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Abstract

Basal Metabolic Rate (BMR) represents the largest component of total energy expenditure and is a 

major contributor to energy balance. Therefore, accurately estimating BMR is critical for 

developing rigorous obesity prevention and control strategies. Over the past several decades, 

numerous BMR formulas have been developed targeted to different population groups. A 

comprehensive literature search revealed 248 BMR estimation equations developed using diverse 

ranges of age, gender, race, fat free mass, fat mass, height, waist-to-hip ratio, body mass index, 

and weight. A subset of 47 studies included enough detail to allow for development of meta-

regression equations. Utilizing these studies, meta-equations were developed targeted to twenty 

specific population groups. This review provides a comprehensive summary of available BMR 

equations and an estimate of their accuracy. An accompanying online BMR prediction tool 

(available at http://www.sdl.ise.vt.edu/tutorials.html) was developed to automatically estimate 

BMR based on the most appropriate equation after user-entry of individual age, race, gender, and 

weight.
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1. Introduction

Obesity is the result of a positive imbalance between energy intake and energy 

expenditure 1. The basal metabolic rate (BMR), defined as the energy required for 

performing vital body functions at rest, is the largest contributor to energy expenditure. 

Therefore estimating the total contribution of individual BMR to total daily energy 

expenditure is an important calculation for understanding, developing, and executing weight 

related interventions.1, 2 For example, BMR estimation is applied to determine target energy 

intake in weight loss programs, develop dynamic prediction models of weight gain and loss, 

identify patients with potential metabolic abnormalities, inform the design of public health 

programs promoting obesity prevention in diverse populations, and assess potential energy 

deficits in metabolically stressed patients, such as burn victims. Direct measurement of 

BMR through indirect calorimetry 3 is not feasible for frequent and timely individual use. 

As a result, the majority of BMR estimates obtained for weight loss interventions rely on 

BMR prediction equations. Over the past few decades, a large body of obesity related 

literature has been devoted to development of BMR equations targeted to specific 

population demographics.

BMR and the terms resting metabolic rate and resting energy expenditure are often used 

interchangeably4, however, some investigators differentiate between these terms based on 

the conditions under which they are measured 5. We limited our review of BMR studies to 

experiments that have measured the dependent variable, consistent with the definition of 

BMR 6,7 measured in the post-absorptive state, after at least 10 hours of fasting, determined 

through direct or indirect calorimetry6,7.. The extensive literature on BMR equations is 

based on the pioneering work of Harris and Benedict 8 and includes covariates such as 

age 2, 8–14, body composition (i.e. fat mass and fat free mass) 13, gender and race 15 on 

BMR. Most of the developed equations have focused on cross sectional data from targeted 

subpopulations (for example the young adults) and have used a specific equation structure. 

A review by Frankenfield et al. 16 compares commonly applied BMR prediction equations 

including Mifflin et al. , 17 Owen et al., 18, 19 Harris and Benedict 8 and WHO report20 to 

determine the most reliable prediction equation. However current reviews often fail to 

include different equation structures and populations with different age ranges and race. In 

fact, a single equation cannot adequately capture the variations across age, race, gender, and 

body composition.

The purpose of the current paper is to combine, analyze and categorize a comprehensive 

review of studies that estimate the relationship between BMR and known covariates. The 

results of the analysis were combined to determine the best fitting BMR prediction equations 

targeted to different population characteristics. A simple online tool1 that determines the 

best BMR estimate after user input of age, race, gender, weight, and height was developed to 

enhance clinical application of study results.

1We thank one of the reviewers for recommending the development of this tool, which is available at http://www.sdl.ise.vt.edu/
tutorials.html and also as part of the online supplement on Journal’s website.
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2. Methods

Overview

Models that predict BMR, include different determinants and metabolically active 

components at four different levels of molecular (Fat mass and fat free mass), cellular 

(extracellular fluid, and extracellular solids), tissue/organ and whole body (Body Mass). 21 

In this Systematic Review, our purpose is to find all regression equations reported in the 

literature for predicting BMR based on molecular or whole body level factors. More detailed 

levels of cellular or tissue/organ components, while very important for advancement of our 

understanding of drivers of BMR, are not considered due to the complexity involved in 

quantifying those factors which reduces their value for widespread clinical application. In 

our review, the selected papers contain prediction models for healthy obese or non-obese 

individuals, differentiated based on their race, gender and age. Due to limited number of 

primary studies that account for dynamic changes in metabolic rate of a single individual 

over time (See 22, 23 for notable exceptions), our analysis focuses on equations using cross-

sectional data. Then we apply a meta-regression analysis to generate a combined equation 

that is more robust in predicting BMR for each sub-population group. In our study we refer 

to meta-regression analysis as a method to develop a single regression equation that 

summarizes the findings of multiple regressions found in a number of studies.

