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Purpose: Diffusion magnetic resonance imaging (MRI) micro-
structure imaging provides a unique noninvasive probe into tissue
microstructure. The technique relies on biophysically motivated
mathematical models, relating microscopic tissue features to the
magnetic resonance (MR) signal. This work aims to determine
which compartment models of diffusion MRI are best at describ-
ing measurements from in vivo human brain white matter.
Methods: Recent work shows that three compartment mod-
els, designed to capture intra-axonal, extracellular, and iso-
tropically restricted diffusion, best explain multi-b-value data
sets from fixed rat corpus callosum. We extend this investiga-
tion to in vivo by using a live human subject on a clinical scan-
ner. The analysis compares models of one, two, and three
compartments and ranks their ability to explain the measured
data. We enhance the original methodology to further evaluate
the stability of the ranking.

Results: As with fixed tissue, three compartment models explain
the data best. However, a clearer hierarchical structure and sim-
pler models emerge. We also find that splitting the scanning into
shorter sessions has little effect on the ranking of models, and
that the results are broadly reproducible across sessions.
Conclusion: Three compartments are required to explain diffu-
sion MR measurements from in vivo corpus callosum, which
informs the choice of model for microstructure imaging applica-
tions in the brain. Magn Reson Med 72:1785-1792, 2014.
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INTRODUCTION

Diffusion MRI measures water diffusion in biological tis-
sue, which can be used to probe the microstructure. In
brain imaging, the standard model for water dispersion
in tissue is the diffusion tensor (DT) (1), which assumes
a trivariate Gaussian dispersion pattern. This assumption
of Gaussian diffusion oversimplifies the diffusive behav-
ior of water in complex media, and is known experimen-
tally to break down for relatively large b-values. DT
derived indices, such as mean diffusivity or fractional
anisotropy, can correlate with major tissue damage, e.g.,
in ischaemic brain injury (2), but lack sensitivity and
specificity to subtle pathological changes.
Multicompartment models enable the estimation of
more specific indices, such as axon diameter, density,
orientation, and permeability, and so potentially give
much greater insight into tissue architecture and sensi-
tivity to pathology. Stanisz et al. (3) pioneered the repre-
sentation of separate compartmental diffusive processes
in nervous tissue with a three compartment model con-
sisting of: ellipsoidally restricted intra-axonal water, ani-
sotropically  hindered  extracellular  water, and
isotropically restricted glial cell water. This was fol-
lowed by the Ball-Stick model (4), which is intended as
the simplest model that separates intra- and extra-axonal
water signals. Later, the composite hindered and
restricted model of diffusion (CHARMED) (5) adds com-
plexity by using cylinders with radii that follow a
Gamma distribution and anisotropic hindered compart-
ment for intra- and extra-cellular water, respectively.
The AxCaliber technique (6,7) uses CHARMED to esti-
mate axon diameter distribution and density. The
ActiveAx technique (8,9) uses single diameter cylindrical
restriction for intra-axonal water (simplifying the corre-
sponding compartment of CHARMED), anisotropically
hindered extracellular water, and a “Dot” compartment
(simplifying Stanisz’s isotropically restricted glial cell
compartment). Later versions of ActiveAx (10) also
accommodate dispersed orientations of the cylinders.
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To identify which model compartments are essential to
explain the data and parameters that are potentially estima-
ble from a particular experiment, Panagiotaki et al. (11) built
a taxonomy of one, two, and three compartment models,
including the models from (3-6,8). They compared the mod-
els to each other using the Bayesian Information Criterion
(BIC), ranking them in order of how well they explain data
acquired from the fixed white matter of rat corpus callosum
(CC). The study concluded that three compartment models
with non-zero axon diameter, an anisotropic extracellular
compartment, and an isotropic restriction model perform
best. However, these results do not directly inform in
vivo human imaging experiments because: (a) the tissue
sample is from a small animal; (b) the tissue is fixed,
which affects water diffusion significantly (12) and, there-
fore, different models may perform better; and (c) the
experiment used an animal scanner that can achieve
higher gradient strengths than human imaging systems.

This note extends the investigation in (11) to in vivo by
performing a similar experiment using a live human subject
on a clinical scanner. Specifically, we use a rich, massively
multishell high angular resolution diffusion imaging proto-
col, to probe a wide range of gradient orientations, diffu-
sion times, gradient pulse times, and gradient magnitudes.
We extend the analysis in (11) by using bootstrapping and
prediction of unseen data, to provide additional insight
into the stability and accuracy of the model ranking.

