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Abstract

This brief presents a novel control strategy for a powered prosthetic ankle based on a biomimetic 

virtual constraint. We first derive a kinematic constraint for the “effective shape” of the human 

ankle-foot complex during locomotion. This shape characterizes ankle motion as a function of the 

Center of Pressure (COP)–the point on the foot sole where the resultant ground reaction force is 

imparted. Since the COP moves monotonically from heel to toe during steady walking, we adopt 

the COP as a mechanical representation of the gait cycle phase in an autonomous feedback 

controller. We show that our kinematic constraint can be enforced as a virtual constraint by an 

output linearizing controller that uses only feedback available to sensors onboard a prosthetic leg. 

Using simulations of a passive walking model with feet, we show that this novel controller exactly 

enforces the desired effective shape whereas a standard impedance (i.e., proportional-derivative) 

controller cannot. This work provides a single, biomimetic control law for the entire single-

support period during robot-assisted locomotion.

I. Introduction

Estimates indicate that by 2050 the United States will incur a two-fold increase in the 

incidence of limb loss, due in large part to vascular disease [1]. High-performance 

prostheses could significantly improve the quality of life for lower-limb amputees, whose 

ambulation is slower, less stable, and requires more energy than that of able-bodied persons 

[2], [3].

Modern prosthetic legs have mechanically passive joints that attempt to mimic human joint 

impedance (i.e., stiffness and viscosity) [4], [5]. This approach fails to replicate the ability of 

human muscles to generate large amounts of mechanical power, which is why transfemoral 

amputees expend excessive amounts of energy climbing inclines and stairs. The recent 
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advent of mechanically powered legs (e.g., [6]–[10]) presents new opportunities, as well as 

challenges, for prosthetic control systems. The Vanderbilt legs [7], [8] extend the traditional 

impedance control paradigm by changing proportional-derivative (PD) gains according to 

discretized phases of the gait cycle. The iWalk ankle [9] also uses a finite state machine but 

trades the simplicity of impedance models for the biomimetic behavior of muscle reflex 

models. These increasingly complex prostheses are limited by the need to manually tune 

multiple control models for each user and task, and their time-varying strategies are not 

necessarily robust to external perturbations that push joint kinematics (i.e., angles and 

velocities) forward or backward in the gait cycle.

These limitations could potentially be addressed by a unifying control model based on a 

mechanical representation of the gait cycle phase (i.e., the location in an oscillation), which 

could be continuously sensed by a prosthesis to match the body’s progression through the 

cycle. The prosthetic ankle SPARKy [10] is the first prosthetic control system to employ 

phase-based control by tracking able-bodied human data (e.g., ankle angles from level 

ground walking) as a function of the shank angle and velocity. However, without defining a 

general constraint function this control strategy does not readily generalize to arbitrary users 

or tasks.

Feedback controllers for autonomous walking robots have been developed that produce joint 

torques to “virtually” enforce kinematic constraints [11]–[16], which define desired joint 

patterns as functions of a mechanical phase variable (e.g., the stance leg angle or hip 

position). This approach has proven successful in experimental bipedal robots such as 

RABBIT [14] and MABEL [15]. In particular, using feedback control to linearize the output 

dynamics associated with the constraints enables more accurate tracking and faster walking 

than is possible with PD control [15]. A biomimetic virtual constraint and phase variable 

could make prosthetic legs more robust and easily tuned than with current prosthetic control 

approaches.

Recent evidence suggests that the progression of human joint patterns during locomotion is 

coupled with the heel-to-toe movement of the center of pressure (COP)–the point on the foot 

sole where the resultant ground reaction force is imparted. Hansen et al. have shown that 

during human walking, geometric relationships exist between stance leg joints and the COP 

[17]–[20]. Viewed from a shank-based reference frame, the ankle and foot together produce 

a COP trajectory resembling a circular rocker shape (coined “effective shape”), which is 

invariant over walking speeds, heel heights, and body weights. The fact that the COP moves 

monotonically from heel to toe during steady gait [21] suggests that the COP can serve as 

the phase variable of a virtual constraint. However, without the availability of state feedback 

from the human body, it is unclear how a prosthetic control system can linearize its output 

dynamics to enforce a virtual constraint.

The practical contributions of this paper are two-fold: (i) we propose the COP as a phase 

variable and show that the effective shape between the COP and ankle joint corresponds to a 

simple kinematic constraint, which (ii) can be enforced as a virtual constraint by an output 

linearizing controller using feedback available to sensors onboard a prosthetic leg. The 

theoretical contribution is then the derivation of an output linearizing control law for a 
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dynamical system subject to external forces and holonomic constraints. This controller 

drives ankle patterns as a function of the COP, a novel choice of phase variable that unifies 

the single-support cycle in a prosthetic control system. We simulate a biped model to show 

that stable gaits can be achieved for a range of effective shapes enforced by output 

linearization, whereas an impedance controller cannot exactly enforce these shapes.

