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ABSTRACT Several recent studies have converged upon the innate immune DNA cytosine deaminase APOBEC3B (A3B) as a sig-
nificant source of genomic uracil lesions and mutagenesis in multiple human cancers, including those of the breast, head/neck,
cervix, bladder, lung, ovary, and other tissues. A3B is upregulated in these tumor types relative to normal tissues, but the mecha-
nism is unclear. Because A3B also has antiviral activity in multiple systems and is a member of the broader innate immune re-
sponse, we tested the hypothesis that human papillomavirus (HPV) infection causes A3B upregulation. We found that A3B
mRNA expression and enzymatic activity were upregulated following transfection of a high-risk HPV genome and that this effect
was abrogated by inactivation of E6. Transduction experiments showed that the E6 oncoprotein alone was sufficient to cause
A3B upregulation, and a panel of high-risk E6 proteins triggered higher A3B levels than did a panel of low-risk or noncancer E6
proteins. Knockdown experiments in HPV-positive cell lines showed that endogenous E6 is required for A3B upregulation. Anal-
yses of publicly available head/neck cancer data further support this relationship, as A3B levels are higher in HPV-positive can-
cers than in HPV-negative cancers. Taken together with the established role for high-risk E6 in functional inactivation of TP53
and published positive correlations in breast cancer between A3B upregulation and genetic inactivation of TP53, our studies
suggest a model in which high-risk HPV E6, possibly through functional inactivation of TP53, causes derepression of A3B gene
transcription. This would lead to a mutator phenotype that explains the observed cytosine mutation biases in HPV-positive
head/neck and cervical cancers.

IMPORTANCE The innate immune DNA cytosine deaminase APOBEC3B (A3B) accounts for a large proportion of somatic muta-
tions in cervical and head/neck cancers, but nothing is known about the mechanism responsible for its upregulation in these
tumor types. Almost all cervical carcinomas and large proportions of head/neck tumors are caused by human papillomavirus
(HPV) infection. Here, we establish a mechanistic link between HPV infection and A3B upregulation. The E6 oncoprotein of
high-risk, but not low-risk, HPV types triggers A3B upregulation, supporting a model in which TP53 inactivation causes a dere-
pression of A3B gene transcription and elevated A3B enzyme levels. This virus-induced mutator phenotype provides a mechanis-
tic explanation for A3B signature mutations observed in HPV-positive head/neck and cervical carcinomas and may also help to
account for the preferential cancer predisposition caused by high-risk HPV isolates.
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even APOBEC3 (A3) enzymes have broad and overlapping

functions in innate immunity by restricting viruses, trans-
posons, and other foreign DNA elements (reviewed in references 1
to 3). These proteins are part of a larger family that includes the
DNA deaminase AID and the RNA editing protein APOBECI,
which also have specialized functions in antibody diversification
and APOB mRNA editing, respectively, (reviewed in references 4
and 5). The defining activity of all members of this protein family
is single-stranded DNA cytosine-to-uracil (C-to-U) deamination,
as even APOBECI prefers DNA over RNA cytosines (6-8). The
current working model for HIV-1 restriction illustrates the over-
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lapping antiviral activities of these enzymes (reviewed in refer-
ences 1 to 3). In a Trojan horse-like mechanism, A3D, A3F, A3G,
and A3H (not A3A, A3B, or A3C) specifically package into bud-
ding viral particles, breach the viral core during maturation, and
deaminate viral cDNA cytosines during reverse transcription. The
resulting uracils template the addition of genomic-strand ade-
nines and account for the well-known phenomenon of viral
G-to-A hypermutation often observed in clinical isolates. A3D,
A3F, and A3H are responsible for mutations in GA-to-AA dinu-
cleotide contexts, whereas A3G accounts for mutations in GG-
to-AG contexts (illustrating the distinct local specificity of these
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enzymes for 5' TC and 5" CC substrates). Remarkably, a single
HIV-1 protein, Vif, is able to physically bind and counteract all
four of these restriction factors by recruiting an E3 ubiquitin ligase
complex to target them for proteasomal degradation. Based on
evidence for restriction and/or G-to-A mutation, other potentially
A3-susceptible human viruses include adeno-associated virus
(AAV), Epstein-Barr virus (EBV), hepatitis B virus (HBV), herpes
simplex virus 1 (HSV-1), human T-cell lymphotropic virus
(HTLV), and, most relevant to this study, human papillomavirus
(HPV) (9-13; reviewed in reference 14).

