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Abstract

The episodic, irregular and asynchronous nature of medical data render them difficult substrates 

for standard machine learning algorithms. We would like to abstract away this difficulty for the 

class of time-stamped categorical variables (or events) by modeling them as a renewal process and 

inferring a probability density over non-parametric longitudinal intensity functions that modulate 

the process. Several methods exist for inferring such a density over intensity functions, but either 

their constraints prevent their use with our potentially bursty event streams, or their time 

complexity renders their use intractable on our long-duration observations of high-resolution 

events, or both. In this paper we present a new efficient and flexible inference method that uses 

direct numeric integration and smooth interpolation over Gaussian processes. We demonstrate that 

our direct method is up to twice as accurate and two orders of magnitude more efficient than the 

best existing method (thinning). Importantly, our direct method can infer intensity functions over 

the full range of bursty to memoryless to regular events, which thinning and many other methods 

cannot do. Finally, we apply the method to clinical event data and demonstrate a simple example 

application facilitated by the abstraction.

1 INTRODUCTION

One of the hurdles for identifying clinically meaningful patterns in medical data is the fact 

that much of that data is sparsely, irregularly, and asynchronously observed, rendering it a 

poor substrate for many pattern recognition algorithms.

A large class of this problematic data in medical records is time-stamped categorical data 

such as billing codes. For example, an ICD-9 billing code with categorical label 714.0 

(Rheumatoid Arthritis) gets attached to a patient record every time the patient makes contact 

with the health-care system for a problem or activity related to her arthritis. The activity 

could be an outpatient doctor visit, a laboratory test, a physical therapy visit, a discharge 

from an inpatient stay, or any other billable event. These events occur at times that are 

generally asynchronous with events for other conditions.

We would like to learn things from the patterns of these clinical contact events both within 

and between diseases, but their often sparse and irregular nature makes it difficult to apply 

standard learning algorithms to them. To abstract away this problem, we consider the data as 

streams of events, one stream per code or other categorical label. We model each stream as a 

modulated renewal process and use the process’s modulation function as the abstract 

NIH Public Access
Author Manuscript
Uncertain Artif Intell. Author manuscript; available in PMC 2014 December 29.

Published in final edited form as:
Uncertain Artif Intell. 2014 July ; 2014: 469–476.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



representation of the label’s activity. The modulation function provides continuous 

longitudinal information about the intensity of the patient’s contact with the healthcare 

system for a particular problem at any point in time. Our goal is to infer these functions, the 

renewal-process parameters, and the appropriate uncertainties from the raw event data.

We have previously demonstrated the practical utility of using a continuous function density 

to couple standard learning algorithms to sparse and irregularly observed continuous 

variables (Lasko et al., 2013). Unfortunately, the method of inferring such densities for 

continuous variables is not applicable to categorical variables. This paper presents a method 

that achieves the inference for categorical variables.

Our method models the log intensity functions nonparametrically as Gaussian processes, and 

uses Markov Chain Monte Carlo (MCMC) to infer a posterior distribution over intensity 

functions and model parameters given the events (Section 2).

There are several existing approaches to making this inference (Section 3), but all of the 

approaches we found have either flexibility or scalability problems with our clinical data. 

For example, clinical event streams can be bursty, and some existing methods are unable to 

adapt to or adequately represent bursty event patterns.

In this paper we demonstrate using synthetic data that our approach is up to twice as 

accurate, up to two orders of magnitude more efficient, and more flexible than the best 

existing method (Section 4.1). We also demonstrate our method using synthetic data that 

mimics our clinical data, under conditions that no existing method that we know of is able to 

satisfactorily operate (Section 4.1). Finally, we use our method to infer continuous 

abstractions over real clinical data (Section 4.2), and as a simple application example we 

infer latent compound diseases from a complex patient record that closely correspond to its 

documented clinical problems.

2 MODULATED RENEWAL PROCESS EVENT MODEL

A renewal process models random events by assuming that the interevent intervals are 

independent and identically distributed (iid). A modulated renewal process model drops the 

iid assumption and adds a longitudinal intensity function that modulates the expected event 

rate with respect to time.