METHODS

This section describes the acquisition protocol for our
data and outlines the preprocessing we do to obtain a set
of measurements for fitting the models. It then details
the fitting procedure, the technique we use for compar-
ing the models and, lastly, the bootstrap procedure.

Data Acquisition and Preprocessing

The central aim in this acquisition is to cover as large a
portion of the measurement space as possible, while
retaining a usable signal-to-noise level. The full protocol
has 32 shells of 45-directions each. The set of directions
in each shell is a unique random rotation (to enhance
overall angular resolution) of the 45-direction Camino (13)
point set. Each shell has a unique combination of gradient
strength |G| = {55,60}mT/m, pulse width 6={6, 10, 15,
22} ms, pulse duration A={30, 50, 70, 90} ms, and has
three interwoven b=0 acquisitions. The b-values thus
range from 218 to 10,308 s/mm?, with effective diffusion
time (A—0/3) in the range 28-82 ms. We use a Pulsed-
Gradient Spin-Echo [24] sequence on a 3T Philips scan-
ner, with cardiac gating and 4 s repetition time. The echo
time varies between shells depending on the values of o
and A and is kept to a minimum to maximize signal.
There are nine 4 mm thick sagittal slices, acquired with a
reduced field-of-view using a ZOnally-magnified Oblique
Multislice (ZOOM) Echo Planar Imaging (EPI) technique
with outer volume supression (14). The field-of-view is
centered on the midsagittal slice of the CC, where we
assume that coherently oriented CC fibers are perpendicu-
lar to the image plane. The image size is 64 x 64 and the
in-plane resolution is 2 x 2 mm?
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The study was approved by the local ethics committee,
and written informed consent was obtained from the partici-
pant. We acquire the full protocol in a 31-year-old healthy
subject in two different ways. The first full data set is
acquired in two separate nonstop sessions, each lasting
about 4 h 30 min; we refer to this as the 2 x 4 h data set. (We
used dynamic stabilization facility provided by the scanner,
which is designed for long scans to correct for field drifts
during the image acquisition. We visually inspected the
images and did not observe any obvious shifts from gradient
heating.) We then repeat the protocol in eight sessions, each
lasting 1 h 15 min; we call this the 8 x 1 h data set.

Voxel Selection

We carefully manually registered the sagittal slices,
where the in-plane correction was usually of order 1-3 vox-
els, and the quality of registration was confirmed visually
for each individual image. All nondiffusion-weighted
images are registered to the first unweighted image of the
b=1202 s/mm* shell; the corresponding transformations
are then applied to the fifteen diffusion weighted images
that follow each b=0 acquisition, as ordered in the scan-
ning protocol. In this b=1202s/mm?® reference shell, we
manually segment the subject’s CC, and then fit the DT to
select a set of voxels with coherently oriented fibers. In par-
ticular, all voxels with FA > 0.6 and principal eigenvector
within # = 2° of the assumed fiber direction (perpendicular
to the image plane, i.e., left-right in the brain) are retained.
In the 2 x 4 h data set, there are 24 voxels that satisfy the
imposed criteria, all belonging to the two slices closest to
the midsagittal plane. A similar procedure with n=5°
leaves 66 voxels and = 10° which leaves 99 voxels. In the
8 x 1 h data set, 60, 101, and 166 voxels remain, respec-
tively, sampling the CC rather more evenly; the same
thresholding procedure leads to a slightly different set of
voxels because of noise, misalignments, etc. To account for
different echo time affecting different shells, the signal in
each shell is normalised by the average of the three
unweighted measurements (b= 0) with the same echo time.

As in (11), we create a single data set for each n=2°,
5°, and 10° by averaging over the voxels selected above.
Figure 1 shows the signal from the 2 x 4 h data set with
n=2° and confirms the rich coverage of the measurement
space the protocol provides. The data sets contain
1356 = 32*(3 + 45) measurements each.