HPV is an ~8-kb double-stranded DNA virus that replicates in
the nucleus of mucosal or cutaneous keratinocytes (reviewed in
reference 15). Over 170 HPV types have been identified thus far,
and these can be classified into high- and low-risk groups based on
carcinogenic risk (16—18). HPV infection is necessary but not suf-
ficient for the development of cervical cancer, and it is also
strongly associated with other anogenital and a growing subset of
head/neck squamous cancers (19, 20). The viral oncoproteins E6
and E7 are invariably expressed in HPV-positive cancers (21, 22),
and the expression of these proteins from high-risk isolates is suf-
ficient to immortalize human keratinocytes (23, 24). The most
critical functions of E6 and E7, respectively, are thought to be
functional inactivation of tumor suppressors TP53 and RB (25—
28).

Recently, the enzymatic activity of A3B has been implicated as
a major source of mutagenesis in multiple human cancers (29—
37). A3B is a nuclear enzyme and the only detectable source of
single-stranded DNA cytosine deaminase activity in multiple can-
cer cell lines (29, 32). A3B mRNA levels are upregulated in many
cancer types, including those of the breast, bladder, cervix, lung,
head/neck, and ovary (29-32). The trinucleotide preference of
A3B (5" TCA and 5" TCG) is highly enriched in the mutation
spectrum of these cancer types (29-32). Moreover, positive corre-
lations are evident between A3B mRNA levels and somatic muta-
tion loads (30-32). Interestingly, head/neck and cervical cancers
are among the tumor types displaying the highest A3B expression
levels and cytosine mutational loads in A3B-preferred trinucle-
otide contexts (30, 31). Overall, a compelling case has been made
for A3B mutagenesis in multiple human cancers.

Given the fact that A3B is expressed at low levels or not at all in
most normal tissues (29, 30, 38), a major unresolved question is
how it becomes upregulated in cancer. Since A3B is a member of
the A3 family of innate immune effector proteins with demon-
strated antiviral activities (though not against HIV-1in T lympho-
cytes [39, 40]) and given the tendency of HPV-associated cancers
of the head/neck and cervix to be among the highest A3B-
impacted tumor types, here we test the hypothesis that HPV di-
rectly causes A3B mRNA upregulation. Moreover, because E6 is
invariably expressed in HPV-positive tumors (21, 22) and A3B
upregulation is associated with genetic inactivation of TP53 (29),
we tested the specific hypothesis that E6 is the primary trigger of
A3B upregulation in virus-positive tumor types.

RESULTS

HPV genomic DNA causes A3B upregulation. We first tested
whether high-risk HPV genomes could trigger A3B upregulation.
Normal immortalized keratinocytes (NIKS) were transfected with
full-length HPV16 or HPV18 genomes. Pools of transfectants
were selected and expanded to allow for establishment of the viral
genomes as nuclear plasmids and viral gene expression, and then

2 mBio mbio.asm.org

reverse transcription-quantitative PCR (RT-qPCR) was used to
quantify A3B mRNA levels. In comparison to a control vector-
transfected pool of NIKS established in parallel, A3B mRNA levels
were induced significantly by transfection of either HPV16 or
HPV18 genomes (Fig. 1A). HPV18 genomic DNA consistently
caused higher levels of A3B induction, routinely 5- to 10-fold
above the negative control.

To ask whether the effect of HPV genomic DNA is specific to
A3B or to amore general antiviral response, RT-qPCR assays were
used to quantify expression of all A3 family members (Fig. 1A).
Most of these genes, including A3A, A3D, A3H, AID, A1, A2, and
A4, were expressed at very low or undetectable levels and not
affected by HPV genomic DNA transfection. Two family mem-
bers, A3F and A3G, were expressed at similar levels in both control
and HPV-transfected NIKS. The only exception was A3C, which
showed an inverse relationship with higher levels in control-
transfected cells and lower levels in HPV-transfected cells, espe-
cially with HPV18 genomic DNA. Thus, A3B is the only DNA
deaminase family member upregulated at the level of transcrip-
tion in NIKS harboring HPV genomes. Since there are no com-
mercial antibodies for A3B, the current gold standard for detect-
ing A3B protein levels is by quantifying its functional activity (29,
32). Therefore, we performed single-stranded DNA deaminase
assays using protein extracts from the same cells as used for mRNA
quantification (Fig. 1B). As expected, protein extracts produced
from cells transfected with HPV18 had deaminase activity more
than five times higher than that of the transfection control (68%
versus 12% substrate deamination, respectively). These results
show that transfection of HPV18 genome results in an increase in
DNA deaminase activity that is proportional to the increase ob-
served for A3B mRNA.