We consider a set of event times T = {t0, t1, … , tn} to form an event stream that can be 

modeled by a modulated renewal process. For this work we choose a modulated gamma 

process (Berman, 1981), which models the times T as

(1)

where Γ(·) is the gamma function, a > 0 is the shape parameter, λ(t) > 0 is the modulating 

intensity function, and .
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Equation (1) is a generalization of the homogeneous gamma process γ(a, b), which models 

the interevent intervals xi = ti − ti−1, i = 1 … n as positive iid random variables:

(2)

where b takes the place of a now-constant 1/λ(t), and can be thought of as the time scale of 

event arrivals.

The intuition behind (1) is that the function Λ(t) warps the event times ti into a new space 

where their interevent intervals become draws from the homogeneous gamma process of (2). 

That is, the warped intervals wi = Λ(ti) − Λ(ti−1) are modeled by wi ~ γ(a, b).

For our purposes, a gamma process is better than the simpler and more common Poisson 

process because a gamma process allows us to model the relationship between neighboring 

events, instead of assuming them to be independent or memoryless. Specifically, 

parameterizing a < 1 models a bursty process, a > 1 models a more regular or refractory 

process, and a = 1 produces the memoryless Poisson process. Clinical event streams can 

behave anywhere from highly bursty to highly regular.

We model the log intensity function log λ(t) = f(t) ~GP(0,C). as a draw from a Gaussian 

process prior with zero mean and the squared exponential covariance function

(3)

where σ sets the magnitude scale and l sets the time scale of the Gaussian process. We 

choose the squared exponential because of its smoothness guarantees that are relied upon by 

our inference algorithm, but other covariance functions could be used.

In our application the observation period generally starts at tmin < t0, and ends at tmax > tn, 

and no events occur at these endpoints. Consequently, we must add terms to (1) to account 

for these partially observed intervals. For efficiency in inference, we estimate the 

probabilities of these intervals by assuming that w0 and wn+1 are drawn from a 

homogeneous γ(1,1) process in the warped space. The probability of the leading interval w0 

= Λ(t0) − Λ(tmin) is then approximated by ,

which is equivalent to w0 ~ γ(1, 1). The trailing interval is treated similarly.

Our full generative model is as follows:

1. l ~ Exponential(α)

log σ ~ Uniform(log σmin, log σmax)

log a ~ Uniform(log amin, log amax)

b = 1

2. f(t) ~GP(0,C) using (3)
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3. λ(t) = ef(t)

4.

5. w0 ~ γ(1, 1); wi>0 ~ γ(a, b)

6.

Step 1 places a prior on l that prefers smaller values, and uninformative priors on a and σ. 

We set b = 1 to avoid an identifiability problem. (Rao and Teh (2011) set b = 1/a to avoid 

this problem. While that setting has some desirable properties, we’ve found that setting b = 1 

avoids more degenerate solutions at inference time.)

2.1 INFERENCE

Given a set of event times T, we use MCMC to simultaneously infer posterior distributions 

over the intensity function λ(T ) and the parameters a, σ, and l (Algorithm 1). For simplicity 

we denote g(T) = {g(t) : t ∈ T } for any function g that operates on event times. On each 

round we first use slice sampling with surrogate data (Murray and Adams, 2010, code 

publicly available) to compute new draws of f(t), σ, and l using (1) as the likelihood function 

(with additional factors for the incomplete interval at each end). We then sample the gamma 

shape parameter a using Metropolis-Hastings updates.

One challenge of this direct inference is that it requires integrating , which 

is difficult because λ(t) does not have an explicit expression. Under certain conditions, the 

integral of a Gaussian process has a closed form (Rasmussen and Gharamani, 2003), but we 

know of no closed form for the integral of a log Gaussian process. Instead, we compute the 

integral numerically (the trapezoidal rule works fine), relying on the smoothness guarantees 

provided by the covariance function (3) to provide high accuracy.

The efficiency bottleneck of the update is the O(m3) complexity of updating the Gaussian 

process f at m locations, due to a matrix inversion. Naively, we would compute f at all n of 

the observed ti, with additional points as needed for accuracy of the integral. To improve 

efficiency, we do not directly update f at the ti, but instead at k uniformly spaced points T̂ = 

{t̂j = tmin + jd}, where . We then interpolate the values f(T) from the values of 

f(T̂) as needed. We set the number of points k by the accuracy required for the integral. This 

is driven by our estimate of the smallest likely Gaussian process time scale lmin, at which 
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point we truncate the prior on l to guarantee d ≪ lmin ≤ l. The efficiency of the resulting 

update is O(k3)+O(n), with k depending only on the ratio lmin/(tmax − tmin).

