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Abstract

Basal Metabolic Rate (BMR) represents the largest component of total energy expenditure and is a
major contributor to energy balance. Therefore, accurately estimating BMR is critical for
developing rigorous obesity prevention and control strategies. Over the past several decades,
numerous BMR formulas have been developed targeted to different population groups. A
comprehensive literature search revealed 248 BMR estimation equations developed using diverse
ranges of age, gender, race, fat free mass, fat mass, height, waist-to-hip ratio, body mass index,
and weight. A subset of 47 studies included enough detail to allow for development of meta-
regression equations. Utilizing these studies, meta-equations were developed targeted to twenty
specific population groups. This review provides a comprehensive summary of available BMR
equations and an estimate of their accuracy. An accompanying online BMR prediction tool
(available at http://www.sdl.ise.vt.edu/tutorials.html) was developed to automatically estimate
BMR based on the most appropriate equation after user-entry of individual age, race, gender, and
weight.
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1. Introduction

Obesity is the result of a positive imbalance between energy intake and energy

expenditure 1. The basal metabolic rate (BMR), defined as the energy required for
performing vital body functions at rest, is the largest contributor to energy expenditure.
Therefore estimating the total contribution of individual BMR to total daily energy
expenditure is an important calculation for understanding, developing, and executing weight
related interventions.l: 2 For example, BMR estimation is applied to determine target energy
intake in weight loss programs, develop dynamic prediction models of weight gain and loss,
identify patients with potential metabolic abnormalities, inform the design of public health
programs promoting obesity prevention in diverse populations, and assess potential energy
deficits in metabolically stressed patients, such as burn victims. Direct measurement of
BMR through indirect calorimetry 3 is not feasible for frequent and timely individual use.
As a result, the majority of BMR estimates obtained for weight loss interventions rely on
BMR prediction equations. Over the past few decades, a large body of obesity related
literature has been devoted to development of BMR equations targeted to specific
population demographics.

BMR and the terms resting metabolic rate and resting energy expenditure are often used
interchangeably?, however, some investigators differentiate between these terms based on
the conditions under which they are measured °. We limited our review of BMR studies to
experiments that have measured the dependent variable, consistent with the definition of
BMR &7 measured in the post-absorptive state, after at least 10 hours of fasting, determined
through direct or indirect calorimetry®7.. The extensive literature on BMR equations is
based on the pioneering work of Harris and Benedict 8 and includes covariates such as

age 2 814 hody composition (i.e. fat mass and fat free mass) 13, gender and race 1° on
BMR. Most of the developed equations have focused on cross sectional data from targeted
subpopulations (for example the young adults) and have used a specific equation structure.
A review by Frankenfield et al. 16 compares commonly applied BMR prediction equations
including Mifflin et al. , 17 Owen et al., 18 19 Harris and Benedict 8 and WHO report?° to
determine the most reliable prediction equation. However current reviews often fail to
include different equation structures and populations with different age ranges and race. In
fact, a single equation cannot adequately capture the variations across age, race, gender, and
body composition.

The purpose of the current paper is to combine, analyze and categorize a comprehensive
review of studies that estimate the relationship between BMR and known covariates. The
results of the analysis were combined to determine the best fitting BMR prediction equations
targeted to different population characteristics. A simple online tool? that determines the
best BMR estimate after user input of age, race, gender, weight, and height was developed to
enhance clinical application of study results.

1\we thank one of the reviewers for recommending the development of this tool, which is available at http://www.sdl.ise.vt.edu/
tutorials.html and also as part of the online supplement on Journal’s website.
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2. Methods

Overview

Models that predict BMR, include different determinants and metabolically active
components at four different levels of molecular (Fat mass and fat free mass), cellular
(extracellular fluid, and extracellular solids), tissue/organ and whole body (Body Mass). 21
In this Systematic Review, our purpose is to find all regression equations reported in the
literature for predicting BMR based on molecular or whole body level factors. More detailed
levels of cellular or tissue/organ components, while very important for advancement of our
understanding of drivers of BMR, are not considered due to the complexity involved in
quantifying those factors which reduces their value for widespread clinical application. In
our review, the selected papers contain prediction models for healthy obese or non-obese
individuals, differentiated based on their race, gender and age. Due to limited number of
primary studies that account for dynamic changes in metabolic rate of a single individual
over time (See 22 23 for notable exceptions), our analysis focuses on equations using cross-
sectional data. Then we apply a meta-regression analysis to generate a combined equation
that is more robust in predicting BMR for each sub-population group. In our study we refer
to meta-regression analysis as a method to develop a single regression equation that
summarizes the findings of multiple regressions found in a number of studies.