II. Leg Model

In this paper we use a simple model without knees to design an ankle controller and to 

simulate walking. The human ankle merely lifts the foot to facilitate ground clearance 

during the swing period, so in this paper we focus on the control of a prosthetic ankle 

bearing weight during stance. The planar biped of Fig. 1 (left) has a hip joint and ankle 

joints with constant-curvature rocker feet to approximate the deformation of human feet 

during walking [22]. We consider the stance leg (shown in solid gray) to be a prosthesis, 

which connects to the body (dashed black) at the hip. We will separately model the stance 

leg for the control derivation in Section III and return to the full biped model for simulations 

in Section IV.

We model the prosthesis by first describing the continuous dynamics of its kinematic chain 

with respect to the COP. We then derive a kinematic constraint that forces the COP to move 

along the rocker foot in the continuous dynamics. Note that this constraint is different than 

the effective shape, which depends on both the foot curvature and ankle motion. We will 

model and control the effective shape in Section III.

A. Dynamics

The configuration of the stance leg is given by q = (x, y, θs)T, where x, y are the Cartesian 

coordinates of the ankle/heel center (for simplicity the ankle is defined at the heel) with 

respect to the COP (defined at the origin), and θs is the leg angle defined with respect to 

vertical. The state of the dynamical system is given by vector z = (qT, q̇T)T, where q̇ contains 

the joint velocities. During the continuous single-support period, the state trajectory evolves 

according to a differential equation of the form

(1)

where M is the inertia/mass matrix, C is the matrix of Coriolis/centrifugal terms, N is the 

vector of gravitational torques, A is the constraint vector for the rocker foot (modeling 

inherent foot compliance), and λ is the Lagrange multiplier providing the forces to enforce 

the foot constraint. The vector of external forces τ = Bu + JT (q)F is composed of actuator 

torques and interaction forces with the body, respectively. Ankle actuation is provided by 

scalar torque input u and mapped into the leg’s coordinate system by B = [0, 0, 1]T. We now 

describe force F and Jacobian J.

B. Interaction Forces

The interaction force F ∈ ℝ3 at the socket (i.e., the connection between the prosthesis and 

the body) is composed of linear forces in the plane and the moment about the normal axis. 
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This force vector at the end-point of the kinematic chain is mapped to torques and forces at 

the leg joints by the Jacobian matrix (cf. [23])

(2)

where ℓ is the leg length. Note that force F can be measured by a 3-axis load cell attached to 

the socket (located at the hip in our model). We now show how to model the rocker foot 

constraint in the context of equation (1).

C. Modeling the Foot

We model the rocker foot by constraining the heel point (x, y) to an arc that has radius Rf 

and intersects the COP, which we have defined at the origin. The center of rotation Pf is 

defined in a moving reference frame such that the vector between Pf and the COP is always 

normal to the ground with radius ‖Pf − COP‖ = Rf. This constraint is given in model 

coordinates by k(q) = 0, where

for , slope angle γ, and distance  between the COP and the 

heel. Following the method in [23], we derive the constraint vector A = ∇qk and Lagrange 

multiplier λ = λ̂ + λ̃u + λ̄F, where

(3)

Recall that this rocking constraint only pertains to the foot, whereas the effective shape 

characterizes the pendular trajectory of the stance leg about the ankle-foot complex. We now 

use this leg model to derive a kinematic constraint and controller that mimics the human 

effective shape.

III. Effective Shape Control

We wish to design a prosthetic control system that mimics the effective shape of the 

biological ankle-foot complex during various locomotor tasks [20]. This shape characterizes 

how the ankle moves as the COP travels from heel to toe. We now derive the kinematic 

constraint of the effective shape and two possible controllers for enforcing a desired shape.

A. Kinematic Constraint

The effective shape is the COP trajectory mapped into a shank-based reference frame (axes 

x̂s, ŷs in Fig. 1). Able-bodied humans have effective shapes specific to activities such as 

walking or stationary swaying [20], and each shape can be characterized by the curvature of 

the COP trajectory with respect to a point Ps = (Xs, Ys)T attached to the shank reference 

frame (Fig. 1). This can be expressed as the coordinate-free distance relationship
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(4)

where the radius of curvature Rs is a function of the COP. At heel strike the COP is co-linear 

with our model’s stance leg and condition (4) is necessarily satisfied, so the ys-component of 

Ps is given by .

The x-component of the COP moves monotonically from heel to toe during steady walking; 

this can be measured in a variety of ways, as discussed in Section V. The COP can therefore 

serve as the phase variable of a virtual constraint corresponding to (4). We can express this 

constraint in the COP reference frame (i.e., global axes x̂, ŷ in Fig. 1), for which the 

effective center of rotation is given by , where S(θs) is the 

standard rotation matrix parameterized by angle θs. Equation (4) is then given in our model 

coordinates by the kinematic constraint h(q) = 0 for

(5)

This kinematic constraint represents the desired behavior of the prosthetic ankle, which we 

can attempt to enforce in two ways: impedance control or output linearizing control.

