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Abstract

Given thousands of proteins constituting a eukaryotic pathogen, the principal

objective for a high-throughput in silico vaccine discovery pipeline is to select those

proteins worthy of laboratory validation. Accurate prediction of T-cell epitopes on

protein antigens is one crucial piece of evidence that would aid in this selection.

Prediction of peptides recognised by T-cell receptors have to date proved to be of

insufficient accuracy. The in silico approach is consequently reliant on an indirect

method, which involves the prediction of peptides binding to major

histocompatibility complex (MHC) molecules. There is no guarantee nevertheless

that predicted peptide-MHC complexes will be presented by antigen-presenting

cells and/or recognised by cognate T-cell receptors. The aim of this study was to

determine if predicted peptide-MHC binding scores could provide contributing

evidence to establish a protein’s potential as a vaccine. Using T-Cell MHC class I

binding prediction tools provided by the Immune Epitope Database and Analysis

Resource, peptide binding affinity to 76 common MHC I alleles were predicted for

160 Toxoplasma gondii proteins: 75 taken from published studies represented

proteins known or expected to induce T-cell immune responses and 85 considered

less likely vaccine candidates. The results show there is no universal set of rules

that can be applied directly to binding scores to distinguish a vaccine from a non-

vaccine candidate. We present, however, two proposed strategies exploiting

binding scores that provide supporting evidence that a protein is likely to induce a T-

cell immune response–one using random forest (a machine learning algorithm) with

a 72% sensitivity and 82.4% specificity and the other, using amino acid

conservation scores with a 74.6% sensitivity and 70.5% specificity when applied to
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the 160 benchmark proteins. More importantly, the binding score strategies are

valuable evidence contributors to the overall in silico vaccine discovery pool of

evidence.

Introduction

An in silico protein-based vaccine discovery pipeline for eukaryotic pathogens,

inspired by reverse vaccinology [1–6], encapsulates a collection of various

bioinformatics prediction tools [7]. The aim of these tools is to gather

computational evidence, derived mainly from protein sequences, to select the

most promising vaccine candidates worthy of laboratory validation [8]. One piece

of evidence, considered crucial in the candidacy decision making, is the presence

of epitopes on protein antigens.

Many tools have been and are still being developed to computationally predict

epitopes (see S1 Supporting Information). T-cell epitopes, which are typically

short linear peptides, have proved to be easier to predict than B-cell epitopes [9–

11]. Currently, there are two computational approaches to T-cell epitope

prediction based on direct and indirect methods. A direct method predicts

peptides recognised by T-cell receptors, whereas an indirect method predicts

peptides binding to MHC molecules. Direct methods, as to date, have proved to

be of insufficient accuracy [9] and this may be why the majority of T-cell epitope

predictors currently found online are based on indirect methods. This paper

focuses on the indirect method and the MHC class I molecule.

Most vaccines licensed so far are serum antibody-based that essentially provide

protection from infection. Current opinion suggests that T-cell epitope ‘only’

vaccines are not a solution to prevent infection, but are important in controlling

an established infection by the recognition and clearance of infected cells [10]. For

many infectious diseases (and cancers) it remains an open question if cell-

mediated immunity (CMI) is required for successful prevention or eradication,

either in addition to or instead of antibodies [11].

The foremost resource for T-Cell MHC class I binding prediction tools is

provided by the Immune Epitope Database and Analysis Resource (IEDB) [12].

The MHC class I binding predictor (referred henceforth as the peptide-MHC

binding predictor) takes as input an amino acid sequence (or a set of sequences)

and predicts the binding affinity of each fixed-length subsequence to a specific

MHC molecule. Fig. 1 shows an example of the online output. S1 Supporting

Information describes the prediction process in detail including the methods used

for computation.

The desired aim, from an in silico vaccine discovery perspective, is to use

binding affinity scores as contributing evidence to a pool of other computationally

derived evidence and, at this stage, not to specifically identify epitopes for vaccine

development. The pool of evidence, in this instance, is ultimately used to support
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or oppose a protein as a candidate for a CMI-driven vaccine. Two important

issues need to be emphasised here. First, there is no guarantee that a protein

predicted to contain peptides that bind to a particular MHC allele will be

presented by antigen-presenting cells and/or recognised by cognate T-cell

receptors. Consequently, binding scores are only one piece of evidence and need

to be used in conjunction with other gathered evidence as part of an overall

vaccine candidate discovery strategy. Second, there are potentially thousands of

proteins, mostly uncharacterised, constituting a pathogenic microorganism. An in

silico discovery strategy demands an automated high-throughput process to

extract evidence as it is impractical for a researcher to perform a case-by-case

examination of each protein.

There are potentially thousands of pathogenic organisms for which vaccines are

needed to improve human and animal health. Whilst advances in reverse

vaccinology have begun to provide vaccines for prokaryotic pathogens [13–17],

similar advances for eukaryotic pathogens such as parasites cannot be claimed.

Toxoplasma gondii, a protozoan parasite and important model system for the

phylum Apicomplexa [18–20], was chosen in this study to illustrate the presented

strategies. The first main reason for choosing T. gondii is that the indirect

prediction method is dependent on experimentally validated peptide-MHC

binding data from the host of the target pathogen. Humans are the intermediate

host for T. gondii in which it is responsible for birth defects and foetal loss [21].