HPYV E6 is sufficient for A3B upregulation. Considering that
the viral oncoproteins are invariably expressed in HPV-positive
tumors, we next tested for a possible role of E6 in A3B upregula-
tion. NIKS were transfected either with the full-length HPV18
genome or with a full-length HPV18 genome containing a stop
codon within the E6 open reading frame (HPV18 E6-STOP) (41).
As shown above, transfection with the wild-type HPV18 genome
resulted in a significant upregulation of A3B mRNA levels. How-
ever, most of this effect was lost upon transfection with the HPV18
genome containing an E6-STOP mutation, indicating that E6 is
required for induction of A3B (Fig. 2A). E6 mRNA levels were also
reduced likely due to nonsense-mediated decay (Fig. 2B). To re-
confirm the correlation between upregulation of A3B mRNA lev-
els and enzymatic activity, DNA deaminase assays were performed
using cell extracts. As expected, the DNA cytosine deaminase ac-
tivity induced by transfection with wild-type HPV18 genome was
ablated by inactivation of E6 (Fig. 2C).

To test if expression of E6 is sufficient to induce A3B upregu-
lation, we used a panel of transduced cell lines based on the
hTERT-immortalized keratinocyte cell line N/TERT-1. Each line
expressed a different E6 protein from a genus alpha high-risk type
(HPV16, -18,-33, -45, and -52), alow-risk type (HPV6b and -11),
or a type with no known cancer association (HPV2a and -57) (42,
43). Interestingly, only cells expressing high-risk E6 proteins
showed significant increases in A3B mRNA levels in comparison
to an empty vector control and E6 from low-risk and non-cancer-
associated HPV types (P < 0.01; Fig. 3).

We next asked if these results extended to primary keratino-
cytes. Early-passage human keratinocyte G5-Ep cells were trans-
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FIG 1 APOBEC3B upregulation by transfection of full-length HPV genomes. (A) Histograms reporting APOBEC family member mRNA levels in NIKS
transfected with a full-length HPV16 or HPV18 or a control plasmid (Cont.). Each histogram bar shows the mean expression level of each APOBEC family
member normalized to TBP (error bars report standard deviations from triplicate assays). (B) Image of the results of a representative DNA cytosine deaminase
assay performed with cell extracts from the same cells as in panel A. The single-stranded DNA substrate was treated with reaction buffer as a negative control (—)

and recombinant APOBEC3A as a positive control (+).

duced with the same panel of retroviruses expressing E6 from
different HPV types. As above, A3B upregulation was induced and
high-risk E6 proteins caused higher levels of induction (P < 0.05)
(see Fig. S1 in the supplemental material). Together, the data with
NIKS, N/TERT-1, and early-passage keratinocytes demonstrate
that E6 alone, especially from high-risk HPV types, is sufficient to
induce A3B upregulation.

E6 is required for endogenous A3B expression in HPV-
positive cancer cell lines. To test if endogenous E6 could contrib-
ute to upregulation of endogenous A3B, we depleted the HPV
early transcript from the HPV16-positive CaSki cell line. Two dif-
ferent small interfering RNAs (siRNAs) were used to interfere
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with E6 expression. In each instance, the level of E6 depletion was
proportional to the decrease in endogenous A3B mRNA levels
with an approximately 3-fold reduction in E6 mRNA levels and a
corresponding 3-fold reduction in A3B mRNA levels (Fig. 4).
These results indicate that endogenous E6 contributes to upregu-
lation of endogenous A3B.