B. Impedance Control

Assume that h(q) = 0 can be solved for the leg angle θs = ϕ(x, y), where map ϕ depends on 

function Rs and constant Ps. (This assumption is valid for walking tasks, where Rs is a 

constant.) The COP could then drive the progression of ankle kinematics with the PD 

controller

(6)

where e ≔ θs − ϕ(x, y) is the tracking error.

This linear control law will not exactly enforce the desired constraint (5) due to 

nonlinearities in the system dynamics. For this purpose we now derive a model-based 

control law, which will not require us to explicitly solve (5) for θs.

C. Output Linearizing Control

We wish to design a model-based control law for a prosthetic ankle that enforces (5) as a 

virtual constraint. We cannot expect to have a good model of the human user or state 

measurements from intact joints in a clinically viable system. We therefore use only our 

model of the prosthetic leg and feedback provided by onboard sensors, specifically state z = 

(qT, q̇T)T and interaction force F.

The coupled dynamics (1) of the weight-bearing prosthesis can be given in a modified 

control-affine form (cf. [24]):

(7)
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where the vector fields are defined as

(8)

Letting output ξ ≔ h(z), our goal is to define a feedback control law for u that drives ξ to 

zero in system (7). We first examine the output dynamics of the above system:

(9)

where the Lie derivative Lfh ≔ (∇zh) f characterizes the change of h along flows of vector 

field f [24], and it is easily shown that Lgh = 0 and Ljh = 0 for all z. Noting that no 

acceleration or control terms appear in Lfh, output ξ has relative degree greater than one (cf. 

[24]) and we must take another time-derivative to expose the control input u:

(10)

Because the Lagrange multiplier defined in (3) explicitly depends on the external joint 

torques, so does the second Lie derivative , where

(11)

Note that vector A depends on foot radius Rf, which reflects the compliance of the foot and 

can be measured a priori [19].

Grouping the control input terms from (10), we can solve for the control law that inverts the 

output dynamics:

(12)

where the denominator  only depends on q and is strictly greater than zero 

for feasible walking configurations. We then choose auxiliary input v to render the output 

dynamics linear and exponentially stable:

(13)

for Kp, Kd > 0. Given sensor measurements of z and F and actuation of u, we can obtain the 

closed-loop output dynamics (13), which imply ξ(t) → 0 exponentially fast as t → ∞ for 

ξ(0) ≠ 0. During steady-state walking controller (12) will maintain zero output error, so 

these PD gains will only serve to correct errors resulting from perturbations. We now 

present the full biped model for simulations with these controllers.
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IV. Biped Model and Simulations

Now that we have designed two possible controllers for the prosthetic leg, we wish to study 

both during simulated walking with the full biped model of Fig. 1 (left). This requires us to 

consider the coupled dynamics of the body and the controlled prosthesis. In order to 

generate stable walking patterns for the entire biped, we will exploit the existence of passive 

gaits.

Passive walking harnesses momentum and gravity to propel forward motion without any 

control or actuation whatsoever [25], [26]. Passive gaits arise on declined surfaces when the 

potential energy converted into kinetic energy during each step cycle replenishes the energy 

dissipated at impact events. This behavior reflects certain characteristics of human walking, 

such as ballistic motion during early stance [27] and energetic efficiency down slopes 

[28].We will start with an uncontrolled, passive gait in the full biped model and augment the 

stance leg with each of our prosthetic controllers.

A. Biped Model

For simplicity we do not distinguish between legs from step to step (as in the case of a 

bilateral amputee). Each leg in this symmetrical model employs the same control law during 

single support with mass m, moment of inertia Irot, and length ℓ. We do not model the swing 

ankle because the foot is assumed to be massless.

The configuration vector of the full biped is denoted by q̆ = (qT, θns)T, where θns is the hip 

(i.e., non-stance) angle. The biped’s dynamics during single support are governed by a 

differential equation of the form (1) until the swing foot contacts the ground, which initiates 

the transition into the next step cycle. We define a function Hγ(q̆) to give the height of the 

heel of the swing foot above ground with slope angle γ, so heel strike occurs when the state 

trajectory intersects the switching surface G = {q̆ | Hγ(q̆) = 0}. The subsequent double-

support transition is modeled as an instantaneous impact event with a perfectly plastic 

(inelastic) collision as in [12]. The state trajectory is therefore subjected to the discontinuous 

impact map Δ (which also changes the values of θs, θns to re-label the stance/swing legs) in 

the hybrid dynamical system:

where superscripts +/− respectively denote the post- and pre-impact states, τ̆ = [BT, 0]T u 

(i.e., the swing leg moves passively), and other accented terms associated with the full 

model are defined as in Section II.

Note that during heel contact (x = y = 0) we use an alternate constraint matrix A that fixes 

the heel position to the ground (i.e., acts as a point foot since the rocker does not go beyond 

the heel). We switch back to the rocker constraint (3) when the unconstrained accelerations 

point in the positive x-direction. Control torques are zeroed during heel contact because 

virtual constraint (5) is automatically satisfied.
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Walking gaits correspond to cyclic solutions of this hybrid system, which we will analyze to 

determine gait stability.