Data for human MHC alleles, referred to as human leukocyte antigen (HLA), is by

far the most abundant. The peptide-MHC binding predictor makes available 2947

MHC I alleles but distinguishes 76 of these alleles as commonly occurring in at

least 1% of the human population (18 HLA-A, 32 HLA-B, 20 HLA-C, 1 HLA-E, 5

HLA-G). The second reason is that a large body of literature suggest that because

T.gondii is an intracellular parasite, the most important correlate of protection is

Fig. 1. Example of online output from IEDB peptide-MHC class I binding predictor. The binding predictor conceptually slides a window of a user-
defined length (either eight to eleven amino acid residues) one residue at a time from the start of the protein sequence. An affinity score is predicted for the
ability of each fixed-length subsequence (as defined by each position of the sliding window) to bind to a user-specified MHC I allele. Fig. 1 shows the output
when a sequence (e.g. MARHAIFFALCVLGL…) is input into the program to predict if it contains peptides of length 9 that bind to the MHC allele, HLA-
A*11:01. The IC50 (nM) affinity scores for subsequence ‘MARHAIFFA’ at position 1 to 9 are highlighted.

doi:10.1371/journal.pone.0115745.g001
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the induction of a CMI response (this is in addition to a humoral response)

[22–26].

Predicted binding scores alone provide no direct indication of a protein’s

potential to induce a T-cell response. The aim of this study is therefore to

determine how these scores can best be utilised to provide such an indicator. We

present two high-throughput classification strategies. Ideally, two types of protein

examples are required to credibly demonstrate and test the strategies: proteins that

are known to generate a T-cell response in the host (positives) and those known

not to generate a response (negatives). The challenge for obtaining reliable

positives is that there is no known example of an effective T-cell based vaccine,

and even no clear consensus as to what type of protein constitutes an ideal vaccine

candidate for a T-cell mediated response. Furthermore, no distinguishing signal

within a protein sequence has been detected that indicates a protein not only

contains T-cell epitopes but also induces an immune response. The challenge for

negative examples is that a protein cannot be definitively negative unless it has

been explicitly tested for non-inducement against all common MHC alleles. To

face these challenges, the test and training proteins selected for the study are the

optimum within the constraints of available data and current knowledge. For

example, in the absence of what constitutes an ideal vaccine candidate, the

selected proteins are only likely vaccine candidates – ‘likely’ in this context is

based on a priori held hypotheses that a protein that is either external to or located

on, or in, the membrane of a pathogen is more likely to be accessible to

surveillance by the immune system than a protein within the interior of a

pathogen [27]. Also, the majority of proteins in published studies observed to

induce T-cell responses are membrane-associated or secreted [22, 28–34]. A few

examples of proteins with annotated interior subcellular locations, nevertheless,

have been observed to induce an immune response [33], which confounds the

search for a typical T-cell inducing protein. To summarise, proteins naturally

exposed to the immune system are considered in this study as potential vaccine

candidates or positives, and unexposed proteins as non-vaccine candidates or

negatives.

The first proposed strategy uses random forest, a supervised machine learning

(ML) algorithm. The algorithm essentially detects patterns within a series of

binding scores that are computed for the entire length of each protein. Quality

examples of binding scores from positive and negative proteins are the key to the

strategy i.e. they are required to train the ML algorithm. Once trained, the

algorithm can distinguish likely vaccine or non-vaccine candidates given a new

series of binding scores from an anonymous protein.

The second proposed strategy uses amino acid conservation scores of predicted

binding peptides and is based on the principle that eukaryotic pathogens have

evolved with the vertebrate immune system [35]. More specifically, amino acids of

T. gondii proteins can change over time under the evolutionary selection pressure

of the human immune system. For example, human HLA alleles evolve to

optimise fitness and T. gondii antigens adapt to evade HLA capture. Amino acid

residues that are vital to a protein’s function tend to be the most highly conserved
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in homologous proteins as they change less rapidly during evolution. This means

that T. gondii antigens are in an evolutionary balancing act to evade the immune

system by varying their antigens but still retaining functionality. It is suggested

that immune evasion is achieved by changes at multiple sites rather than

clustering polymorphisms at one site [36]. In other words, amino acid sites in a

protein antigen are expected to be under different selection pressures and their

conservation will vary accordingly. There are examples of apicomplexan proteins

where amino acids exposed to the immune system are more polymorphic than

those unexposed [37–39]. We speculate that binding peptides will be located more

often in less conserved sites. However, from an epitope-based vaccine perspective,

conserved epitopes are more desirable to provide broad protection across multiple

strains [40]. A multiple sequence alignment (MSA) can be used to compare amino

acid similarity between a protein and its homologues [41]. The degree of residue

conservation is inferred from the similarity within an aligned column. Various

methods have been developed to quantitatively score the conservation and are

compared in a review [42]. Our strategy compares conservation scores of

predicted binding peptides to distinguish between potential vaccine or non-

vaccine candidates.

We conclude that there is no single program that can predict proteins that will

elicit T-cell immune responses. The current best approach is to obtain a consensus

from several programs to select those proteins ‘most likely’ to induce the required

response. The results obtained from the ML and conservation strategies are not

perfect owing to constraints posed by the programs and available data.