It helps that the factor driving k is the time scale of changes in the intensity function λ(t) 

instead of the time scale of interevent intervals, which is usually much smaller. In practice, 

we’ve found k = 200 to work well for nearly all of our medical data examples, regardless of 

the observation time span, resulting in an update that is linear in the number of observed 

points.

Additionally, the regular spacing in T̂ means that its covariance matrix generated by (3) is a 

symmetric positive definite Toeplitz matrix, which can be inverted or solved in a compact 

representation as fast as O(k log2 k) (Martinsson et al., 2005). We did not include this extra 

efficiency in our implementation, however.

3 RELATED WORK

There is a growing literature on finding patterns among clinical variables such as laboratory 

tests that have both a timestamp and a numeric value (Lasko et al., 2013), but we are not 

aware of any existing work exploring unsupervised, data-driven abstractions of categorical 

clinical event streams that we address here.

There is much prior work on methods similar to ours that infer intensity functions for 

modulated renewal processes. The main distinction between these methods lies in the way 

they handle the form and integration of the intensity function λ(t). Approaches include using 

kernel density estimation (Ramlau-Hansen, 1983), using parametric intensity functions 

(Lewis, 1972), using discretized bins within which the intensity is considered constant 

(Moller et al., 1998, Cunningham et al., 2008), or using a form of rejection sampling called 

thinning (Adams et al., 2009, Rao and Teh, 2011) that avoids the integration altogether.

The binned time approach is straightforward, but there is inherent information loss in the 

piecewise-constant intensity approximation that it must adopt. Moreover, when a Gaussian 

process is used to represent this intensity function, the computational complexity of 

inference is cubic with the number of bins in the interval of observation. For our data, with 

events at 1-day or finer time resolution over up to a 15 year observation period, this method 

is prohibitively inefficient. A variant of the binned-time approach that uses variable-sized 

bins (Gunawardana et al., 2011, Parikh et al., 2012) has been applied to medical data (Weiss 

and Page, 2013). This variant is very efficient, but is restricted to a Poisson process (fixed a 

= 1), and the inferred intensity functions are neither intended to nor particularly well suited 

to form an accurate abstraction over the raw events.

Thinning is a clever method, but it is limited by the requirement of a bounded hazard 

function, which prevents it from being used with bursty gamma processes. (Bursty gamma 

processes have a hazard function that is unbounded at zero). One thinning method has also 

adopted the use of Gaussian processes to modulate gamma processes (Rao and Teh, 2011). 

But in addition to not working with bursty events, it also rather inefficient; its time 

complexity is cubic in the number of events that would occur if the maximum event 

intensity were constant over the entire observation time span. For event streams with a small 
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dynamic range of intensities, this is not a big issue, but our medical data sequences can have 

a dynamic range of several orders of magnitude.

Our method therefore has efficiency and flexibility advantages over existing methods, and 

we will demonstrate in the experiments that it also has accuracy advantages.

4 EXPERIMENTS

In these experiments, we will refer to our inference method as the direct method because it 

uses direct numerical integration. A full implementation of our method and code to 

reproduce the results on the synthetic data is available at https://github.com/

ComputationalMedicineLab/egpmrp.

We tested the ability of the direct method and the thinning method to recover known 

intensity functions and shape parameters from synthetic data. We then used the direct 

method to extract latent intensity functions from streams of clinical events, and we inferred 

latent compound conditions from the intensity functions for a complex patient record that 

accurately correspond to the dominant diseases documented in the record.

4.1 SYNTHETIC DATA

Our first experiments were with the three parametric intensity functions below, carefully 

following Adams et al. (2009) and Rao and Teh (2011). We generated all data using the 

warping model described in Section 2, with shape parameter a = 3.

1. λ1(t)/a = 2e−t/15 + e−((t−25)/10)2 over the interval [0, 50], 48 events.

2. λ2(t)/a = 5 sin(t2) + 6 on [0, 5], 29 events.

