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To determine the rate at which IS6110 restriction fragment length polymorphism (RFLP) patterns in
Mycobacterium tuberculosis change over time, we applied a smooth nonparametric survival model to several data
sets, including data from previous publications on the rate of change. The results strongly suggest a simple
parametric model, with an instantaneous change at time zero and essentially a zero rate of change thereafter.
Our interpretation of the results is that at the time of collection of the first isolate, more than one strain is
present. We speculate that the selection of mutant strains is most likely during rapid growth, revival of the
dormant bacteria, and/or adaptation to a new host. The parameter most accurately describing changing RFLP
patterns is the proportion of isolates with band changes, rather than the half-life or the rate of change.

Restriction fragment length polymorphisms (RFLPs) asso-
ciated with insertions of the IS6110 element into the genome
of Mycobacterium tuberculosis are an important tool in epide-
miological studies of tuberculosis. It is of practical and theo-
retical importance to know the rate of change of these finger-
prints. A fundamental complication is that the data are
inherently interval censored: one can determine that a finger-
print changed during some interval, but not the exact time
point at which the change occurred. This complicates the ap-
plication of survival analysis to this type of data. de Boer et al.
(1) assumed an exponential survival model (constant hazard),
integrated over observation intervals, and estimated the con-
stant hazard by maximum likelihood. Tanaka et al. (6) refined
this analysis by introducing proportionality to the copy num-
ber. The validity of the assumption that the rate of change is
constant over time has not yet been examined. In this paper,
we report the extent to which this assumption is supported by
data from The Netherlands, Vietnam, and South Africa as well
as by published data from San Francisco, Calif., and Germany.
In addition, we explore whether there are alternatives that
provide a better explanation of the observed data.

MATERIALS AND METHODS

The following data sets were available and were used for our analysis: serial
isolates from 544 tuberculosis patients in The Netherlands, 25 (5%) of which
showed a change in the follow-up fingerprint (1); serial isolates from 75 tuber-
culosis patients in Vietnam with relapses (a repeat episode of tuberculosis after
being declared cured) or treatment failures (remaining smear and culture posi-
tive after 5 or 8 months of treatment), 15 (20%) of which showed a change in the
fingerprint of the second episode (5); and serial isolates from 345 tuberculosis

patients in South Africa, 15 (4%) of which showed a change in the subsequent
DNA fingerprint (7).

In addition, we used the following isolates from two published reports on the
rate of change of IS6110 RFLP patterns: serial isolates taken at least 90 days
apart from 49 tuberculosis patients in San Francisco, 12 (24%) of which showed
a change in the IS6110 RFLP pattern of the isolate from the second episode (8);
and serial isolates from 56 tuberculosis patients in Germany, 5 (9%) of which
showed an alteration in the follow-up isolate (4). For the data presented by Yeh
et al. (8), we obtained numbers by using the histograms in their paper. Hence, the
data were rounded to 50 days for our analysis.

For the data from The Netherlands, details are given in an article by de Boer
et al. (1). The hazard was defined as the probability of a change occurring during
a discrete time interval, e.g., 10 days. First we developed a smooth nonparametric
algorithm for hazard estimation. In this approach, the hazard for each time
interval is estimated as a smooth positive function that maximizes the likelihood
of the data, using a penalized maximum likelihood algorithm (3). This procedure
was applied to each of the five data sets. Special software was written for this
analysis by using Matlab (available upon request).

We compared the results of the nonparametric approach (which implies no
assumptions about changes of the hazard over time) with the following paramet-
ric models: (i) constant hazard (which has been used to date in publications on
this subject), (ii) exponentially declining hazard, and (iii) an almost immediate
change at the origin (a “hazard impulse”) followed by a constant hazard. We call
the latter the impulse model.

The constant hazard model has only one parameter, the level of the hazard.
The second model assumes an exponentially decaying hazard and has two pa-
rameters: one is the initial level of the hazard and the other is the rate of decline
of this hazard over time. The last model has two parameters as well: one is the
initial proportion changed and the other is the constant hazard over the period
thereafter.

These four explanatory models were compared by using log likelihoods.

RESULTS

For the nonparametric approach without assumptions about
changes in the hazard over time, four of the five data sets
showed the same remarkable pattern: a high initial hazard that
dropped sharply within a short time (a few weeks or months).
For the data from The Netherlands, the hazard showed an
initial strong change in the first 200 days (Fig. 1). If we used
only the intervals of �100 days, we still saw a very sharp peak
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FIG. 1. Dutch data. Individual intervals are shown sorted, with increases in length from bottom to top. Left, no change; right, change in
RFLP.