Nevertheless, the strategies still provide valuable evidence towards a consensus.

Currently, there is no known alternative solution for using binding scores in a

high-throughput approach to identify vaccine candidates.

Results and Discussion

The first important question to answer was how accurate are the IEDB peptide-

MHC class I binding predictions. Our results from an affinity-strength accuracy

test revealed a sensitivity and specificity of 63.1% and 78.9% respectively. This

indicates that the predictor has a relatively low sensitivity in predicting precise

affinity strength. It has a greater sensitivity, however, to high-affinity peptides (e.g.

80.1%) than intermediate (45.4%) or low affinity (35.5%) peptides. The accuracy

to predict binding or non-binding peptides, irrespective of affinity strength, was

91.7%. Other studies also report that the predictions are good, particularly for

well-studied class I MHC alleles [43, 44].

Binding studies show that HLAs are the most polymorphic human genes

known [45] and each HLA allele recognizes a restricted set of peptides [46]. Our

results from a binding test on the entire known proteome of T. gondii (including

different strains) were therefore not totally unexpected given the known

polymorphic nature of MHC: 19355 out of 19378 proteins tested contained at

least one high-affinity binding peptide. No predictions were made for 23 proteins
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as their sequence contained characters such as ‘X’ or ‘B’, which are non-standard

to the amino acid single letter code and invalid to the predictor. To support this

finding, binding predictions were analysed from 124 proteins from Plasmodium

falciparum (an apicomplexan that can cause malaria) and 760 proteins from

Caenorhabditis elegans (a non-pathogenic nematode). The important conclusion

inferred from these results is that every protein from a eukaryotic pathogen is

predicted to contain at least one peptide that binds with a high-affinity to at least

one of the known human MHC I alleles. Given this finding, it is impracticable to

select a protein for vaccine candidacy on the basis it contains a high-affinity

peptide.

The output from the binding predictor are potentially thousands of IC50 (nM)

scores for each protein under consideration. Table 1 shows descriptive statistics

for predicted high-affinity peptides from the species T. gondii, P. falciparum, and

C. elegans. The number of peptides range for T. gondii from five to 3768 per

protein and each protein can contain peptides that bind to as few as six and to as

many as 137 different allele-peptide length combinations.

Results for rule-based classification

Rule-based tests were performed on a benchmark dataset to differentiate ‘YES’

from ‘NO’ vaccine candidates. That is, binding scores were ordered on different

statistical properties of the score and then appropriate test thresholds applied to

perform a binary classification. S2 Supporting Information lists the benchmark

proteins along with a publication reference to the relevant study and provides a

brief description of the vaccine significance for some of these proteins. Fig. 2

shows an example of the rule based-approach. The premise was to formulate

decision making rules that could be applied to scores from anonymous proteins

for the purpose of vaccine classification. The results are shown in Table 2.

Accuracy around 50% is no better than guesswork in binary classifications with

equally likely classes. Some of the rules showed promise but failed when applied to

different datasets. These results suggest that both vaccine and non-vaccine

candidates contain high-affinity binding peptides, peptides that bind to the same

MHC allele, have similar numbers of binding peptides and promiscuous peptides

per protein, and also have similar numbers of peptides that bind to promiscuous

MHCs. The important conclusion here is that there is no universal set of rules that

can be applied directly to binding scores to distinguish a vaccine from a non-

vaccine candidate.

Results from supervised machine learning classification

The best classification result achieved using random forest when trained on

apicomplexan proteins was 72% sensitivity (SN) and 82.4% specificity (SP) with a

22.5% overall error rate. These results have the potential to improve when more

training examples become available for proteins observed to induce, ideally

protective, T-cell responses. Fig. 3 illustrates a training dataset. Table 3 shows
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results for all tests conducted with random forest. These results suggest that

predictions improve when the source of training data is more closely related to the

target pathogen. Additional tests were performed to determine if these promising

results were achieved by chance. The value for the target variable (e.g. 1 or 0) in

Table 1. Descriptive statistics for predicted high-affinity peptides against 76 common human MHCs.

Description
Benchmark
Proteinsa P. falciparum C. elegans T. gondii proteome

Number of proteins tested 160 124 760 19378

IC50 scores per protein H54.5, L50.2,
A51.45

H53.1, L50.2,
A51.2

H57.7, L50.12,
A51.3

H549.3, L50.03, A52.6

Number of peptides on a protein Max51583, Min521,
A5292

Max52071,
Min554, A5350

Max52528. Min54,
A5354

Max53768, Min55,
A5227

Number of allele-peptide length combinations used per
protein out of 304 combinations

Max5283, Min521,
A578

Max5148,
Min566, A581

Max5330, Min521,
A586

Max5137, Min56,
A566

Frequency of prediction method used SMM5124,
ANN535,
NetMHCpan51

SMM595,
ANN527

SMM5582,
ANN5173,
NetMHCpan55

SMM514802,
ANN52407, NetMHCpan
52058

Maximum number of proteins with peptides that bind
to the same peptide-allele length combination

28 (HLA-C*03:03
length 11)

20 (HLA-
C*14:02 length
8)

98 (HLA-C*03:03
length 10)