Literature Search and Filtering

The comprehensive search of the literature was performed in four stages to identify all 

studies that predict a BMR equation based on an empirical dataset. The specific keywords, 

used to search PubMed and the Web of Science databases for studies published in any 

language between the earliest available date October 31, 1923 and March 3, 2011, are shown 

in Figure 1. Search terms are selected so that any publication, which finds a prediction 

model for BMR or its alternative terms (Resting Metabolic Rate (RMR), Resting Energy 

Expenditure (REE) or Basal Energy Expenditure (BEE)), is included. Retrieved articles 

were reviewed in two steps. First abstracts were reviewed and items obviously not fitting 

were excluded. Then the full text for the remaining articles were obtained and reviewed to 

select the articles that included a regression equation based on the criteria above. In a 

parallel process reference tracking helped identify additional studies not retrieved through 

automated search.

Literature Coding

The regression equations reported in the remaining sample were extracted into a database. 

These studies fall into two categories, first, those studies that lack estimates of variance for 

reported regression coefficients. These are coded by including the data sample size and 

determinants used to estimate BMR for future research, but are not further analyzed in this 

paper because they lacked enough specificity to allow parametric meta-regression. The 

second group consisted of studies that include some measure of variance such as standard 

deviation, p-value, or t statistic. The details of the data set used in the study and the 

equations developed were extracted from this group (See online supporting information S1). 

Variance or standard deviation of reported regression parameters is needed for conducting 

meta-regression analysis. Therefore we follow a set of procedures to consistently extract/
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estimate this factor, which is described in online supporting information S2. The full set of 

references without estimates of variance is reported in online supporting information S4.

Meta-Regression Analysis

Resulting equations are grouped based on sub-populations they were developed for (based 

on gender, age group, and race) and the structure of the regression equation (i.e. independent 

variables included and the transformations used). Within each group with homogenous 

population and equation structure, we combined all the extracted equations to form a single 

new equation that aggregates different previous findings. If a study estimates a single 

equation for two different groups (e.g. 18–50 and >50 years old groups), we used that 

equation separately in estimating the aggregate equations for each of the groups.

There are different approaches in the literature for synthesizing coefficients (slopes) of a set 

of similar regressions found in different studies into a single slope, 24 which in this paper we 

refer to as meta-regression2. The more statistically precise methods, such as the multivariate 

Generalized Linear Square approach, 24 require the covariance between different slopes. 

However the covariance matrices are rarely reported in studies. In fact none of the studies 

found in the literature search for this paper included the covariance matrix of slopes. Instead 

we used an alternative method that has been applied to different problems in the 

literature, 26–28 and only requires the regression coefficients and the standard error for each 

coefficient. In this method the meta-coefficient for each factor is calculated using a weighted 

average of the same coefficient across the different studies. The weights are reciprocal of the 

variance of those coefficients and also allow us to calculate the variance of the meta-

coefficient (See online supporting information S2). The meta-regression analysis is 

conducted in Microsoft Excel (2010).

3. Results

The initial search identified 9787 studies, including 39 studies identified from cross-

referencing, that cover a broad range of items. All of the titles and abstracts of these studies 

were reviewed in the first step to filter out the clearly un-related papers. The full set of 

exclusion criteria are shown in step 2 of Figure 1. Next, by reviewing the full text of 970 

remaining studies, 712 studies were excluded due to different criteria reported in Figure 1, 

including (but not limited to) those that focus on inter/intra individual variance of BMR, 

studies just describing correlation values between BMR and different factors (but no 

regression equation), those focusing on sleeping metabolic rate or postprandial BMR (i.e. 

not after 10–12 hours fasting), those finding the relation between BMR and factors at a 

cellular level, such as blood adipocytokines, pulse pressure and protein turnover. After this 

screening process, 248 studies that generate a regression equation for predicting BMR based 

on a data set of healthy obese or non-obese individuals were reviewed and coded.

The final set of 248 papers is categorized into two groups. The first category, those lacking 

enough details to allow analytical meta-regression included 201 studies (See online 

2Some refer to meta-regression as running a regression on a common summary statistic drawn from the primary studies as the 
dependent variable 25. Our use of the term differs from this definition.
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supporting information S4 for the full list). The final category with enough details to enable 

meta-regression includes 47 studies. These papers report regression results for BMR as the 

independent variable and different sets of determinants. Both coefficients and their 

corresponding standard deviation (or a related concept such as p-value or t-statistic) are 

coded in a database.