FIG. 2. Dutch data (first 100 days). Individual intervals are shown sorted, with increases in length from bottom to top. Left, no change; right,
change in RFLP.
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near the origin (Fig. 2). This pattern was similar for data from
Vietnam, Cape Town, South Africa, and San Francisco, Calif.,
but different for data from Germany (data not shown). The
data set from Germany is sparse, as it includes data for only 5
patients (of 49) with a change in IS6110 fingerprints. By ex-
perimenting with the data, we found that adding or removing
only one fingerprint change had a strong influence on the
estimated hazard curve.

A comparison of the likelihoods of the models showed that
the constant hazard assumption gave the poorest results, while
the other three models had similar likelihood values (Table 1;
Fig. 3). It should be noted here that the exponential model
showed a very steep decline of the hazard, which was close to
zero within a few weeks.

DISCUSSION

This study suggests that, contrary to previous assumptions,
changes in RFLP patterns are strongly time-dependent. The
data can be more easily explained by an instantaneous change
at time zero or by a steep decline of the hazard than by
assuming a constant rate of change. Of the three alternative,
and more or less equivalent, models, we think the impulse
model is the most attractive for its simple interpretation.

The interpretation of the impulse model is that most
changes in RFLP patterns occur before diagnosis and that the
rate of change during treatment is extremely low. We offer two
hypotheses to explain this. First, the rate of change may be
proportional to the growth rate of mycobacteria. If this is true,
the rate of change during latency should be close to zero.
Alternatively (or in addition), adaptation to a new host gives
rise to selection pressure and thus may lead to the selection of
strains with another RFLP pattern if such a change is accom-
panied by functional changes in the expression of particular
genes. If adaptation to a new host is the main mechanism, no
further change should be observed among failure cases. If rapid
growth is the major explanation, another impulse may be ex-
pected upon treatment failure or a relapse.

Since the rate of change during treatment appears to be
extremely low, the proportion of isolates that changed, rather
than the half-life or rate of change, should be the parameter of
interest. The proportion of isolates with changes in the IS6110
RFLP may vary between settings, possibly due to differences in
the delay between the onset of disease and the diagnosis. This

FIG. 3. Model estimates for Dutch data (left panel) and corresponding probabilities of change in RFLP fingerprints (right panel). Full lines,
nonparametric model; dashed lines, constant hazard model; dash-dot lines, exponential hazard model; dotted lines, impulse model.

TABLE 1. Log likelihoods of hazard modelsa

Origin of data
Log likelihood for hazard model

Nonparametric Constant Exponential Impulse

Netherlands �102.2 �199.2 �101.4 �101.4
Vietnam �38.6 �40.4 �38.4 �38.8
San Francisco �27.3 �28.6 �26.8 �27.3
Cape Town �58.6 �62.2 �59.5 �57.1
Germany �13.4 �14.0 �13.7 �13.8

a Nonparametric, a nonparametric model of the hazard; constant, the hazard
does not change over time; exponential, the hazard decays exponentially with
time; impulse, an almost immediate change at the origin, followed by a (low)
constant hazard.
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suggests that the proportion changed, which can be deter-
mined at diagnosis by the fingerprinting of multiple single-
strike colonies, might be used as an indicator of the mean
delay. However, this proposal first needs validation.

The strength of the evidence strongly depends on the inter-
vals between serial isolates. The Dutch data contain relatively
many short intervals, and in that case, the difference in likeli-
hood between the impulse model and the constant hazard
model is large. It would be worthwhile to gather more and
stronger evidence by investigating RFLP fingerprints repeat-
edly within short intervals for many patients to estimate the
rate of change during the very early phase of treatment. Re-
peated isolates at the very start of treatment would also allow
us to check the hypothesis that a mixture of strains of M.
tuberculosis is already present at that moment. That such mixed
populations do occur has been shown in a study of low-inten-
sity bands (2).

A consequence of our findings is that it does not make much
sense to investigate relationships between the rate of change
and patient characteristics or specifics of the RFLP pattern,
such as the number of (changed) bands. The rate of change is
so high that knowing more about it adds little information.
Instead, further research should focus on the changed fraction.
In general, it will be hard to get reliable estimates, as this will
involve studying subgroups of the already small fraction, about

5%, that shows a change. Very large groups of patients will be
needed for such studies.
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