3. λ3(t)/a is the piecewise linear curve shown in Figure 1, on the interval [0, 100], 230 

events.

We express these as normalized intensities λ(t)/a, which have units of “expected number of 

events per unit time”, because they are more interpretable than the raw intensities and they 

are comparable to the previous work done using Poisson processes, where a = 1.

We compared the direct method to thinning on these datasets, using the MATLAB 

implementation for thinning that was used by Rao and Teh (2011). Adams et al. (2009) 

compared thinning to the kernel smoothing and binned time methods (all assuming a 

Poisson process), and Rao and Teh (2011) compared thinning to binned time, assuming a 

gamma process with constrained a > 1. Both found thinning to be at least as accurate as the 

other methods in most tests.

We computed the RMS error of the true vs. the median normalized inferred intensity, the log 

probability of the data given the model, and the inference run time under 1000 burn-in and 

5000 inference MCMC iterations.

On these datasets the direct method was more accurate than thinning for the recovery of both 

the intensity function and the shape parameter, and more efficient by up to two orders of 

magnitude (Figure 1 and Table 1). The results for thinning are consistent with those 
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previously reported (Rao and Teh, 2011), with the exception that the shape parameter 

inference was more accurate in the earlier results.

The confidence intervals from the direct method are subjectively more accurate than from 

the thinning method. (That is, the 95% confidence intervals from the direct method contain 

the true function for about 95% of its length in each case). This is particularly important in 

the case of small numbers of events that may not carry sufficient information for any method 

to resolve a highly varying function.

As might be expected, we found the results for λ2(t) to be sensitive to the prior distribution 

on l, given the small amount of evidence available for the inference. Following Adams et al. 

(2009) and Rao and Teh (2011), we used a log-normal prior with a mode near l = 0.2, tuned 

slightly for each method to achieve the best results. We also allowed thinning to use a log-

normal prior with appropriate modes for λ1(t) and λ3(t), to follow precedent in the previous 

work, although it may have conferred a small advantage to thinning. We used the weaker 

exponential prior on those datasets for the direct method.

Our next experiments were on synthetic data generated to resemble our medical data. We 

tested several configurations over wide ranges of parameters, including some that were not 

amenable to any known existing approach (such as the combination of a < 1, high dynamic 

range of intensity, and high ratio of observation period to event resolution, Figure 2). The 

inferred intensities and gamma parameters were consistently accurate. Estimates of the 

confidence intervals were also accurate, including in cases with low intensities and few 

events (Figure 2, right panel).

4.2 CLINICAL DATA

We applied the direct method to sequences of billing codes representing clinical events. 

After obtaining IRB approval, we extracted all ICD-9 codes from five patient records with 

the greatest number of such codes in the deidentified mirror of our institution’s Electronic 

Medical Record. We arranged the codes from each patient record as streams of events 

grouped at the top (or chapter) level of the ICD-9 disease hierarchy (which collects broadly 

related conditions), as well as at the level of the individual disease.

For the streams of grouped events, we included an event if its associated ICD-9 code fell 

within the range of the given top-level division. For example, any ICD-9 event with a code 

in the range [390 – 459.81] was considered a Cardiovascular event. While intensity 

functions are only strictly additive for Poisson processes, we still find the curves of grouped 

events to be informative.

We inferred intensity functions for each of these event streams (for example, Figure 3). Each 

curve was generated using 2000 burn-in and 2000 inference iterations in about three minutes 

using unoptimized MATLAB code on a single desktop CPU. The results have good clinical 

face validity.

There is much underlying structure in these events that can now be investigated with 

standard learning methods applied to the inferred intensity functions. As a simple example, 

Lasko Page 7

Uncertain Artif Intell. Author manuscript; available in PMC 2014 December 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



singular value decomposition (Strang, 2003) can infer the latent compound conditions 

(which we might as well call eigendiseases) underlying the recorded clinical activity, taking 

into account the continuously changing, longitudinal time course of that activity. The 

singular values for the curves in Figure 3 reveal that about 40% of the patient’s activity 

relates to a single eigendisease, and about 70% is distributed among the top three (Figure 4). 

The inferred eigendiseases closely correspond to the dominant clinical problems described 

in the record (Figure 5).