Increased levels of A3B in HPV-positive head and neck tu-
mors. Finally, we asked if the observed relationship between HPV
status and A3B levels occurs in vivo. TCGA RNA sequencing
(RNA-seq) data from head and neck cancers with reported HPV
status were analyzed for A3B mRNA levels relative to the house-
keeping gene TBP. Using TCGA clinical data, we were able to
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FIG 2 HPV18 E6 is necessary for APOBEC3B upregulation. (A) A3B and (B) E6 mRNA levels in NIKS transfected with full-length HPV18 (WT), with HPV18
with a stop codon truncating the E6 open reading frame (E6-STOP), or with a control plasmid (Cont.). Each histogram bar shows the mean mRNA expression
level normalized to TBP (error bars report standard deviations from triplicate assays). (C) Image of the results of a representative DNA cytosine deaminase assay
performed with cell extracts from the same cells as in panels A and B. The single-stranded DNA substrate was treated with reaction buffer as a negative control

(—) and recombinant APOBEC3A as a positive control (+).

acquire RNA-seq counts for 23 of the HPV-positive patients and
69 of the HPV-negative patients. A3B mRNA levels were signifi-
cantly increased in HPV-positive compared to HPV-negative can-
cers (P = 0.0006) (Fig. 5A). Notably, a significant increase in A3B
expression was evident for the subset of HPV-positive patients
with no smoking history (n = 6) compared to corresponding
HPV-negative nonsmokers (n = 10; P = 0.0013).

DISCUSSION

This is the first study to demonstrate a mechanistic link between
HPV infection and upregulation of the DNA cytosine deaminase
A3B. Here we show that transfection of the HPV genome triggers
A3B upregulation and that E6 expression is required. A3B upregu-
lation is apparent at both mRNA and activity levels. We demon-
strate that high-risk E6 alone is sufficient for the induction of A3B
in keratinocytes and that continuous expression of E6 is required
to maintain higher A3B levels in HPV-positive cancer cell lines.
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FIG 3 Upregulation of APOBEC3B by expression of HPV E6. A3B mRNA
levels in N/TERT-1 cells transduced with HPV E6 from different high-risk
types (HPV16, -18, -33, -45, and -52), low-risk types (HPV6b and -11), or
noncancer types (HPV2a and -57) or with an empty vector (Cont.). Each
histogram bar shows the mean A3B expression level normalized to TBP (error
bars report standard deviations from triplicate assays). Low-risk/noncancer E6
proteins did not cause significant A3B upregulation compared to high-risk E6
proteins (P < 0.01; two-tailed Student’s t test).
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Finally, analyses of available TCGA data show that A3B levels are
higher in head/neck HPV-positive cancers than in HPV-negative
cancers. Taken together, these results suggest a model in which
high-risk HPV E6 induces A3B gene expression, leading to a mu-
tator phenotype and the observed cytosine mutation biases in
HPV-positive head/neck and cervical cancers.

A3B has been strongly implicated in mutagenesis in a wide
variety of human cancers (29-37). Given its relatively low expres-
sion level in almost all normal tissues (29, 30, 38), a major ques-
tion is how A3B upregulation occurs in cancer cells. As described
here, the E6 oncoprotein provides the first mechanistic link be-
tween viral infection and A3B-mediated cancer mutagenesis. Al-
though E6 has numerous functions, we propose a direct model in
which high-risk E6 proteins inactivate TP53 and cause derepres-
sion of A3B gene transcription. This mechanism has the potential
to explain A3B upregulation in HPV-positive cervical and head/
neck cancers (and possibly other cancers such as some bladder
carcinomas where HPV may also contribute [19, 20, 44]). This
connection between TP53 function and A3B upregulation is sup-
ported by our previous observation that genetic inactivation of
TP53 correlates positively with elevated A3B levels in breast cancer
cell lines and primary tumors (29). Therefore, a model involving
TP53 inactivation may apply more generally and contribute to
tumorigenesis on at least two distinct levels, by elevating levels of
DNA damage and mutation through A3B and by preventing the
DNA damage response and apoptosis. Additional studies are nec-
essary to distinguish between this model and other, less-direct
possibilities such as an association of E6 with cellular PDZ domain
proteins, a characteristic that is also shared by genus alpha high-
risk E6 proteins (45, 46). These E6 proteins have a PDZ-binding
domain that interacts with a number of PDZ targets with a wide
array of functions, including cell signaling, polarity determina-
tion, and cell proliferation (reviewed in references 47 and 48).

