications. However, 

recognizing the largely disappointing results of clinical trials with global antioxidants in 

diabetes, it is essential to keep in mind the necessity of more thorough understanding the 

complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell 

death signaling pathways, the specificity of these processes, and their temporal-spatial 

relationship.
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AT1R receptor angiotensine II receptor type 1

CaMKII Ca2+/calmodulin-dependent protein kinase II

CB1/2 receptor cannabinoid 1 and 2 receptors

eNOS endothelial nitric oxide synthase

ER stress endoplasmatic reticulum stress

ICAM-1 intercellular adhesion molecule 1, also known as CD54

iNOS inducible nitric oxide synthase

MAPKs mitogen activated protein kinases

MCP-1 monocyte chemoatractic protein-1

MMPs matrix metalloproteinases

mTOR mammalian target of rapamycin

NADPH oxidase/NOX nicotinamide adenine dinucleotide phosphate-oxidase

NFkB nuclear factor kappaB

NO nitric oxide

NOS nitric oxide synthases

Nrf2 NFE2L2 nuclear factor, erythroid 2-like 2

PARP-1 poly(ADP)ribose polymerase 1

PARP-1 poly(ADP-ribose) polymerase 1

RAGE receptor for advanced glycation end product

ROS/RNS reactive oxygen and nitrogen species

SERCA2a sarco/endoplasmic reticulum Ca2+-ATPase

STZ streptozotocin

VCAM-1 vascular cell adhesion molecule 1, also known as CD106

XO xanthine oxidase/oxidoreductase
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HIGHLIGHTS

• Clinical treatment of diabetic cardiomyopathy is still largely symptomatic

• Oxidative stress and inflammation fuel development of diabetic cardiomyopathy

• Cell death pathways, including autophagy, are dysregulated in diabetic hearts

• Cell death has complex interplay with oxidative stress and inflammation

• These pathways are promising therapeutic targets in the diabetic heart
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Figure 1. Interplay of hyperglycemia and peripheral metabolism in cardiometabolic syndrome in 
mediating diabetic cardiovascular complications
Hyperglycemia may indirectly (via its metabolic consequences) or directly enhance 

diabetes-associated inflammation and ROS generation, promoting tissue injury and the 

development of diabetic cardiovascular and other complications. AT II rec, angiotensin II 

receptor type 1; CNS, central nervous system; PMNs, polymorphonuclear leukocytes; XO, 

xanthine oxidase.
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Figure 2. Interplay of oxidative and nitrosative/nitrative stress with cell death pathways in 
diabetic cardiomyopathy
Hyperglycemia via activation of various pathways shown in the large yellow box increased 

superoxide anion (O2
•−) production in cardiovascular cell types. NO and superoxide (O2

•−) 

rapidly react to form peroxynitrite (ONOO−) which induces cell injury via enhanced lipid 

peroxidation, inactivation of enzymes and other proteins by oxidation and nitration, and also 

activation of stress signaling, matrix metalloproteinases (MMPs) among others. 

Peroxynitrite also triggers the release of proapoptotic factors such as cytochrome c and 

apoptosis-inducing factor (AIF) from the mitochondria, which mediate caspase-dependent 

and -independent apoptotic cell demise pathways. Autophagy may be beneficial in diabetic 

cardiomyopathy in removal of injured cells, but additional support is required to prove its 

exact role. Peroxynitrite, in concert with other reactive oxidants, causes stand breaks in 

DNA, activating the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1). Mild 

damage of DNA activates the DNA repair machinery, but once excessive oxidative/

nitrosative stress-induced DNA damage occurs, like in diabetes, overactivated PARP 

initiates an energy-consuming cycle by transferring ADP-ribose units from nicotinamide 

adenine dinucleotide (NAD+) to nuclear proteins, resulting in rapid depletion of the 

intracellular NAD+ and ATP pools, slowing the rate of glycolysis and mitochondrial 

respiration, eventually leading to cellular dysfunction and demise. Poly(ADP-ribose) 

glycohydrolase (PARG) degrades poly(ADP-ribose) (PAR) polymers, generating free PAR 

polymer and ADP-ribose. Overactivated PARP also facilitates the activation of NFkB and 

expression of a variety of pro-inflammatory genes leading to increased inflammation and 

associated oxidative stress, thus facilitating the progression of cardiovascular dysfunction 

and heart failure. Via attenuation of the cellular NAD+ levels PARP activation may also 

promote metabolic dysfunction via decreased activity of SIRT-1 in various tissues. In 

addition to these adverse consequences the NO bioavailability and signaling is also impaired 

in diabetic hearts promoting impaired vasorelaxation and enhanced atherogenesis eventually 

facilitating increased cardiovascular inflammation, and lipid deposition in vessels and 

myocardium, functional ischemia and enhanced cardiac injury.
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Figure 3. Progression of diabetic cardiomyopathy: role of oxidative/nitrosative stress, 
inflammation, cell death and remodeling
The mechanisms leading to diabetic cardiomyopathy and failure are complex. Eventually the 

pathological alterations will result in mismatch between the load applied to the heart and the 

energy needed for contraction, leading to mechanoenergic uncoupling. After initial insults 

(episodes of hyperglycemia), secondary mediators such as angiotensin II (AII), 

norepinephrine (NE), endothelin (ET), proinflammatory cytokines [e.g., tumor necrosis 

factor-α (TNF-α) and interleukin 6 and IL1β (IL-6 and IL1β), in concert with oxidative 

stress and peroxynitrite, activate downstream effectors (e.g., PARP-1 or MMPs)], act 

directly on the myocardium or indirectly via changes in hemodynamic loading conditions to 

cause endothelial and myocardial dysfunction, cardiac and vascular remodeling with 

hypertrophy, fibrosis, cardiac dilation, and myocardial necrosis, leading eventually to heart 

failure. The adverse remodeling and increased peripheral resistance further aggravate heart 

failure. MMPs, matrix metalloproteinases; PARP-1, poly(ADP-ribose) polymerase.
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