B. Hybrid Solutions

Let  be the state vector for the full biped. Walking gaits correspond to 

solution curves z̆(t) of the hybrid system such that z̆(t) = z̆(t + T) for all t ≥ 0 and some 

minimal T > 0. These solutions define isolated orbits in state space known as hybrid limit 

cycles, which correspond to equilibria of the Poincaré map P : G → G. This return map 

represents a hybrid dynamical system as a discrete system between impact events, sending 

state z̆j ∈ G ahead one step to z̆j+1 = P(z̆j). A periodic solution z̆(t) then has a fixed point z̆* = 

P(z̆*).

We verify stability about a fixed point z̆* by approximating the linearized map ∇z̆P(z̆*) 

through a perturbation analysis in simulation [25], [26]. The linearized discrete system is 

exponentially stable if the eigenvalues of ∇z̆P(z̆*) are within the unit circle, by which we 

can infer local stability of the hybrid limit cycle. We now simulate the biped model with our 

controllers to generate walking gaits and verify their stability.

C. Simulation Parameters

During a normal walking task the radius of curvature Rs is constant (i.e., the effective shape 

is a circular arc as in Fig. 1, right). Since passive gaits typically involve short steps, we will 

produce natural step lengths by adopting a large effective radius of Rs = 0.45 m. The 

effective center of rotation  is located behind the shank with Xs = 5 

mm (for walking in the negative x-direction) based on the human studies of [17]. In order to 

compare the gait characteristics resulting from passive walking, impedance controller (6), 

and output linearizing controller (12), we now describe the initial passive gait and define our 

control gains.

1. Passive Gait: We adopt the model parameters of Table I based on adult (male) 

mean values reported by [29] with trunk masses grouped at the hip. The rocker foot 

radius is set to three-tenths of the leg length ℓ, which is typical of human foot 

compliance [22]. Given these parameters we can find a passive walking gait (u = 0) 

on slope γ = 0.0075 rad using the methods described in [26]. We will use this 

underlying gait to study the effect of our prosthetic ankle controllers.

2. Impedance Control: For control law (6) we adopt Kp = 6(mh + 2m) Nm/rad based 

on normalized measurements of human ankle stiffness from [30], and we choose a 

viscosity value of  with damping ratio ζ = 0.7.

3. Output Linearization: The dynamics, interaction forces, and control law (12) are 

simultaneously computed from both the full biped model and the prosthesis model 

in MATLAB. Although the control gains have different units than the impedance 

controller, we again choose Kp = 6(mh + 2m) Nm/m2 and  to achieve 

damping ratio ζ = 0.7 in the linearized output dynamics (13).
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We now present and compare results from these simulations.

D. Results

Starting with the previously described passive gait, we implement each control law and 

allow the simulation to converge to a steady-state walking gait (i.e., a fixed point). We 

verify that for each control strategy the associated fixed point is locally exponentially stable, 

using the procedure described in [26]. The hybrid limit cycles for all three gaits are 

superimposed in the phase portrait of Fig. 2.

Using the COP trajectory of the linearized gait, we compute the desired stance leg angle ϕ(x, 

y) satisfying constraint (5). Fig. 3 shows the desired trajectory over both time and COP x-

component (i.e., the phase variable). The desired leg angle is equal to the actual leg angle for 

the first 550 ms of the stance period, when the heel point is in contact with the ground. This 

period causes the desired leg angle as a function of COP to be non-unique (Fig. 3, center). 

We will discuss how this differs from human walking in Section V.

We see in Fig. 4 that output linearization outperforms the impedance controller in several 

ways. The linearized gait has no output error during steady-state walking, whereas error 

grows immediately after the foot starts rolling in the impedance and passive cases (Fig. 4, 

left). Output linearization causes more foot-rocking motion (which we would expect with Rs 

> Rf), as seen in the COP time-trajectory (Fig. 4, center) and the effective shape (Fig. 5, top). 

Similarly, this controller causes more ankle range of motion with wider steps in Fig. 3 

(right). An interesting consequence of exactly enforcing the desired effective shape is 

greater control torque prior to contralateral heel strike (Fig. 4, right), which resembles the 

power generation of the human ankle at toe-off [21].

Different effective radii are exactly enforced by output linearization in Fig. 5 (middle). We 

see that the COP range of motion increases with the effective radius. In general we find that 

a larger radius implies faster walking with a wider step length and a longer stance period 

(see Table II). Supplemental videos of the animated walking gaits for Rs = 0.45 and Rs = 

0.35 are available at http://vimeo.com/38050625 and http://vimeo.com/

38052820respectively.

V. DISCUSSION

Although our simple biped model has limitations, the proposed control strategy has 

important advantages including biomimetic performance and clinical viability.