Model Description

Using the taxonomy of (11), as described in Figure 2,
the extracellular compartment, “hindered” in 3D, can
be: a Tensor (full DT), a Zeppelin (cylindrically sym-
metric DT), or a Ball (isotropic DT). The intracellular
compartment, “restricted” in 2D but free in the other
direction (anisotropic restriction), can be: a Stick (a
spatially oriented line), a Cylinder (a stick with non-
zero radius), or GDR-cylinders or GDRcylinders (Cylin-
ders with a Gamma distribution of radii; the distribu-
tion is characterized by shape parameter x and scale
parameter 0, where 0 is the distribution’s mean, and «
02 gives its variance). A special case is the Bizeppelin,
which combines two cylindrically symmetric tensors (a
3D biexponential model). In three compartment models,
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+ b= 577 (5=10 1A=301G=55)-—Q3
@ b= 687 (5=10 14=301G=60)-—Q3

% b=1,010 (5=10 IA=501G=55)--Q4
O b=1,202 (5=10 1A=501G=60)—Q4
b= 1,443 (5=10 IA=701G=55)--Q1
b= 1,718 (5=10 1A=701G=60)—Q1
b= 1,876 (5=10 1A=901G=55)—Q2
b= 2,233 (5=10 1A=901G=60)--Q2
b= 1,218 (3=15 1A=301G=55)—Q2
b= 1,449 (5=15 [A=301G=60)—Q2
b= 2,192 (5=15 IA=501G=56)--Q1
b= 2,608 (3=15 1A=501G=60)—-Q1
b= 3,166 (5=15 IA=701G=55)—Q4
b= 3,768 (3=15 1A=701G=60)--Q4
b= 4,140 (5=15 1A=901G=55)--Q3
b= 4,927 (3=15 1A=901G=60)—Q3
b= 2,375 (3=22 1A=301G=55)—Q3
b= 2,826 (3=22 1A=301G=60)—Q3
b= 4,470 (5=22 1A=501G=55)——Q4
b= 5,320 (3=22 1A=501G=60)—Q4
b= 6,566 (=22 1A=701G=55)—Q2
O b=7,814 (5=22 1A=701G=60)—Q2
4 p=8,661 (5=22 1A=901G=55)—Q1
“ p=10,308 (5=22 [A=901G=60)--Q1

the isotropically restricted third compartment can be: a
Sphere (where diffusion is restricted to within a sphere of
non-zero radius), a Dot (zero radius Sphere), Astrosticks
(Sticks isotropically distributed in 3D), or Astrocylinders
(Cylinders isotropically distributed in 3D).

Model Fitting

We fit the models described above to each data set via
the open source Camino toolkit (13). As in (11), the fit-
ting uses the Levenberg—Marquardt algorithm with a per-
turbed starting point initialized from less complex
models and same parameter constraints. Each model is
fitted 250 times, and the final parameters are those that
produce the minimum objective function.
The objective function, the Least Squares Error

i~ /S 4% (]

N
(S
LSE = ) 1: -
=

uses an offset-Gaussian noise model, where N is the
number of measurements, S; is the ith measured signal,
S; its prediction from the model; 6=0.05 is the noise
standard deviation, which we estimate a priori from the
b=0 signals. This objective function accounts for the
Rician noise inherent in the MRI data (15,16) and is sim-
pler and more numerically stable than a full Rician log-

likelihood objective function.

Model Selection

The fitting metric LSE does not account for model com-
plexity (as the most complex model would always win),

05 06 07 08 09 1
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so it cannot be used to indicate performance. The model
selection mechanism we use is the Bayesian Information
Criterion (17)

BIC = —2log (L) + Klog (N) [2]

where L is the likelihood of model parameters given the
data and K is the number of free parameters. The BIC
accounts for complexity by adding a penalty term to the

Intracellular Extracellular Other
Stick Ball. - Astrosticks ||
cyllnd\ Zeppelin Astrocylinders
GDRCylinders

FIG. 2. Model compartments, as designed to capture intracellular
diffusion (left), extracellular diffusion (middle), and diffusion in
other media (right).
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chi-squared measure (adapted for Rician noise). We eval-
uate the BIC for each fitted model and then rank all
models from lowest BIC (best) to highest (worst).

Bootstrapping

We use classical bootstrap (18) to analyze the stability of
the BIC ranking. Each bootstrap data set comes from a
random selection in each shell of the same number of
data points, with replacement. For each 2 x 4 h and 8 x
1 h data set, we construct 100 bootstrap data sets; we
then obtain 100 BIC rankings after fitting the models to
each data set 50 times and picking the best parameter
estimates. We construct positional variance diagrams,
which give the number of times out of 100 that each
model appears in each position in the ranking.

Cross-Validation: Predicting Unseen Data

Cross-validation provides a complementary model selec-
tion to confirm the findings from the BIC. We use four-
fold cross-validation and divide the data set into four
quarters as shown in Figure 1. Each quarter is constructed
by dividing all the shells of each ¢ into two groups of low
A (30 and 50 ms) and high A (70 and 90 ms). Then, we ran-
domly assign one from each group to each quarter; shells
with |G| = {55,60}mT/m go together.