3515 (HLA-A*68:01 length
9)

Maximum number of peptides that bind to the same
peptide-allele length combination

1526 (HLA-C*03:03
length 10)

1556 (HLA-
C*14:02 length
8)

7542 (HLA-C*03:03
length 10)

406529 (HLA-B*58:01
length 10)

Abbreviations: P. falciparum 5 Plasmodium falciparum, C. elegans 5 Caenorhabditis elegans, T. gondii 5 Toxoplasma gondii, H 5 highest, L 5 lowest, A 5

average, Max 5 maximum, Min 5 minimum, SMM 5 stabilized matrix method, ANN 5 artificial neural network.
aBenchmark Proteins are proteins from published studies with known or expected T-cell responses (source species: T. gondii).

doi:10.1371/journal.pone.0115745.t001

Fig. 2. Example of rule-based approach applied to highest affinity peptide on each test protein.
Proteins are listed in ascending order based on the lowest IC50 (nM) binding affinity score. A threshold value
e.g. 1.5 is applied to the score to segregate the list into two classifications. Below the threshold is ‘YES’ for
vaccine candidacy and above is ‘NO’. The rule-based classification is compared with the expected
classification to determine performance accuracy. Threshold value is derived from a trial-and-error approach
with the intention to classify the greatest number of true positives and negatives.

doi:10.1371/journal.pone.0115745.g002
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the training datasets was randomly set for each protein and the same tests were

performed as before. The predictions, as shown in Table 3, are considerably less

accurate, which supports the conjecture that there is a relationship between scores

and target variable.

Table 2. Sensitivity and specificity for rule-based tests applied to high-affinity peptide-MHC binding scores for vaccine classification.

Rule # Statistical property for rule-based testa Thresholdb
Benchmark
Proteinsc

P.
falciparum

C.
elegans

SN SP SN SP SN SP

1 Lowest IC50 score per protein 1.5 42.7 45.8 69.8 32.0 60.9 38.3

2 Number of high-affinity peptides per protein 200 64.0 61.2 42.4 80.0 28.4 68.9

3 Number of different MHC alleles per protein binding to
high-affinity peptides

74 56.0 63.5 43.8 79.2 25.5 73.5

4 Maximum number of high-affinity peptides per protein
binding to a particular MHC allele-peptide length combination

10 66.7 58.2 47.9 69.4 37.3 65.3

5 Total binding score per protein 32289 61.3 61.2 58.9 72.0 36.8 59.1

6 Groups: one with proteins containing peptides binding to
promiscuous MHCs; one with proteins containing peptides
NOT binding to promiscuous MHCs

Not applicable 47.2 44.5 45.2 48.3 47.2 45.3

Abbreviations: P. falciparum 5 Plasmodium falciparum, C. elegans 5 Caenorhabditis elegans, T. gondii 5 Toxoplasma gondii, SN 5 sensitivity (%) 5 true
positives/(true positives+false negatives), SP 5 specificity (%) 5 true negatives/(true negatives+false positives).
aProteins ordered on statistical property and test thresholds applied to perform a binary classification.
bThreshold derived from a trial-and-error approach, using the mean as a seed threshold, on benchmark proteins to achieve the greatest number of true
positives and negatives. Same universal rule (i.e. threshold) is applied to P. falciparum and C. elegans data.
cBenchmark Proteins are proteins from published studies with known or expected T-cell responses (source species: T. gondii).

doi:10.1371/journal.pone.0115745.t002

Fig. 3. Example file format of training dataset used in machine learning. There is one protein per line that
consists of the total binding affinity score for each peptide-MHC length combination e.g. 304 combinations for
76 common MHC I alleles (MHC I binds to peptides, typically eight to eleven amino acid residues in length.
Therefore, 76 alleles * 4 peptide lengths 5304 combinations). Binding affinity score 5 an IEDB IC50 (nM)
score ,5000. Each score is weighted by the length of the protein. The scores represent input variables or
predictors. The last column is a 1 or 0 that indicates an expected ‘YES’ or ‘NO’ vaccine candidacy and
represents the target variable. This expectation is based on the subcellular location annotation associated
with the protein in UniProtKB (secreted or membrane-associated 51, internal location 50).

doi:10.1371/journal.pone.0115745.g003
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Using randomforest and predict has the advantage that it outputs an estimated

probability for each protein of belonging to ‘YES’ and ‘NO’ classes e.g. for

UniProt ID ‘A4GWX7’, 19.6% for ‘NO’ and 80.4% for ‘YES’ class. These

probabilities can be used to rank the candidates. The probabilities in effect

encapsulate all peptide-MHC binding scores from a protein and represent the

predicted vaccine candidacy potential. A caveat here is that a protein assigned a

high ‘YES’ probability does not necessarily imply a high probability of an immune

response when injected in a host. However, it is assumed a high probability

protein is more likely to contain the appropriate binding peptides to the restricted

set of host MHC alleles than one with a lower probability.