A. Positive Force Feedback

Although we did not explicitly design a push-off phase into the control strategy, enforcing 

the effective shape provided a biomimetic period of power generation as the COP 

approached the toe. A positive feedback loop arises when COP movement causes a positive 

ankle torque, which in turns causes the COP to move further forward. This biomimetic 

behavior, resembling the muscle reflex model in [9], might prevent compensatory work 

production at the hip (cf. [4]) and allow lower-limb amputees to expend normal levels of 

energy when walking.
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B. Clinical Viability

This strategy requires tuning of only four control parameters (Rs, Xs, Kp, Kd) for the entire 

single-support period, whereas other control approaches have many more parameters during 

stance (e.g., 18 for event-based impedance control [8], 14 for a muscle model [9], or a 

human data set [10]). The effective radius Rs is a trivial function of the user’s leg length and 

the rotation center Xs determines the amount of ankle flexion, offering a simple tuning 

procedure. Moreover, the output linearization approach can accurately enforce constraints 

with much smaller gains than standard PD control [15], which is desirable for stability in the 

presence of feedback time delay and for safety when interacting with humans.

We showed that output linearization can be achieved on a powered prosthetic leg using 

measurements of interaction forces in place of state feedback from the human body. The 

COP can be sensed with a 3-axis load cell between the foot and ankle joint or with a 

pressure sensor grid in the foot or shoe insole [31]. Load cells are common in modern 

prosthetic legs (e.g., [6]–[8]), and advanced filtering techniques for rhythmic patterns can 

help estimate the COP [32]. A motorized ankle would likely use an encoder to measure the 

relative angle θank between the shank and foot (Fig. 1, right) rather than the global angle 

used in our model. We can convert between angles by , but 

this requires knowledge of the slope angle and the foot compliance. Fortunately the radii of 

curvature for many prosthetic feet have already been characterized in [19], and various 

methods have been proposed for measuring the slope angle during locomotion (e.g., inertial 

measurement units or passive mechanical devices [33]).

C. Zero Dynamics

Output linearization provides ξ ≡ 0 in steady state, implying that the surface Z = {z̆ | ξ = 0, ξ̇ 

= 0} is invariant1 under the closed-loop dynamics. This surface is also hybrid invariant 

since ξ = ξ̇ = 0 immediately after impact. The hybrid system can therefore be restricted to its 

hybrid zero dynamics on surface Z, which exactly characterize the biped as a lower-

dimensional hybrid system. Since output ξ represents the error of the prosthetic control 

system, the hybrid zero dynamics represent the coupled body. In our simulations we 

rendered this system minimum phase (i.e., stabilized the zero dynamics [24]) by exploiting 

the existence of an intrinsically stable passive gait. This allowed the entire biped to converge 

to a stable limit cycle even though the prosthetic ankle joint did not coordinate with the 

body’s hip joint. We hypothesize that the highly adaptable human neuromuscular system 

would provide this minimum phase property in a real prosthetics application.

D. Model Limitations

The biped model we used to simulate our controller has several limitations, including 

limited COP motion, the lack of a knee joint, and an instantaneous double-support phase. 

Although humans have strictly monotonic COP trajectories during steady walking (Fig. 6, 

top), our model has no COP movement until 550 ms into the stance period (Fig. 4, center). 

Numerical imprecision at this transition from heel contact to rolling contact results in a 

1Any state trajectory initialized on an invariant surface of a continuous system will remain on the surface for all time [24].
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small discontinuous jump in ankle torque observed in Fig. 4 (right). It should also be noted 

that the COP is not truly a position variable as modeled in this paper, but rather a function of 

forces (i.e., a second-order variable) [21]. However, COP movement during human walking 

is associated with continuous foot deformation that resembles rolling [18], [20], so feet are 

commonly modeled as rockers to approximate the behavior of the ankle-foot complex, 

including the COP [22]. A rocker foot model can then be employed to derive the model-

based prosthesis control law (12) for a human application, where we can expect COP motion 

to be more natural than in our passive walking model.

To demonstrate that our kinematic constraint applies to realistic COP motion, we examine 

de-identified human data from [30], in which able-bodied subjects walked 400 times across 

a force plate at self-selected speeds. Subjects gave written informed consent in accordance 

with the Northwestern University Institutional Review Board. The mean effective shapes 

(Fig. 5, bottom) have approximately constant curvature as in our simulations (recall that we 

intentionally chose an abnormally large radius to accelerate the slow passive gait). We use 

the mean COP trajectory and Rs, Xs values from one subject to compute the desired leg angle 

ϕ(x, y) in Fig. 6 (bottom). This COP-ankle relationship could similarly be enforced via 

output linearization.

The lack of a knee joint also limits the anthropomorphism of our model, but our control 

strategy can be extended to a two-degree-of-freedom transfemoral prosthesis. Hansen et al. 

showed that the knee-ankle-foot (KAF) effective shape–the COP trajectory transformed into 

a coordinate frame attached to the thigh–also has constant curvature during walking [18]. 

This provides a second kinematic constraint from which the desired knee angle can be 

determined from the COP and ankle angle. Control of the knee could then be integrated into 

our proposed controller using a vector output ξ. This control approach could be tuned in a 

sequential manner, starting with the ankle-foot constraint, which does not depend on the 

knee angle, and ending with the KAF constraint.