The final set of studies is categorized into different groups based on the structure of the 

regression equation and the population subgroups distinguished by age, gender, and race. As 

a result seventeen categories of Regression Models and twenty subpopulation groups are 

identified. Note that age ranges for children, adult, and older adult vary slightly across 

different subpopulation groups due to variations in the definitions used for different studies 

(See online supporting information S3 for a summary table).

For each population group (based on age, gender, and race) and each regression structure 

meta regression formulas (See online supplement S2) are applied to estimate a single meta 

regression equation. These results are shown in Table 1. For each subpopulation, a list of 

resulting meta-regression equation results, the original references that were combined, and 

the range, mean, and standard deviation of R2 (a commonly reported measure of goodness of 

fit) for the original studies are reported.

Using the Resulting Equations

For a concrete example, consider calculating the expected BMR for a 35-year-old white 

female who weighs 75 kg (165 lb) and is 165 cm (5’ 5”) tall. With this information we can 

look up the designated rows in Table 1 (identified as “White 18–57”; the left hand columns 

for female) and identify equation structures 1, 3, 10, and 15 for which meta regression 

equations are available. Based on R2 values, structures 1 and 3 are deemed more accurate. 

Equation structure 1 can be read as: BMR=301+10.2W+3.09H-3.09A, calculating this with 

W=75kg, H=165cm, and A=35, we obtain a BMR of 1467.7 kcal/Day. This value is close to 

the predictions obtained from Harris and Benedict 8 (H&B) equation3 (1513.8), World 

Health Organization (WHO) report 20 equation4 (1558.7) and Institute of Medicine (IOM) 

report 29 equation5 (1475.9). While offering results consistent with more commonly used 

equations for typical cases, Table 1 can provide empirically estimated equations for older 

ages (Note that the Harris Benedict sample was under 45, and WHO equations do not 

include age) and when additional data items are available (e.g. fat free mass (FFM) and 

waist to hip ratio (WHR); neither included in WHO, IOM, or H&B equations). Table 1 can 

also provide estimated variations across different ethnicities (not included in WHO, IOM, or 

H&B equations). Such flexibility can be beneficial in making the best use of available data 

for research and clinical applications. We also have developed an online tool, which predicts 

BMR for subjects in different demographic groups depending on what information (e.g. age, 

weight, and height) is available about them. In addition to the meta-regression results 

developed in this paper, the tool includes the relevant predictions from IOM and WHO 

3BMR=655+9.5634W+1.8496H-4.6756A
4BMR=(3619+36.4W+1.046H)/4.184 (note that equation is modified to provide BMR in Kcal/day rather than J/Day)
5BMR=247+8.6W+4.105H-2.67A
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reports for each subject, allowing the user to make comparisons and reach an informed 

consensus. Details are reported in online supplement S5.

Impact of Body Composition

Overall, consistent with previous findings, Fat-Free Mass is the best independent predictor 

of BMR 13 as evidenced by good predictive power of equation structure 5 (β0 + β4FFM) in 

many population groups. Weight is almost as good a predictor as Fat-Free Mass, based on 

comparing the effect sizes for different independent variables. FM has a moderately positive 

coefficient and provides a slight improvement in predictive power. Comparing structures 4 

(β0 + β4FFM+ β5FM) and 5 (β0 + β4FFM), it appears that impact of FM and FFM are 

independent, i.e. inclusion of FM does not change the FFM coefficient. Moreover, 

logarithmic functions may describe the FFM and FM effect as well as, if not better than, 

linear effects (comparing structures 6 and 11). In fact with logarithmic functional forms for 

FFM/FM the intercept shrinks considerably, suggesting that with the logarithmic 

nonlinearity FM and FFM can explain the majority of variation in BMR.

Impact of Age

The direct impact of age is most pronounced for the children but is also significant in adults, 

and is consistently negative. The age impact is slightly stronger in male than female. Age 

also has a more subtle interaction with other factors. Comparing equation structures 4 (β0 + 

β4FFM+ β5FM) and 11 (β0+ β3A + β4FFM + β5FM), we note that by including Age, the 

coefficient for FFM shrinks (from ~20 to ~13 kcal/kg/day for adults) while the constant term 

becomes larger, i.e. age and a constant term can replace a significant portion of FFM 

contribution to BMR. This may suggest a reduction in tissue-specific organ metabolic rates 

as people age. 30 The underlying mechanisms to explain the compensating effects of FFM 

and Age may require cellular level measures in BMR estimation31 yet inclusion of Waist to 

Hip Ratio (WHR) among the independent variables restores some of the direct effect of 

FFM (structure 7: β0 + β3A + β4FFM +β5FM + β6WHR), suggesting that WHR is 

informative in understanding the interaction of Age and FFM. Other predictors including 

height and BMI are statistically significant when included, but their significance may be 

attributed to lack of controls for fat-free mass or weight in those equations.