Literature Search and Filtering

The comprehensive search of the literature was performed in four stages to identify all
studies that predict a BMR equation based on an empirical dataset. The specific keywords,
used to search PubMed and the Web of Science databases for studies published in any
language between the earliest available date October 31, 1923 and March 3, 2011, are shown
in Figure 1. Search terms are selected so that any publication, which finds a prediction
model for BMR or its alternative terms (Resting Metabolic Rate (RMR), Resting Energy
Expenditure (REE) or Basal Energy Expenditure (BEE)), is included. Retrieved articles
were reviewed in two steps. First abstracts were reviewed and items obviously not fitting
were excluded. Then the full text for the remaining articles were obtained and reviewed to
select the articles that included a regression equation based on the criteria above. In a
parallel process reference tracking helped identify additional studies not retrieved through
automated search.

Literature Coding

The regression equations reported in the remaining sample were extracted into a database.
These studies fall into two categories, first, those studies that lack estimates of variance for
reported regression coefficients. These are coded by including the data sample size and
determinants used to estimate BMR for future research, but are not further analyzed in this
paper because they lacked enough specificity to allow parametric meta-regression. The
second group consisted of studies that include some measure of variance such as standard
deviation, p-value, or t statistic. The details of the data set used in the study and the
equations developed were extracted from this group (See online supporting information S1).
Variance or standard deviation of reported regression parameters is needed for conducting
meta-regression analysis. Therefore we follow a set of procedures to consistently extract/
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estimate this factor, which is described in online supporting information S2. The full set of
references without estimates of variance is reported in online supporting information S4.

Meta-Regression Analysis

3. Results

Resulting equations are grouped based on sub-populations they were developed for (based
on gender, age group, and race) and the structure of the regression equation (i.e. independent
variables included and the transformations used). Within each group with homogenous
population and equation structure, we combined all the extracted equations to form a single
new equation that aggregates different previous findings. If a study estimates a single
equation for two different groups (e.g. 18-50 and >50 years old groups), we used that
equation separately in estimating the aggregate equations for each of the groups.

There are different approaches in the literature for synthesizing coefficients (slopes) of a set
of similar regressions found in different studies into a single slope, 24 which in this paper we
refer to as meta-regression2. The more statistically precise methods, such as the multivariate
Generalized Linear Square approach, 24 require the covariance between different slopes.
However the covariance matrices are rarely reported in studies. In fact none of the studies
found in the literature search for this paper included the covariance matrix of slopes. Instead
we used an alternative method that has been applied to different problems in the

literature, 26-28 and only requires the regression coefficients and the standard error for each
coefficient. In this method the meta-coefficient for each factor is calculated using a weighted
average of the same coefficient across the different studies. The weights are reciprocal of the
variance of those coefficients and also allow us to calculate the variance of the meta-
coefficient (See online supporting information S2). The meta-regression analysis is
conducted in Microsoft Excel (2010).

The initial search identified 9787 studies, including 39 studies identified from cross-
referencing, that cover a broad range of items. All of the titles and abstracts of these studies
were reviewed in the first step to filter out the clearly un-related papers. The full set of
exclusion criteria are shown in step 2 of Figure 1. Next, by reviewing the full text of 970
remaining studies, 712 studies were excluded due to different criteria reported in Figure 1,
including (but not limited to) those that focus on inter/intra individual variance of BMR,
studies just describing correlation values between BMR and different factors (but no
regression equation), those focusing on sleeping metabolic rate or postprandial BMR (i.e.
not after 10-12 hours fasting), those finding the relation between BMR and factors at a
cellular level, such as blood adipocytokines, pulse pressure and protein turnover. After this
screening process, 248 studies that generate a regression equation for predicting BMR based
on a data set of healthy obese or non-obese individuals were reviewed and coded.