A non-trivial double-support period could be modeled using a compliant ground contact 

model, which has been done in the context of output linearization [34]. However, the 

constant-curvature property of the COP trajectory in shank coordinates does not hold after 

contralateral heel strike. The main challenge is then to extend the kinematic model of the 

effective shape into the double-support period, possibly using the theoretical COP of the 

support polygon (which can be located between the two feet).

By relying on passive dynamics to generate joint patterns, we were limited to testing our 

controller with a downhill walking task. We can mimic human behavior on different slopes 

by rotating the effective center of rotation Ps by the slope change [17]. Stationary fore-aft 

swaying also has a constant effective radius–about six times that of a walking task [20]. 

Kinematic constraint (5) allows the radius of curvature Rs to be a function of the COP, 

which may be the case for a stair climbing task. It is possible that (5) cannot be solved for θs 

when Rs is non-constant, but unlike impedance control, our linearizing controller does not 

require this form.
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Despite these limitations, this simple model allowed a proof-of-concept demonstration of 

our new control strategy. The simplicity of this model is also beneficial for elucidating 

biomechanical principles that are important in lower-limb prostheses, such as quasi-stiffness 

[35].

VI. Conclusion

We showed that the effective shape between the COP and ankle joint corresponds to a 

simple kinematic constraint, which can be enforced as a virtual constraint by an output 

linearizing control law using only feedback available to sensors onboard a prosthetic leg. 

This controller exactly enforced the desired effective shape during simulated walking, 

whereas an impedance controller did not. Due to the invariance of the effective shape over 

walking speeds, body weights, and heel heights [17], this choice of constraint will allow the 

prosthesis to naturally adapt to the user. The constraint can also be systematically tuned to 

produce the effective shapes corresponding to different activities, such as stationary swaying 

or stair climbing, by changing the center of rotation or the curvature radius/function.

Future work could integrate our control strategy with a neural interface (e.g., via 

electromyography from residual muscles [36]) to allow the user to subconsciously adapt the 

constraint when anticipating a task change. Our formulation of output linearization for 

prosthetics can also be used with constraints unrelated to the effective shape. This general 

framework motivates a new control theory for wearable robots, including powered orthoses 

[37], [38], that will exploit hybrid zero dynamics in assisted human locomotion.

We plan to implement our effective shape controller on the Vanderbilt leg [8] at the 

Rehabilitation Institute of Chicago. Ongoing work also includes perturbation experiments 

with able-bodied human subjects to test our hypothesis that joint patterns depend on the 

COP as a phase variable. Our hope is that this work will elucidate the control mechanisms 

behind human locomotion and enable translational designs for clinically viable wearable 

robots.

Acknowledgments

We thank Elliott Rouse for collecting the human data discussed in Section V, Andrew Hansen for helpful 
discussions on the human effective shape, and Jessy Grizzle for his suggestions about feedback linearization.

Robert D. Gregg, IV, Ph.D., holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund. 
This research was also supported by USAMRAA grant W81XWH-09-2-0020 and by the National Center for 
Research Resources (NCRR) and the National Center for Advancing Translational Sciences (NCATS), National 
Institutes of Health (NIH) through Grant Number 3UL1 RR025741. The content is solely the responsibility of the 
authors and does not necessarily represent the official views of the NIH.

References

1. Ziegler-Graham K, et al. Estimating the prevalence of limb loss in the United States: 2005 to 2050. 
Arch. Phys. Med. Rehab. 2008; 89(3):422–429.

2. Miller WC, Deathe AB, Speechley M, Koval J. The influence of falling, fear of falling, and balance 
confidence on prosthetic mobility and social activity among individuals with a lower extremity 
amputation. Arch. Phys. Med. Rehab. 2001; 82(9):1238.

Gregg and Sensinger Page 12

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2014 December 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3. Gailey RS, Wenger MA, Raya M, Kirk N, Erbs K, Spyropoulos P, Nash MS. Energy expenditure of 
trans-tibial amputees during ambulation at self-selected pace. Prosth. Orth. Int. 1994; 18(2):84.

4. Johansson J, Sherrill D, Riley P, Bonato P, Herr H. A clinical comparison of variable-damping and 
mechanically passive prosthetic knee devices. Amer. J. Phys. Med. Rehab. 2005; 84(8):563–575.

5. Segal A, Orendurff M, Klute G, McDowell M, Pecoraro J, Shofer J, Czerniecki J. Kinematic and 
kinetic comparisons of transfemoral amputee gait using C-Leg® and Mauch SNS® prosthetic 
knees. J. Rehab. Res. Dev. 2006; 43(7):857–870.

6. Össur. POWER KNEE. 2012. [Online]. Available: http://www.ossur.com/powerknee/

7. Sup F, Bohara A, Goldfarb M. Design and control of a powered transfemoral prosthesis. Int. J. 
Robot. Res. 2008; 27(2):263–273.