Although E6 and E7 are sufficient to immortalize primary ker-
atinocytes (23, 24), complete cellular transformation also requires
the introduction of additional activated oncogenes or extensive
periods of cell culture (49-51). These observations strongly sug-
gest that additional somatic mutations are required for transfor-
mation (reviewed in reference 52). We hypothesize that E6 expres-
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sion leads to elevated A3B levels and an increased, but still
stochastic, mutational process that leads eventually to transfor-
mation. The same deamination process may also explain genomic
instability phenotypes previously shown to be inducible by high-
risk E6 oncoproteins (reviewed in reference 52).

Our data provide evidence that HPV infection causes upregu-
lation of A3B, a phenomenon generally regarded as an innate an-
tiviral response and previously observed for HIV-1 infection of
primary T lymphocytes (1, 39, 40). This relationship prompts the
additional question of how HPV avoids restriction in the presence
of increased A3B activity and constitutive levels of other A3 pro-
teins. Despite the fact that overexpression studies have shown that
HPV can be mutated by APOBEC3 (A/C/H) (11, 53), clinical iso-
lates rarely show evidence for hypermutation (11), consistent with
an effective APOBEC3 counteraction or avoidance strategy oper-
ating in vivo. Based on precedents with other viruses (notably
lentiviruses and foamy viruses [reviewed in reference 1]), the an-
swer to this question may provide fundamental mechanistic in-
sights into the HPV replication and transmission cycle. Finally,
the robust cellular response to HPV infection characterized by
A3B upregulation strongly suggests that other viruses may also be
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FIG 5 APOBEC3B overexpression in HPV-positive head/neck tumors. (A)
A3B mRNA levels in HPV-positive and HPV-negative head/neck cancers
(HPV positive, n = 69; HPV negative, n = 23; P = 0.0006). (B) A3B mRNA
levels in the subset of patients in panel A reported as never-smokers (HPV
positive, n = 6; HPV negative, n = 10; P = 0.0013). Each histogram bar shows
the average A3B expression level normalized to TBP, with values derived from
TCGA RNA-seq data sets (error bars report the standard deviations).
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able to provoke similar responses. A mechanistic linkage to the
innate antiviral response may also help to explain A3B upregula-
tion and genomic mutagenesis observed in other cancers such as
those of the lung, bladder, and breast tissues.

MATERIALS AND METHODS

Cell lines. Normal immortal keratinocytes (NIKS; provided by Lynn
Allen-Hoffman [54]) were cultured in E medium supplemented with
24 pg/ml adenine, 8.4 ug/ml cholera toxin, 10 ng/ml epidermal growth
factor (EGF), 400 ng/ml hydrocortisone, 5 ug/ml insulin, 1% penicillin-
streptomycin, and 5% fetal bovine serum and grown in the presence of
mitomycin C-treated J2-3T3 feeder cells (55).

Human hTERT-immortalized keratinocytes (N/TERT-1) and G5-Ep
primary human foreskin keratinocytes (provided by James Rheinwald
[56-58]) were cultured in keratinocyte serum-free medium (K-SFM)
supplemented with 0.3 mM CaCl,, 0.2 ng/ml EGF, 25 pg/ml bovine pitu-
itary extract, and 1% penicillin-streptomycin.

HPYV genome transfections. NIKS were transfected with the HPV ge-
nome as described previously (41). Full-length HPV genomes from wild-
type HPV16 and HPV18 and from HPV18 containing a stop codon at E6
(E6-STOP) were excised from their bacterial vectors with either BamHI or
Ncol and recircularized with T4 DNA ligase (15 U/pul) at a concentration
of 8 ng/ul DNA. One day prior to transfection, 3 X 10° NIKS were plated
in low-Ca?* incomplete E medium in the absence of J2-3T3 feeders. Cells
were transfected with 3 ug of religated HPV and 1.2 ug of a plasmid
conferring neomycin resistance (pEGFP-N1) using Effectene (Qiagen).
HPV-negative controls were transfected with 1.2 g of pEGFP-NI1 alone.
The next day, cells were transferred to a 10-cm dish containing J2-3T3
feeders. Cells were selected for 4 days in the presence of G418 (125 ug/ml
for 2 days followed by 250 ug/ml for 2 days). Two to 3 weeks after trans-
fection, colonies were pooled and expanded. Cells were passaged on a
weekly basis and were grown until approximately 90% confluent prior to
harvesting of total RNA.