Results from amino acid conservation classification

It is arguable whether the proposed ML strategy is only indirectly predicting

secreted and membrane-associated proteins owing to the nature of the training

data. Several secreted and membrane-associated proteins with no known

immunogenicity history were also tested with the ML strategy. The challenge is

that there is no way of validating, other than testing in a wet laboratory, if proteins

with predicted low probabilities are truly non-vaccine candidates. The second

proposed strategy, using amino acid conservation scores, requires no training data

and independently supplements the ML strategy. Fig. 4 shows a plot of the

conservation scores computed for a sliding window of nine amino acids in length

along a protein. A window in this instance represents the length of a peptide. The

general shape of the plot is typical for all proteins whereby some regions are more

conserved than others. A binding score at each window/peptide against the 76

common alleles was predicted. Binding peptides with varying affinity strengths

were typically found along the entire length in all tested proteins, as is the case in

Fig. 4. The binding peptide distribution is also in keeping with the expected

Table 3. Sensitivity and specificity for random forest tests applied to peptide-MHC binding scores for vaccine classification of Benchmark dataset.

Training dataset Cross-validationa Benchmarkb

SN SP HE SN SP OE

Plasmodium falciparum 75.0 85.6 20.0 77.3 50.6 36.9

Plasmodium falciparum (R) 38.9 61.7 49.7 58.2 49.7 54.2

Caenorhabditis elegans 63.4 57.5 39.4 36.0 56.5 60.0

Caenorhabditis elegans (R) 55.4 48.3 51.6 52.4 56.4 54.3

Apicomplexans 86.7 80.7 16.1 72.0 82.4 22.5

Apicomplexans (R) 54.0 38.2 42.9 74.0 39.0 42.5

Abbreviations: (R) 5 target variable e.g. 1 or 0 in training data randomly changed for each protein, HE 5 hold-out dataset error (%) i.e. error when predicting
30% of training data, OE 5 overall error (%) i.e. percentage of incorrect predictions, SN 5 sensitivity (%) 5 true positives/(true positives+false negatives),
SP 5 specificity (%) 5 true negatives/(true negatives+false positives).
aCross-validation involved a random sample of 70% from training dataset to build predictive model and remaining 30% used for testing. This was repeated
10 times and predictions averaged (predictions for the same input data fluctuate unless a random seed is set initially).
bBenchmark are proteins from published studies with known or expected T-cell responses (source species: T. gondii) –100% from training data used to build
predictive model.
Note: Number of input variables used to build predictive model 5304 (i.e. number of allele-peptide length combinations derived from 76 common alleles).

doi:10.1371/journal.pone.0115745.t003
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biology. That is, epitopes are expected to naturally occur in both conserved and

non-conserved regions. The aim of the second strategy was to correctly classify

each benchmark protein given only its collection of binding and associated

conservation scores. Three techniques (described later in Materials and Methods)

were used with varying degrees of success. The classification results were: SN

574.6% and SP 570.5% (when using mean difference as a threshold); SN

570.7% and SP 572.9% (with mean threshold); and SN 566.7% and SP 564.7%

(with cumulative counts). All three techniques use a threshold for the binary

classification that can be adjusted giving a trade-off between the two performance

measures. Moreover, as with any threshold technique, prediction values close to

the threshold warrant further evidence to support the classification. Despite the

fluctuating results, the important finding is that there is a statistically significant

relationship between a potential vaccine candidate and the conservation of its

amino acids. That is, a vaccine candidate is significantly more likely to have either

a greater number of less conserved peptides and/or a lower total conservation

score than a non-vaccine candidate (Pearson’s Chi-squared test with Yates’

continuity correction: p-value ,0.001). To further eliminate the possibility that

Fig. 4. Plot of conservation scores computed for binding peptides along a protein (UniProtKB ID: P13664). Each circle represents the amino acid
conservation score computed at a sliding window. The window is of length 9 and slides one residue at a time. The colour of the circle represents binding
affinities against 76 common MHC alleles computed at each window. A window (i.e. a peptide) can theoretically bind to all 76 alleles and colours are
therefore plotted in a set order: no, low, intermediate, and high affinity. For example, a dark blue circle for low affinity indicates there are no intermediate or
high affinity peptides at the window; however, a green circle for high affinity provides no indication of other affinities at the same window. Mean conservation
50.7805; median conservation 50.7946. For protein P13664 (Major surface antigen p30) 54.6% high, 56% intermediate, and 55.9% low binders have
conservation scores below the mean. The study shows that vaccine candidates are significantly more likely to have either a greater number of less
conserved peptides or a lower total conservation score than non-vaccine candidates.

doi:10.1371/journal.pone.0115745.g004
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the results were achieved by chance, the conservation scores were randomly

shuffled and associated with a different binding score. That is, the average mean

conservation for the protein remained the same but the association between the

binding and conservation scores were random. In this instance, the classification

results using mean difference as a threshold were: SN 552.7% and SP 547.9% (p-

value 51).

Comparison to other high-throughput prediction programs

There are alternative programs to the proposed peptide-MHC strategies as the

framework for what constitutes a vaccine candidate in this study is essentially

based on subcellular location. Five high-throughput programs (WoLF PSORT

[47], SignalP [48], TargetP [49], TMHMM [50], and Phobius [51]) were used

with protein sequences from the benchmark proteins as input. These programs

predict protein characteristics relevant to subcellular location but in particular

provide computationally evidence a protein is secreted or membrane-associated

i.e. they can support or oppose a protein as a vaccine candidate. Fig. 5 shows a

column chart as a comparison of the programs’ performances in classifying

membrane-associated or secreted (S3 Supporting Information contains the exact

predicted values). No program on its own provides sufficient evidence to draw

conclusions for vaccine candidacy. Notwithstanding the inaccuracies of the

programs, only WoLF PSORT can predict both membrane and secreted proteins.