5 DISCUSSION

We have made two contributions with this paper. First, we presented a direct numeric 

method to infer a distribution of continuous intensity functions from a set of episodic, 

irregular, and discrete events. This direct method has increased efficiency, flexibility, and 

accuracy compared to the best prior method. Second, we presented results using the direct 

method to infer a continuous function density as an abstraction over episodic clinical events, 

for the purposes of transforming the raw event data into a form more amenable to standard 

machine learning algorithms.

The clinical interpretation of these intensity functions is that increased intensity represents 

increased frequency of contact with the healthcare system, which usually means increased 

instability of that condition. In some cases, it may also mean increased severity of the 

condition, but not always. If a condition acutely increases in severity, this represents an 

instability and will probably generate a contact event. On the other hand, if a condition is 

severe but stably so, it may not necessarily require high-frequency medical contact.

The methods described here to represent categorically labeled events in time as continuous 

curves augment our previously reported methods to construct similar curves from 

observations with both a time and a continuous value (Lasko et al., 2013). These two data 

types represent the majority of the information in a patient record (if we consider words and 

concepts in narrative text to be categorical variables), and opens up many possibilities for 

finding meaningful patterns in large medical datasets.

The practical motivation for this work is that once we have the continuous function 

densities, we can use them as inputs to a learning problem in the time domain (such as 

identifying trajectories that may be characteristic of a particular disease), or by aligning 

many such curves in time and looking for useful patterns in their cross-sections (which to 

our knowledge has not yet been reported). We presented a simple demonstration of inferring 

cross-sectional latent factors from the intensity curves of a single record. Discovering 

similar latent factors underlying a large population is a focus of future work.

We discovered incidentally that a presentation such as Figure 3 appears to be a promising 

representation for efficiently summarizing a complicated patient’s medical history and 

communicating that broad summary to a clinician. The presentation could allow drilling-

down to the intensity plots of the specific component conditions and then to the raw source 

data. (The usual method of manually paging through the often massive chart of a patient to 

get this information can be a tedious and frustrating process.)
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One could also imagine presenting the curves not of the raw ICD-9 codes, but of the inferred 

latent factors underlying them, and drilling down into the rich combinations of test results, 

medications, narrative text, and discrete billing events that comprise those latent factors.

We believe that these methods will facilitate Computational Phenotype Discovery (Lasko et 

al., 2013), or the data-driven search for population-scale clinical patterns in existing 

electronic medical records that may illuminate previously unknown disease variants, 

unanticipated medication effects, or emerging syndromes and infectious disease outbreaks.
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Figure 1. 
Our direct method (top) is more accurate than thinning (bottom) on parametric intensity 

functions λ1 to λ3 (left to right). Red line: true normalized intensity function λ(t)/a; White 

line: mean inferred normalized intensity function; Blue region: 95% confidence interval. 

Inset: inferred distribution of the gamma shape parameter a, with the true value marked in 

red. Grey bar at a = 1 for reference.
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Figure 2. 
Accurate recovery of intensity function and parameters under conditions that would be 

prohibitive for any other method of which we are aware. Left panel presents results for high 

intensities and many events, right panel for low intensities and few events. While there is 

insufficient evidence in the right panel to recover the true intensity, the inferred intensity is 

reasonable given the evidence, and the inferred confidence intervals are accurate in that the 

true intensity is about 95% contained within them. Legend as in Figure 1.
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Figure 3. 
Inferred intensities for all top-level ICD-9 disease divisions of a very complicated patient’s 

record. Such a display may be clinically useful for getting a quick, broad understanding of a 

patient’s medical history, including quickly grasping which conditions have not been 

diagnosed or treated. Numbers in parentheses: total number of events in each division. For 

clarity, confidence intervals are not shown.
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Figure 4. 
A small number of latent compound conditions (or eigendiseases) produce most of the 

activity captured by the patient record in Figure 3.
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Figure 5. 
The top three eigendiseases inferred from the patient record in Figure 3. These align well 

with the actual clinical problems described in the record, which are a) severe congenital 

malformation of the heart and lungs with downstream effects on multiple organ systems, b) 

non-congenital kidney failure (a genitourinary condition with metabolic consequences), and 

c) multiple recurring infections from several sources.
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