The final set of 248 papers is categorized into two groups. The first category, those lacking
enough details to allow analytical meta-regression included 201 studies (See online

250me refer to meta-regression as running a regression on a common summary statistic drawn from the primary studies as the
dependent variable 25 Our use of the term differs from this definition.
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supporting information S4 for the full list). The final category with enough details to enable
meta-regression includes 47 studies. These papers report regression results for BMR as the
independent variable and different sets of determinants. Both coefficients and their
corresponding standard deviation (or a related concept such as p-value or t-statistic) are
coded in a database.

The final set of studies is categorized into different groups based on the structure of the
regression equation and the population subgroups distinguished by age, gender, and race. As
a result seventeen categories of Regression Models and twenty subpopulation groups are
identified. Note that age ranges for children, adult, and older adult vary slightly across
different subpopulation groups due to variations in the definitions used for different studies
(See online supporting information S3 for a summary table).

For each population group (based on age, gender, and race) and each regression structure
meta regression formulas (See online supplement S2) are applied to estimate a single meta
regression equation. These results are shown in Table 1. For each subpopulation, a list of
resulting meta-regression equation results, the original references that were combined, and
the range, mean, and standard deviation of RZ (a commonly reported measure of goodness of
fit) for the original studies are reported.

Using the Resulting Equations

For a concrete example, consider calculating the expected BMR for a 35-year-old white
female who weighs 75 kg (165 Ib) and is 165 cm (5’ 5”) tall. With this information we can
look up the designated rows in Table 1 (identified as “White 18-57"; the left hand columns
for female) and identify equation structures 1, 3, 10, and 15 for which meta regression
equations are available. Based on R2 values, structures 1 and 3 are deemed more accurate.
Equation structure 1 can be read as: BMR=301+10.2W+3.09H-3.09A, calculating this with
W=75kg, H=165cm, and A=35, we obtain a BMR of 1467.7 kcal/Day. This value is close to
the predictions obtained from Harris and Benedict 8 (H&B) equation3 (1513.8), World
Health Organization (WHO) report 20 equation4 (1558.7) and Institute of Medicine (IOM)
report 29 equation® (1475.9). While offering results consistent with more commonly used
equations for typical cases, Table 1 can provide empirically estimated equations for older
ages (Note that the Harris Benedict sample was under 45, and WHO equations do not
include age) and when additional data items are available (e.g. fat free mass (FFM) and
waist to hip ratio (WHR); neither included in WHO, 10M, or H&B equations). Table 1 can
also provide estimated variations across different ethnicities (not included in WHO, IOM, or
H&B equations). Such flexibility can be beneficial in making the best use of available data
for research and clinical applications. We also have developed an online tool, which predicts
BMR for subjects in different demographic groups depending on what information (e.g. age,
weight, and height) is available about them. In addition to the meta-regression results
developed in this paper, the tool includes the relevant predictions from IOM and WHO

3BMR=655+9.5634\W+1.8496H-4.6756A
4BMR=(3619+36.4W+1.046H)/4.184 (note that equation is modified to provide BMR in Kcal/day rather than J/Day)
SBMR=247+8.6W+4.105H-2.67A
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reports for each subject, allowing the user to make comparisons and reach an informed
consensus. Details are reported in online supplement S5.

Impact of Body Composition

Overall, consistent with previous findings, Fat-Free Mass is the best independent predictor
of BMR 13 as evidenced by good predictive power of equation structure 5 (By + p4FFM) in
many population groups. Weight is almost as good a predictor as Fat-Free Mass, based on
comparing the effect sizes for different independent variables. FM has a moderately positive
coefficient and provides a slight improvement in predictive power. Comparing structures 4
(Bo + P4aFFM+ BsFM) and 5 (Bg + p4FFM), it appears that impact of FM and FFM are
independent, i.e. inclusion of FM does not change the FFM coefficient. Moreover,
logarithmic functions may describe the FFM and FM effect as well as, if not better than,
linear effects (comparing structures 6 and 11). In fact with logarithmic functional forms for
FFM/FM the intercept shrinks considerably, suggesting that with the logarithmic
nonlinearity FM and FFM can explain the majority of variation in BMR.