Retroviral transductions. N/TERT-1 and G5-Ep primary keratino-
cytes stably expressing HPV16 E6 have been described elsewhere (42, 43).
Cells were transduced with a panel of retroviruses (pMSCV-N-HA-IRES-
PURO) expressing E6 from genus alpha high-risk types (HPV16, -18, -33,
-45,and -52), from low-risk types (HPV6b and -11), or from types with no
known cancer association (HPV2a and -57) (42). As a negative control,
cells were transduced with the empty vector (pMSCV-N-HA-IRES-
PURO empty). Cells were selected with puromycin and grown to approx-
imately 30% confluence prior to harvesting of total RNA. Expression dif-
ferences were assessed using a two-tailed Student ¢ test.

siRNA transfections. CaSki cells were transfected using DharmaFECT
1 (Dharmacon/GE Life Sciences) as described elsewhere (59). siRNA du-
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plexes used were as follows: nontargeting siRNA (Dharmacon/GE Life
Sciences D-001810-01) and two custom-designed siRNAs targeting the
HPV16 early transcript. SIGLO red transfection indicator (Dharma-
con/GE Life Sciences D-0011630-02) was used to visualize efficient trans-
fection in a control well. Sequences of the custom siRNAs are as follows:
HPV16 #1, CAACAUUAGAACAGCAAUAUU, and HPV16 #2, GGACA
GAGCCCAUUACAAUUU. siRNAs were used at a final concentration of
40 nM. Cells were harvested at 72 h posttransfection.

Quantification of cellular and viral RNA. Reverse transcription-
quantitative PCR (RT-qPCR) was used to measure APOBEC and E6
mRNA levels as described previously (38). Total RNA was isolated using
the NucleoSpin RNA kit (Clontech). One microgram from each sample
was reverse transcribed with the cDNA Transcriptor reverse transcriptase
kit (Roche; catalog no. 03531287001). qPCR was performed using 2X
master mix (Roche; catalog no. 04887301001). Primer and probe sets
(Universal Probe Library; Roche) for HPV E6 were as follows: 16E6-F,
5'-GCACCAAAAGAGAACTGCAA; 16E6-R, 5 -TGTTTGCAGCTCTG
TGCATAA; UPL#115; 18E6-F, 5'-ACATTGGAAAAACTAACTAACAC
TGG; 18E6-R, 5'-TCGTTTTTCATTAAGGTGTCTAAGTTT; UPL#120.
For each condition, qPCRs were performed in triplicate, mRNA expres-
sion levels were normalized to those of the housekeeping gene TBP
mRNA, and the mean and standard deviation were reported.

DNA deaminase activity assays. Deamination reactions were per-
formed at 37°C for 2 h using 16.5 ul of cell extract, 4 pmol of oligonucle-
otide (5'-ATTATTATTATTCAAATGGATTTATTTATTTATTTATTTA
TTT-fluorescein), 0.025 U uracil DNA glycosylase (UDG), 2 ul 10X UDG
buffer (NEB), and 1.75 U RNase A. Reaction mixtures were treated with
100 mM NaOH at 95°C for 10 min to achieve complete backbone break-
age. Reaction mixtures were separated on 15% Tris-borate-EDTA (TBE)—
urea gels to separate substrate from product. Gels were scanned using a
Fujifilm FLA-7000 image reader, and densitometry was performed using
ImageQuant TL (GE Healthcare Life Science).

Head and neck cancer data retrieval and analyses. Head/neck cancer
data were acquired from The Cancer Genome Atlas (TCGA) (60), and
individuals were selected for analysis if HPV status was clear. RNA-seq
counts were used to quantify A3B mRNA expression levels and calculate
abundance relative to TBP. This metric facilitates cross-comparisons with
RT-qPCR data similarly normalized. Expression differences were assessed
using a two-tailed Student # test. Results were considered significant if the
calculated P value was under 0.05.
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