The presented strategies are also compared in Fig. 5. They compare favourably in

distinguishing between immune exposed/unexposed proteins but do not

differentiate the subcellular location. The crucial point nevertheless is that only

some of the proteins predicted by the five programs will contain appropriate

binding peptides to the restricted set of host MHC alleles. The peptide-MHC

strategies can help determine these proteins. They are therefore not intended to

compete but complement other evidence gathering programs. It is expected that

an informed consensus towards candidacy will always be derived from multiple

sources of evidence.

The core of the strategies is protein sequences. It is possible that linear

sequences simply lack sufficient information to precisely predict immunogenicity.

Peptide-MHC complexes and T-cell receptors are dynamic three-dimensional

(3D) structures such that structure-based information is expected to more likely

reveal signals for immunogenicity. These signals theoretically can be predicted.

However, a virtual absence of apicomplexan structural data presently rules out a

structure-driven approach. The proposed strategies provide a worthwhile interim

approach until 3D data and appropriate new prediction strategies become readily

available.
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Conclusion

The aim of this study was to determine whether predicted peptide-MHC I binding

scores for thousands of proteins from a target pathogen could contribute evidence

to the in silico discovery of vaccine candidates. Currently there is no published

high-throughput approach for utilising such scores. An initial challenge to the

study was that there is no clear consensus as to what type of protein constitutes an

ideal vaccine candidate for a T-cell mediated response. Consequently, this study

defined a likely vaccine candidate as a protein that is naturally exposed to the

immune system and contains binding peptides to common host MHC alleles; and

conversely, a non-vaccine candidate as an unexposed protein.

The two presented peptide-MHC classification strategies can provide reason-

able evidence in comparison to alternative approaches but are faced with several

performance limiting sources of error. For example, an unknown percentage of

input sequences are incorrect leading to reduced binding and conservation

prediction accuracy. Similarly, an unknown percentage of annotation is incorrect

Fig. 5. Performance comparison between high-throughput subcellular location predictors and peptide-MHC binding strategies. A column chart
showing the sensitivity (SN) and the specificity (SP) performance measures for high-throughput programs in classifying 160 benchmark proteins as either
membrane-associated or secreted. Predictors for membrane 5 TMHMM, Phobius TM, and WoLF PSORT; predictors for secreted 5 Phobius SP, SignalP,
TargetP, and WoLF PSORT. Threshold criteria applied to each program’s specific output to achieve binary classification: TMHMM – membrane if
tmhmm_ExpAA .18$$; Phobius TM – membrane if number of transmembrane domains .0; Phobius SP – secreted if value 5 ‘Y’; SignalP – secreted if
SignalP_D .0.5; TargetP – secreted if value .0.5; WoLF PSORT – membrane if score .16$$ and annotation 5 ‘membrane’, or secreted if score .16$$ and
annotation 5 ‘secreted’ (where $$ is a value recommended by the creator of the program). Machine learning 5 strategy using random forest algorithm with
peptide-MHC binding scores. Conservation 5 strategy using amino acid conservation of predicted binding peptides. Performance measures for peptide-
MHC strategies are derived from classification of benchmark proteins as either vaccine or non-vaccine candidates.

doi:10.1371/journal.pone.0115745.g005
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leading to misclassification for both test and training data. Furthermore, the

prediction programs used have their own inherent inaccuracies. The expectation

is that performances will improve as the quality of data inevitably improves over

time. However, the strategies, even with perfect programs and data, are unlikely to

ever reach perfection given the unpredictability of the biology in question. That is,

both immune-exposed and unexposed proteins are likely to contain high affinity

binding peptides and/or many binding peptides and/or promiscuous binders and/

or peptides that bind to promiscuous MHCs, and conserved and non-conserved

peptides. There is no universal set of rules that can be applied directly to binding

scores to classify candidates. The strategies therefore rely on exploiting subtle

tendencies in the data to achieve their classification of candidates as there is yet no

definitive feature to precisely separate them. For instance, vaccine candidates have

a tendency to have more binding peptides with low conservation scores and/or

lower total conservation scores and/or average stronger binding affinities than

non-vaccine candidates. False candidates are expected since exposed proteins

containing binding peptides with predominantly high conservation scores and/or

average weak binding affinities do exist; and conversely, unexposed proteins exist

that contain binding peptides with predominantly low conservation scores and/or

average strong binding affinities. An important point in the strategies’ favour is

that the alternative approaches discussed only predict immune-exposed or

unexposed proteins and do not take peptide binding affinities into account. The

alternative approaches still require a filtering strategy otherwise every predicted

exposed protein would require laboratory validation. The proposed strategies can

contribute filtering evidence to the overall in silico vaccine discovery pool of

evidence to help identify those proteins more worthy of validation. This ultimately

will save time and money by reducing the number of false candidates assigned for

validation. Random forest especially provides evidence in the form of an

estimated probability for ranking candidates.