The cross-validation then proceeds as follows: we fit the
models to data from three quarters of the protocol’s data;
then we synthesise data for the remaining quarter of the
protocol, using the best fit parameter estimates, and evalu-
ate the LSE in Eq. [1] compared to measured signal.

RESULTS

Table 1 shows some of the models ranked top-to-bottom
by their BIC with selected parameter estimates for the
=2° 2 x 4 h data set (Supporting Information Tables S1
and S2 gives the complete model rankings and parameter
estimates). Several distinct groups of models emerge: (i)
three compartment models with anisotropic extracellular
compartment (Zeppelin/Tensor) and Dot/Sphere third
compartment, which produce the best fit (and lowest
BIC); (ii) three compartment models with anisotropic
extracellular compartment and Astrostick/Astrocylinder
third compartment, which are consistently worse than
Dot/Sphere equivalents, but better than all other models;
and (iii) three compartment models with isotropic extrac-
ellular compartment and all two compartment models.
The DT comes below group (iii). The performance boun-
daries between the groups are very clear. Within the
groups, as expected, the LSE consistently reduces as the
complexity increases, and the BIC ranking rewards sim-
pler compartments, but there is little to choose between
the models in group (i). Figure 3 illustrates the fit of
some of the models to the data. The models are fitted to a
total of 32 shells, but we select only four to illustrate vis-
ually where the models over/under-estimate the signal.
While the fitting is not perfect even for the best model of
the ranking, the figure reflects clearly the model ranking
in the signal prediction.

Figure 4 shows the positional variance diagrams of
model ranking over 100 bootstrap samples from both the

Table 1

Various Model Parameters from Data Sets, 2 x 4 h and 8 x 1 h, with Different Angular Thresholds of 2 , 5 , and 10 (see Subsection Voxel Selection)
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FIG. 3. Synthesised signal, shown as dotted line, using the best parameter estimates from six representative models. This is superim-
posed on raw data, marked with red/blue colors; for clarity, we only show four shells across the sampled range of b-values. [Color fig-
ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

2 x 4 h and 8 x 1 h n=2° data sets. The group structure
of the ranking is very consistent over the bootstraps,
although we see some variance of model positions
within the groups; the ranking is also consistent between
the 2 x 4 h and 8 x 1 h data sets, though some differ-
ence is expected, arising from minor imperfections in
the registration of images in such large data sets. The
group structure is also similar for the #=5° and 10° data
sets (results not shown). Differences in the number of
voxels averaged in these datasets have little effect on the
rankings. The plots on the right-hand side of Figure 4
show results from cross-validation. The same group
structure emerges with on average group (i) performing
best, followed by group (ii), and more erratic perform-
ance in group (iii). Little distinguishes models within
group (i) or group (ii).

The parameter estimates in Table 1 (and other Support-
ing Information Tables S1 and S2) show strong consis-
tency within the groups but more variation between
groups. In group (i), the intracellular volume fraction is
unexpectedly low and about half of the extracellular vol-
ume fraction. One possible explanation is a significant
free water contribution (6,7) which we do not model
explicitly, and so gets absorbed in the extracellular com-
ponent. Significant within-voxel fiber dispersion
(10,19,20) could also cause this observation, as group (ii),
which to some extent model fiber dispersion, show higher
intracellular and third compartment volume fractions.

In hindered compartments, the axial diffusivities in
groups (i) and (ii) are consistently around 2 x 10~% m?/s,
and the radial diffusivities are around 0.7 x 10~° m?/s,
in agreement with previous reports (21). The two radial
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BIC Ranked Models
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FIG. 4. Left: Positional variance diagrams over 100 bootstraps from the 2 x 4 h (top-left matrix) and 8 x 1 h (bottom-left) 2° data sets.
The frequency of x-axis ranking is given by the shade of gray; e.g., the Tensor comes out last in all 100 Bootstrap samples of 8 x 1 h.
Right: The accuracy of predicting unseen quarters of the protocol using parameters fitted to data from the remaining three quarters.
Each point is the LSE between the synthesized and measured signal. The top-bottom BIC ranking of models shows the color-coded
group clusters, starting with three compartment models with anisotropic extracellular compartment and Dot/Sphere third compartment
(in red), followed by those with Astrostick/Astrocylinder third compartment (green); next, three compartment models with isotropic
extracellular compartment and all two compartment models (blue) go before DT. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

diffusivities of Tensor models are close, making Tensor
and Zeppelin models similar, as we might expect for
coherently oriented fibers in the CC, causing the BIC
generally to prefer the simpler Zeppelin models.