Best Fitting Equations for Subpopulations

We elaborate on the best fitting equation structures for each major subpopulation separately. 

For Female-White-5–18 group, equation structures 1 (β0 + β1W + β2H + β3A), 2 (β4FFM + 

β5FM), 5 (β0 + β4FFM) and 11 (β0+ β3A + β4FFM + β5FM), are the results of combining 3 

or more studies. Structures 1 and 11 have the highest average R2, but structure 5 is also very 

close (average R2=0.625). Nevertheless including Age, Height, and FM can all lead to more 

precise BMR predictions. The same conclusions hold for ‘Male-White-5–18 and, should the 

required information be available, we suggest applying either structure 1 or 11 for predicting 

BMR in this sub-population as well. Only two equation structures have been estimated for 

African-American youth (4.7–17 years old). While more studies have used structure 5, 

structure 11 offers a better fit and thus can be recommended. A single equation structure is 

available for Hispanic children (4–6 years).
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For adult white groups (male and female, 18–50 and 50+ groups) structures 1, 2, 3 (β0 + 

β1W), 4 (β0 + β4FFM + β5FM), 5, 9 (β0 + β3A + β4FFM), 10 (β0 + β1W + β3A) and 11 are 

estimated based on multiple studies.

Structures 4, 5 and 11 have higher average R2 with 4 and 11 providing a good balance in 

terms of precision and empirical support (more than 5 studies and R2 between 0.7 and 0.8). 

For the adult African American groups, equations 4, 5, and 11 are well supported and offer 

good fits with R2 values typically between 0.6 and 0.8. For other population groups (Asians, 

Native Americans and adult Hispanics) a single regression exists for each equation structure 

and therefore available choices are limited.

4. Conclusions

This study provides a comprehensive review of the BMR prediction equation literature to 

develop meta-predictive equations using seventeen different structures and for twenty 

different subpopulations. Providing robust equations for predicting expected BMR, the 

results can inform obesity interventions in diverse populations. For example the equations 

can inform setting energy intake goals in weight loss programs, help build dynamic models 

of weight gain and loss, speed up the calibration of personalized obesity interventions, 

enable the identification of patients with potential metabolic abnormalities, estimate energy 

deficits for metabolically stressed individuals, and inform the design of public health 

programs promoting obesity prevention in diverse populations. The equations provide 

enough flexibility for accommodating a host of different independent variables, depending 

on the availability of data for the application at hand. The accompanying BMR prediction 

tool simplifies the application of results by practitioners.

From the 248 studies with predictive equations that we retrieved, only 19% included enough 

detail regarding their estimated equations to allow for reliable comparison and meta-

regression. Mathematical models 32 increasingly rely on regression equations such as those 

summarized here. Weight change experiments and commercial weight loss centers often 

depend upon BMR regression equations to design their interventions. Explicit quantification 

of variance is a critical factor for pooling data and models, improving these models, and 

appropriately informing health care providers on the accuracy and limitations of developed 

models.

In practice, application of a best fitting equation is also limited by data availability. While 

FFM, FM, and waist and hip circumference are significant predictors of BMR, these 

variables may not be available to researchers or individuals. We take a step towards 

addressing this challenge by providing meta-regression equations with different independent 

factors, including those that only rely on a subset of easily measured covariates (weight, age, 

height, gender, and race).

Several areas for future research can improve these results. Individual life histories can 

provide additional predictive variables not included in our meta-regression equations due to 

the limited number of longitudinal primary studies. For example rapid weight loss can lead 

to sustained BMR reduction even if FFM is sustained, effectively changing the coefficient 

for FFM 22. Such information may be especially relevant for designing individualized 
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interventions. Methodologically, the meta-regression formulations we used, while 

commonly applied in the literature 26–28, assume independence among estimated 

coefficients, which could not be verified in the absence of the correlation matrix for 

coefficients. This may have led to under-estimation of variance in meta-coefficients. 

Moreover, researchers will be interested in the net value of adding each independent 

variable in balancing equation complexity against the predictive power of a model. If 

different models (with different combinations of independent variables) are estimated on the 

same data, measures such as Bayesian 33 and Akaike 34 Information Criteria can be used to 

tradeoff model parsimony against predictive power. Such comparisons are not feasible in the 

current study because each equation is estimated on a different dataset, nevertheless 

estimated parameter variances provide related information on marginal value of different 

BMR predictors. Improved meta-regression techniques could be developed to correct for 

these potential shortcomings. Individual-level data can also be used to empirically compare 

the precision of different equation structures we have identified.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flowchart of literature search and selection process
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