Materials and Methods

Six groups of tests were performed: 1) Accuracy test on peptide-MHC binding

predictor, 2) MHC class I binding test on the entire known proteome of T. gondii,

3) rule-based test, 4) comparison test with existing high-throughput programs

that can indicate a protein’s subcellular location, 5) machine learning test, and 6)

binding and conservation score test. Tests three to six are primarily for vaccine

candidate classification. All tests that required binding scores used a Linux

standalone version of the IEDB MHC I binding tools downloaded from http://

tools.immuneepitope.org/main/html/download.html. Consensus [52, 53] was the

chosen prediction method, which is the recommendation by the program

providers. This method consecutively uses several prediction methods. For

example, for each MHC allele and peptide length combination, the artificial

neural network (ANN) method [54] is tried first, stabilized matrix method

(SMM) [55] is tried next, and then scoring matrices derived from combinatorial
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peptide libraries (Comblib_Sidney2008) [56], and finally NetMHCpan [57] is

tried if no previous method was available for the allele-length combination.

Accuracy test on peptide-MHC binding predictor

The National Center for Biotechnology Information (NCBI) GI number for the

parent proteins of 328 experimentally derived T. gondii peptides were obtained

from the Immune Epitope Database (http://www.iedb.org/): 148 of these peptides

were observed in published studies to bind to specific MHC I alleles with a

measured affinity, and the remaining 180 peptides observed not to bind to MHC I

alleles. The parent protein sequences were downloaded from NCBI for input to

the peptide-MHC binding predictor. An in-house Perl script compared the

observed affinity strength of each peptide to a particular MHC allele with the

predicted affinity strength to the same allele.

MHC class I binding test on the entire known proteome of T. gondii

The protein sequence for every T. gondii protein from the Universal Protein

Resource knowledgebase (UniProtKB) was input into the peptide-MHC binding

predictor. The purpose was to predict the peptides binding to the 76 common

MHC I alleles (in effect, each protein was tested against 304 MHC allele-peptide

length combinations). An in-house Perl script parsed the output to determine

which proteins contained high-affinity peptides (i.e. IC50 (nM) binding score

,50).

Rule-based test for vaccine candidate classification

Protein sequences for 160 T.gondii proteins (75 positives and 85 negatives) were

downloaded from UniProKB: 22 of the positive proteins have been observed to

induce CMI responses and 48 have been experimentally shown to be membrane-

associated or secreted; 11 have epitopes identified experimentally and some of

these epitopes elicit significant humoral and cellular immune responses in

vaccinated mice. The 85 negative proteins have UniProtKB annotated subcellular

locations other than membrane-associated or secreted. All 160 proteins are

referred to in the study as the benchmark dataset (see S2 Supporting

Information).

The protein sequences were input into the peptide-MHC binding predictor to

test for their binding affinity to the 76 common human MHC I alleles. This

produced a binding score at each subsequence (i.e. a sliding window position

along the sequence) of each protein and for each of the 304 MHC allele-peptide

length combinations. More than one score can be output per subsequence when

using the Consensus method.

Proteins were ordered and classified on: Lowest IC50 score per protein

(threshold value 51.5), number of high-affinity peptides per protein (threshold

value 5200), number of different MHC alleles per protein that bound to high-

affinity peptides (threshold value 574), maximum number of high-affinity
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peptides per protein that bound to a particular allele-peptide length combination

e.g. protein Q6W3D0 was predicted to contain 58 high-affinity peptides that

bound to the same allele (HLA-C*03:03) with the same peptide length of 8

(threshold value 510), and total binding score per protein weighted for the length

of protein (threshold value 532289). Another test involved grouping proteins that

had high-affinity peptides that bound to the same MHC allele or allele-peptide

length combination (i.e. promiscuous allele). This test was to determine if ‘YES’

candidates had preference to one particular allele and ‘NO’ candidates to another.

The same rules (i.e. threshold values) used for the benchmark dataset were

applied to binding scores computed from 124 P. falciparum and 760 C. elegans

protein sequences. These proteins were from a mixture of sub-cellular locations

(half have UniProt annotation as secreted or membrane-associated and

considered likely vaccine candidates; the other half have annotation related to

nuclear and cytoplasmic locations and considered less likely vaccine candidates).

Machine learning test for vaccine candidate classification

Three training datasets were created derived from: 1) 187 proteins from five

different pathogenic species of the phylum Apicomplexa (T. gondii, N. caninum,

P. falciparum, Cryptosporidium parvum, Eimeria tenella), 2) 760 proteins from C.

elegans, and 3) 124 proteins from P. falciparum. Protein sequences were

downloaded from UniProtKB. These sequences were consecutively input into the

peptide-MHC binding predictor to generate binding scores against 304 allele-

peptide length combinations per protein for each dataset. An in-house Perl script

parsed the output and added the binding score (i.e. IC50 (nM) ,5000) computed

for each peptide-MHC length combination to obtain a total binding score per

combination. The total score was divided by the length of the protein as there is a

strong positive correlation between the total and length. An average score was

computed if the output contained more than one score at each sliding window

position. A separate file for each training dataset was compiled in a format as

shown in Fig. 3. Note that other variations of the binding score statistics were

tested as training data: lowest IC50 score for each peptide-MHC length

combination, number of binding peptides per protein, number of different MHC

alleles per protein binding to high-affinity peptides, and total binding score

without length weighting. Proteins were selected based on subcellular location

annotation in UniProtKB, although experimentally validated annotation is limited

for T. gondii. Proteins from apicomplexan species that are known not to infect

humans (e.g. E. tenella) were included to increase the number of training proteins.