Cylinder models in group (i) consistently provide axon
diameter index values of around 5 pm, which is consist-
ent with axon diameter estimates from the CC in (6,9).
Other models show more erratic estimates of radius
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which arise because the models fit the data less well,
and so use the parameter to explain effects they do not
capture. The GDR-cylinders models’ shape parameter i
often hits the upper bound constrained in the fitting to
10. At this value of x, the Gamma distribution is close to
Gaussian shape and is highly peaked about the mean,
making the GDR-cylinders very similar to the Cylinder
model. BIG, thus, prefers the simpler Cylinder model.
The Sphere and Astrocylinder radius estimate is usually
around 0.1 pm, which makes them very similar to the
simpler Dot and Astrosticks models, respectively, which
the BIC generally prefers.

We also compared (see Supporting Information) model
parameter estimates from the different data sets, 2 x 4 h
and 8 x 1 h, and different #. The CC voxels selected for
averaging were different in each data set (see subsection
“Voxel Selection”), producing some variation. In particu-
lar, the axon radius index was higher in the 8 x 1 h data
set, which we expect because it has a greater contribu-
tion from the midbody where axons are larger. However,
the estimates obtained from multiple sessions (8 x 1 h
data) were broadly in line with those of the two-session
data (2 x 4 h data).

As 5 increased, the LSE went down because the num-
ber of voxels being averaged increased, which increases
the SNR. We saw a slight increase in the radius estimate
and decrease in axial diffusivity as dispersion increased,
but the effects were minor.

DISCUSSION

This note reports a similar experiment to Panagiotaki et al.
(11) but using in vivo human data rather than fixed rat tis-
sue. We also extended the analysis to determine ranking
stability with respect to noise, protocol, and model selec-
tion technique. We sampled a wide range of b-values and
diffusion times achievable on a clinical system and also
used a much higher angular resolution sampling than
(11). The overall ranking we obtain is similar to previous
observations from fixed tissue (11), with a few differences.
Though there are minor differences due to intersessional
variability and subsequent image registration, the similar-
ity between 2 x 4 h and 8 x 1 h data sets is important
because it means we can construct data sets for this kind
of experiment from multiple short sessions, which are
much more comfortable for the participant. The additional
steps in the analysis reveal a group structure to the model
ranking and suggest that the models in group (i) perform
similarly well in explaining the full range of Pulsed-
Gradient Spin-Echo signals acquirable from the human
brain on current clinical systems. The finding supports
methods like (6—8) which estimate axon density and diam-
eter using these kinds of models.

The experiment here uses only data from the CC,
which is relatively homogeneous, with little fiber disper-
sion, crossing or cerebrospinal fluid contamination.
However, these effects may still influence the measure-
ment to some extent. Moreover, the greater angular
threshold increases fiber dispersion, which is reflected
in the fitting and parameter estimates, and which none
of the models we test here are designed to capture. The
intention here is to start with the simplest geometry
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before performing a similar analysis in more complex
regions. Even in the CC, more sophisticated models may
outperform the limited set we study here; models that
explicitly cater for fiber features such as dispersion/
crossing (10,19,22), cerebrospinal fluid pool as in (7,10),
or permeability (3), will be the focus of further work, as
will the exploration of other white matter regions.

Another limitation of this study is that the results pre-
sented in this article were obtained from just one subject.
It is important to note, therefore, that we are unable to
say whether the same results would be obtained in
another participant, or from another scanning session.
Future work will also explore improvements to the fit-
ting procedure, for example, to account better for the
varying noise levels across shells with different echo
time, although we expect these to have only minor
effects on the results.

The protocol we use here is designed specifically for
model selection rather than large scale application. It is
true that reduced data sets will favor simpler models and
possibly larger data sets will support even more complex
models. Here we sampled as widely as possible the mea-
surement space to get the best idea of which model
explains better the entire measurement space. Once
appropriate models have been identified, experiment
design techniques such as (23) can determine economical
protocols for widespread use. We emphasize that the
choice of models our analysis suggests is not appropriate
for existing sparse data sets such as off-the-shelf single
shell high angular resolution diffusion imaging data,
which only support simple models. Rather, these results
inform the choice of protocol for future in vivo micro-
structure imaging once we identify the right model.
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