8. Sup F, Varol H, Goldfarb M. Upslope walking with a powered knee and ankle prosthesis: Initial 
results with an amputee subject. IEEE Trans. Neural Sys. Rehab. Eng. 2011; 19(1):71–78.

9. Eilenberg M, Geyer H, Herr H. Control of a powered ankle–foot prosthesis based on a 
neuromuscular model. IEEE Trans. Neural Sys. Rehab. Eng. 2010; 18(2):164–173.

10. Holgate, MA.; Sugar, TG.; Bohler, AW. A novel control algorithm for wearable robotics using 
phase plane invariants; IEEE Int. Conf. Robot. Autom; 2009. p. 3845-3850.

11. Freidovich, L.; Shiriaev, A.; Manchester, I. IFAC World Congress. Seoul, Korea: 2008. Stability 
analysis and control design for an underactuated walking robot via computation of a transverse 
linearization; p. 10 166-10 171.

12. Westervelt ER, Grizzle JW, Koditschek DE. Hybrid zero dynamics of planar biped walkers. IEEE 
Trans. Autom. Control. 2003; 48(1):42–56.

13. Chevallereau C, Grizzle JW, Shih C. Asymptotically stable walking of a five-link underactuated 
3D bipedal robot. IEEE Trans. Robot. 2008; 25(1):37–50.

14. Westervelt, ER.; Grizzle, JW.; Chevallereau, C.; Choi, JH.; Morris, B. Feedback Control of 
Dynamic Bipedal Robot Locomotion. New York, NY: CRC Press; 2007. 

15. Sreenath K, Park HW, Poulakakis I, Grizzle JW. A compliant hybrid zero dynamics controller for 
stable, efficient and fast bipedal walking on MABEL. Int. J. Robot. Res. 2011; 30(9):1170–1193.

16. Gregg, RD. IEEE Conf. Decision Control. Orlando, FL: 2011. Controlled geometric reduction of a 
five-link 3D biped with unactuated yaw; p. 669-674.

17. Hansen A, Childress D. Investigations of roll-over shape: Implications for design, alignment, and 
evaluation of ankle-foot prostheses and orthoses. Disability Rehab. 2010; 32(26):2201–2209.

18. Hansen A, Childress D, Knox E. Roll-over shapes of human locomotor systems: Effects of walking 
speed. Clinical Biomech. 2004; 19(4):407–414.

19. Hansen A, Childress D. Effects of shoe heel height on biologic rollover characteristics during 
walking. J. Rehab. Res. Dev. 2004; 41(4):547–554.

20. Hansen A, Wang C. Effective rocker shapes used by able-bodied persons for walking and fore-aft 
swaying: Implications for design of ankle-foot prostheses. Gait Posture. 2010; 32(2):181–184. 
[PubMed: 20471833] 

21. Winter, DA. Biomechanics and Motor Control of Human Movement. New York, NY: Wiley; 
2009. 

22. Adamczyk PG, Collins SH, Kuo AD. The advantages of a rolling foot in human walking. J. Exp. 
Biology. 2006; 209(20):3953.

23. Murray, RM.; Li, Z.; Sastry, SS. A Mathematical Introduction to Robotic Manipulation. Boca 
Raton, FL: CRC Press; 1994. 

24. Sastry, SS. Nonlinear Systems: Analysis, Stability and Control. New York, NY: Springer-Verlag; 
1999. 

25. Goswami A, Thuilot B, Espiau B. A study of the passive gait of a compass-like biped robot: 
Symmetry and chaos. Int. J. Robot. Res. 1998; 17(12):1282–1301.

26. Gregg RD, Dhaher YY, Degani A, Lynch KM. On the mechanics of functional asymmetry in 
bipedal walking. IEEE Trans. Biomed. Eng. 2012; 59(5):1310–1318. [PubMed: 22328168] 

27. Mochon S, McMahon TA. Ballistic walking. J. Biomech. 1980; 13(1):49–57. [PubMed: 7354094] 

28. Minetti A, Moia C, Roi G, Susta D, Ferretti G. Energy cost of walking and running at extreme 
uphill and downhill slopes. J. Applied Phys. 2002; 93(3):1039–1046.

Gregg and Sensinger Page 13

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2014 December 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.ossur.com/powerknee/


29. De Leva P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 1996; 
29(9):1223–1230. [PubMed: 8872282] 

30. Rouse, EJ.; Hargrove, LJ.; Perreault, EJ.; Kuiken, TA. IEEE Int. Conf. Biomed. Robot. Biomech. 
Roma, Italy: 2012. Estimation of human ankle impedance during walking using the Perturberator 
robot; p. 8179-8182.

31. Putti AB, Arnold GP, Cochrane L, Abboud RJ. The Pedar® in-shoe system: Repeatability and 
normal pressure values. Gait Posture. 2007; 25(3):401–405. [PubMed: 16828288] 

32. Tilton, AK.; Hsiao-Wecksler, ET.; Mehta, PG. Amer. Control Conf. Montreal, Canada: Filtering 
with rhythms: Application to estimation of gait cycle; p. 3433-3438.