Impact of Age

The direct impact of age is most pronounced for the children but is also significant in adults,
and is consistently negative. The age impact is slightly stronger in male than female. Age
also has a more subtle interaction with other factors. Comparing equation structures 4 (Bg +
B4aFFM+ BsFM) and 11 (Bg+ BsA + B4FFM + BsFM), we note that by including Age, the
coefficient for FFM shrinks (from ~20 to ~13 kcal/kg/day for adults) while the constant term
becomes larger, i.e. age and a constant term can replace a significant portion of FFM
contribution to BMR. This may suggest a reduction in tissue-specific organ metabolic rates
as people age. 30 The underlying mechanisms to explain the compensating effects of FFM
and Age may require cellular level measures in BMR estimation3! yet inclusion of Waist to
Hip Ratio (WHR) among the independent variables restores some of the direct effect of
FFM (structure 7: Bg + P3A + B4FFM +psFM + BgWHR), suggesting that WHR is
informative in understanding the interaction of Age and FFM. Other predictors including
height and BMI are statistically significant when included, but their significance may be
attributed to lack of controls for fat-free mass or weight in those equations.

Best Fitting Equations for Subpopulations

We elaborate on the best fitting equation structures for each major subpopulation separately.
For Female-White-5-18 group, equation structures 1 (Bg + B1W + BoH + B3A), 2 (B4FFM +
BsFM), 5 (B + B4FFM) and 11 (Bg+ B3A + B4FFM + BsFM), are the results of combining 3
or more studies. Structures 1 and 11 have the highest average R?, but structure 5 is also very
close (average R?=0.625). Nevertheless including Age, Height, and FM can all lead to more
precise BMR predictions. The same conclusions hold for ‘Male-White-5-18 and, should the
required information be available, we suggest applying either structure 1 or 11 for predicting
BMR in this sub-population as well. Only two equation structures have been estimated for
African-American youth (4.7-17 years old). While more studies have used structure 5,
structure 11 offers a better fit and thus can be recommended. A single equation structure is
available for Hispanic children (4-6 years).

Int J Obes (Lond). Author manuscript; available in PMC 2014 December 29.
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For adult white groups (male and female, 18-50 and 50+ groups) structures 1, 2, 3 (Bg +
B1W), 4 (Bo + B4FFM + BsFM), 5,9 (Bo + B3A + B4FFM), 10 (Bo + W + B3A) and 11 are
estimated based on multiple studies.

Structures 4, 5 and 11 have higher average R? with 4 and 11 providing a good balance in
terms of precision and empirical support (more than 5 studies and R2 between 0.7 and 0.8).
For the adult African American groups, equations 4, 5, and 11 are well supported and offer
good fits with R? values typically between 0.6 and 0.8. For other population groups (Asians,
Native Americans and adult Hispanics) a single regression exists for each equation structure
and therefore available choices are limited.

4. Conclusions

This study provides a comprehensive review of the BMR prediction equation literature to
develop meta-predictive equations using seventeen different structures and for twenty
different subpopulations. Providing robust equations for predicting expected BMR, the
results can inform obesity interventions in diverse populations. For example the equations
can inform setting energy intake goals in weight loss programs, help build dynamic models
of weight gain and loss, speed up the calibration of personalized obesity interventions,
enable the identification of patients with potential metabolic abnormalities, estimate energy
deficits for metabolically stressed individuals, and inform the design of public health
programs promoting obesity prevention in diverse populations. The equations provide
enough flexibility for accommodating a host of different independent variables, depending
on the availability of data for the application at hand. The accompanying BMR prediction
tool simplifies the application of results by practitioners.