This seemed a reasonable approach, as the phylum Apicomplexa is monophyletic

[58] and many of the biological processes and molecules possessed by T. gondii

can also be found in other closely related species [19, 20]. Immune-exposed

proteins were assigned ‘1’ as the target variable; unexposed assigned ‘0’.

The same benchmark dataset as per the rule-based test was used. However, the

predicted binding scores for the 304 allele-peptide length combinations were
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compiled into the same format as Fig. 3, except no target variable column was

required.

Two supervised machine learning algorithms were used via R functions from

packages to build predictive classification models: random forest via the

randomForest R function [59]; and support vector machines (SVM) via the ksvm R

function [60], which is contained in the kernlab package. The best result for SVM

was a sensitivity of 68.2%, specificity 73.1%, and an overall error rate of 29.6%.

Random forest was chosen as the best method overall for solving this specific

classification problem because it had an overall error rate of 22.5%. The predict R

function with argument ‘type 5 ‘‘prob’’’ was used to apply the models to the

benchmark dataset. The argument instructs the output to have a class probability

distribution at each terminal node (or leaf) rather than a single ‘YES’ or ‘NO’ class

label. A threshold of greater than or equal to 0.5 for a vaccine candidate was used

in the final classification of the benchmark proteins. The algorithm-specific R

functions are described in S1 Supporting Information and pertinent arguments

and intricacies are highlighted.

Conservation and binding scores test for vaccine candidate

classification

A standalone BLASTP [61] on NCBI nr database was used with the benchmark

proteins as queries. BLAST downloaded from ftp://ftp.ncbi.nlm.nih.gov/blast/db/

ncbi-blast-2.2.25+-ia32-linux.tar.gz and nr downloaded from ftp://ftp.ncbi.nlm.

nih.gov/blast/db/. Homologous proteins with a 90% identity were selected from

the BLASTP output. Amino acid conservation scores were computed for peptides

of length nine to eleven for the entire length of each benchmark protein. For

example, for a peptide length of 9, a conservation score was computed for 9 amino

acids at a time sequentially moving one amino acid along the protein (i.e. a sliding

window). This involved generating MSAs for each window/peptide with the

homologous proteins and then computing an average conservation score for the

peptide. Two standalone programs were used: clustal-omega (http://www.ebi.ac.

uk/Tools/msa/clustalo/) for the MSAs and a conservation score program from

http://compbio.cs.princeton.edu/conservation. Each peptide-MHC binding score

for the 304 MHC allele-peptide length combinations were associated with the

appropriate conservation score. To help visualise the data refer to Fig. 4. Three

different counting classification techniques were applied to the data with the aim

to obtain the optimum number of true positives and negatives: 1) using a mean

threshold – if the binding peptide had a conservation score below the protein’s

mean conservation then the ‘YES’ tally was increased by one, otherwise the ‘NO’

tally was increased by one (the median, which was extremely similar in value to

the mean, was also used as a threshold but gave slightly poorer results); 2) using a

mean difference threshold – the difference between the peptide and the mean

conservation scores were accumulated for each binding peptide along the protein.

The total difference below the mean was subtracted by the total difference above.

A positive result indicates a ‘YES’ (see the Mean_Diff column in S3 Supporting
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Information); and 3) cumulative counts of the binding peptide conservation

scores per protein – proteins were ordered in ascending cumulative counts i.e.

from least to the most conserved. The length of the protein is a factor as there is a

positive correlation between the number of binding peptides and length of the

protein. The cumulative count was divided by the length of the protein prior to

ordering. The median cumulative count was used as the threshold for the binary

classification i.e. ‘YES’ if below and ‘NO’ if above threshold. Note that

homologous proteins with a 50% identity were also tested but provided less

accurate classifications. Also, some benchmark proteins had as few as three

homologous proteins when using 90% identity. Incorrect choices or an

inappropriate number of homologs could be a potential source for classification

errors.

Comparison prediction programs

Standalone Linux versions of the prediction programs used in this study were

obtained from: http://wolfpsort.org/WoLFPSORT_package/version0.2/(WoLF

PSORT); http://www.cbs.dtu.dk/services/SignalP/(SignalP); http://www.cbs.dtu.

dk/services/TargetP/(TargetP); http://www.cbs.dtu.dk/services/TMHMM/

(TMHMM); and http://phobius.binf.ku.dk/instructions.html (Phobius).

Supporting Information

S1 Supporting Information. Provides background information on T-cell

epitope prediction and machine learning algorithms used in the study.

doi:10.1371/journal.pone.0115745.s001 (PDF)

S2 Supporting Information. Contains a detailed compilation of proteins used

in the benchmark dataset.

doi:10.1371/journal.pone.0115745.s002 (PDF)

S3 Supporting Information. Microsoft Excel spreadsheets containing results

for the benchmark dataset.

doi:10.1371/journal.pone.0115745.s003 (XLSX)
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