33. LaPre, AK.; Sup, F. IEEE Int. Conf. Eng. Med. Bio. Boston, MA: 2011. Simulation of a slope 
adapting ankle prosthesis provided by semi-active damping; p. 587-590.

34. Scheint, M.; Sobotka, M.; Buss, M. IEEE Conf. Decision Control. Shanghai, China: 2009. Virtual 
holonomic constraint approach for planar bipedal walking robots extended to double support; p. 
8180-8185.

35. Rouse EJ, Gregg RD, Hargrove LJ, Sensinger JW. The difference between stiffness and quasi-
stiffness in the context of biomechanical modeling. IEEE Trans. Biomed. Eng. 2012 in press. 

36. Hargrove L, Simon A, Lipschutz R, Finucane S, Kuiken T. Real-time myoelectric control of knee 
and ankle motions for transfemoral amputees. J. Amer. Med. Assoc. 2011; 305(15):1542–1544.

37. Gregg, RD.; Bretl, TW.; Spong, MW. IEEE Conf. Decision Control. Atlanta, GA: 2010. A control 
theoretic approach to robot-assisted locomotor therapy; p. 1679-1686.

38. Shorter KA, Hsiao-Wecksler ET, Kogler GF, Loth E, Durfee WK. A portable powered ankle-foot-
orthosis for rehabilitation. J. NeuroEng. Rehab. 2011; 48(4):459–472.

Gregg and Sensinger Page 14

IEEE Trans Control Syst Technol. Author manuscript; available in PMC 2014 December 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. 
Left: biped model with the prosthesis shown in solid gray and the body shown in dashed 

black. The COP is defined at the origin, where the orientation of the global reference frame 

is defined with respect to horizontal (dashed) axis x̂. The origin of the shank-based 

coordinate frame (solid axes x̂s, ŷs) is drawn above the ankle for visual clarity but is actually 

modeled to coincide with the ankle joint (which is located at the heel for simplicity). Right: 

diagram of human ankle-foot effective shape with a radius of curvature Rs, which is constant 

for walking tasks. The COP moves along the shape (dashed curve) about the center of 

rotation Ps in the shank-based coordinate frame. Note that in this diagram the relative angle 

θank between the shank xs-axis and foot (dotted axis) is shown instead of the global leg angle 

θs.
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Fig. 2. 
Phase portrait of angular states from the hybrid limit cycles simulated with Rs = 0.45 for 

three control modes: passive walking, impedance control (PD), and output linearization 

(linz). The smaller orbits (shown in gray) correspond to the prosthetic ankle joint and the 

larger orbits (shown in black) correspond to the body’s hip joint.
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Fig. 3. 
Desired stance leg angle ϕ(x, y) over time (left) and over COP (center) from simulation 

using linearizing controller (12). Right: Actual and desired trajectories of relative ankle 

angle θank (zeroed at heel strike for the sake of comparison) from passive walking, 

impedance control (PD), and output linearization (linz) simulations. Note that the small 

jumps in the desired trajectories are caused by numerical imprecision when switching 

contact constraints.
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Fig. 4. 
Comparison between steady-state gaits for passive walking, impedance control (PD), and 

output linearization (linz): output ξ (left), COP x-component (center), and ankle torque 

(right) over time. Recall that ξ ≡ 0 corresponds to perfect enforcement of the effective 

shape, which we see with output linearization.
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Fig. 5. 
Effective shapes (i.e., COP trajectories in shank coordinates) for three control modes 

simulated with Rs = 0.45 (top), three effective radii simulated under output linearization 

(middle), and three able-bodied human subjects (bottom). Note that the human ankle joint is 

50 mm above the heel, causing an offset along the shank ys-axis.
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Fig. 6. 
Top: COP x-component trajectory from one able-bodied human subject. Bottom: desired 

stance leg angle ϕ(x, y) over COP x-component from human data. To model the human foot 

we used a generalized form of constraint (5) that includes a non-zero height (0.05 m) 

between the heel and ankle joint with Rs = 0.26 m, Xs = 0.01 m from Fig. 5 (bottom).
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TABLE I

Model Parameters

Parameter Variable Value

Hip mass mh 31.73 [kg]

Leg mass m 13.5 [kg]

Leg inertia Irot 0.2 [kg·m2]

Leg length ℓ 0.856 [m]

Slope angle γ 0.0075 [rad]

Foot radius Rf 0.26 [m]

Effective radius Rs 0.45 [m]

Effective center Xs 0.005 [m]

Proportional gain Kp 352.38 [Nm/rad]

Derivative gain Kd 26.281 [Nm·s/rad]
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TABLE II

Influence of Effective Radius

Gait Descriptor Rs = 0.45 Rs = 0.40 Rs = 0.35

x-COP Range [m] 0.070 0.053 0.034

Step Length [m] 0.269 0.224 0.169

Step Duration [s] 0.851 0.841 0.831

Step Velocity [m/s] 0.316 0.266 0.203
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