From the 248 studies with predictive equations that we retrieved, only 19% included enough
detail regarding their estimated equations to allow for reliable comparison and meta-
regression. Mathematical models 32 increasingly rely on regression equations such as those
summarized here. Weight change experiments and commercial weight loss centers often
depend upon BMR regression equations to design their interventions. Explicit quantification
of variance is a critical factor for pooling data and models, improving these models, and
appropriately informing health care providers on the accuracy and limitations of developed
models.

In practice, application of a best fitting equation is also limited by data availability. While
FFM, FM, and waist and hip circumference are significant predictors of BMR, these
variables may not be available to researchers or individuals. We take a step towards
addressing this challenge by providing meta-regression equations with different independent
factors, including those that only rely on a subset of easily measured covariates (weight, age,
height, gender, and race).

Several areas for future research can improve these results. Individual life histories can
provide additional predictive variables not included in our meta-regression equations due to
the limited number of longitudinal primary studies. For example rapid weight loss can lead
to sustained BMR reduction even if FFM is sustained, effectively changing the coefficient
for FFM 22, Such information may be especially relevant for designing individualized

Int J Obes (Lond). Author manuscript; available in PMC 2014 December 29.
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interventions. Methodologically, the meta-regression formulations we used, while
commonly applied in the literature 26-28 assume independence among estimated
coefficients, which could not be verified in the absence of the correlation matrix for
coefficients. This may have led to under-estimation of variance in meta-coefficients.
Moreover, researchers will be interested in the net value of adding each independent
variable in balancing equation complexity against the predictive power of a model. If
different models (with different combinations of independent variables) are estimated on the
same data, measures such as Bayesian 33 and Akaike 34 Information Criteria can be used to
tradeoff model parsimony against predictive power. Such comparisons are not feasible in the
current study because each equation is estimated on a different dataset, nevertheless
estimated parameter variances provide related information on marginal value of different
BMR predictors. Improved meta-regression techniques could be developed to correct for
these potential shortcomings. Individual-level data can also be used to empirically compare
the precision of different equation structures we have identified.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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GEP 1: Search Pub Med & Web of \

Science:
Title/Abstract/Keywords:

(+basal metabol* OR +resting metabol* OR “basal
EE” OR “basal metabolic rate” OR “resting
metabolic rate” OR +resting energy* OR “resting
EE” OR (+resting AND +metabolic) OR “sleeping
metabolic rate” OR +BMR OR +RMR OR +BEE OR
+REE)

AND (predict* OR estimate* OR regress* OR
adjust® OR associate* OR +variance OR correlate*

Q! relate* OR +relationship) /
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GEP 2: Filter based on Title/Abstract,\

focusing on generating a prediction
equation

Rejection Criteria:

Disease/Drug-10.3%; other EE or El compartment-6%;
Obesity/Malnourishment/... Treatment-4.4%; Non
Human RMR-1.3%; Animals-33.9%; body composition
study-1.5%; energy balance model/study-0.7%;
metabolic other-8.6%; chemicals/Genetics and RMR-
1.3%,; Physical Activity Impact-0.8%; RMR measure
method-0.7%; RMR and adaptive change-0.3%;

diet/PA/stress effect on RMR-3%; death prediction-
Q%; other non related-16.7% /

ﬂTEP 3: Review full text

Detailed Rejection Criteria:
Disease/Drug-2.3%; other EE or El compartment-10.4%;

0.5%; energy balance model/study-0.4%; metabolic other-0.4%;

diet/PA/stress effect on RMR-8.1%;

factors-4.7%,; inter/intra individual variance-1.7%; w/o

Postprandial RMR-0.1%

Obesity/Malnourishment/Anorexia Treatment-2.3%; Non Human RMR-
chemicals/Genetics and RMR-0.7%; RMR measure method/issues-2%;

death/BMD/TEE/TEF/BF/BMI/DEE/BP/BW prediction-4.3%; Prediction
method validity/Review-13%; Comparison BW Groups-11.3%; Other

equation/correlation-8.4%; Paper Misconducted-0.2%; SMR-1.9%;

~

Step 4- Coding

Studies that reported std/p-
value/t-stat: 47

Studies without p-value: 201

/

Figure 1.
Flowchart of literature search and selection process
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