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Abstract

Understanding and quantifying the temperature dependence of population

parameters, such as intrinsic growth rate and carrying capacity, is critical for

predicting the ecological responses to environmental change. Many studies pro-

vide empirical estimates of such temperature dependencies, but a thorough

investigation of the methods used to infer them has not been performed yet.

We created artificial population time series using a stochastic logistic model

parameterized with the Arrhenius equation, so that activation energy drives the

temperature dependence of population parameters. We simulated different

experimental designs and used different inference methods, varying the likeli-

hood functions and other aspects of the parameter estimation methods. Finally,

we applied the best performing inference methods to real data for the species

Paramecium caudatum. The relative error of the estimates of activation energy

varied between 5% and 30%. The fraction of habitat sampled played the most

important role in determining the relative error; sampling at least 1% of the

habitat kept it below 50%. We found that methods that simultaneously use all

time series data (direct methods) and methods that estimate population param-

eters separately for each temperature (indirect methods) are complementary.

Indirect methods provide a clearer insight into the shape of the functional form

describing the temperature dependence of population parameters; direct meth-

ods enable a more accurate estimation of the parameters of such functional

forms. Using both methods, we found that growth rate and carrying capacity of

Paramecium caudatum scale with temperature according to different activation

energies. Our study shows how careful choice of experimental design and infer-

ence methods can increase the accuracy of the inferred relationships between

temperature and population parameters. The comparison of estimation meth-

ods provided here can increase the accuracy of model predictions, with impor-

tant implications in understanding and predicting the effects of temperature on

the dynamics of populations.

Introduction

Explaining the distribution and abundance of organisms

requires knowledge of the environmental dependence of

organismal properties (Hall et al. 1992; Ives 1995),

including biological rates such as birth and death rate

(Volkov et al. 2003). Furthermore, predicting the effects

of environmental change on populations benefits from

understanding the environmental dependence of biologi-

cal processes (Ives 1995; Thomas et al. 2004; Deutsch

et al. 2008; Vasseur et al. 2014). Empirical relationships

between the rates of physiological processes and one par-

ticularly important environmental variable, temperature,

have been documented for many processes and taxa
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(Gillooly et al. 2001, 2002; Dell et al. 2010), including

rates of food ingestion by individuals (Englund et al.

2011; O’Connor et al. 2011; Dell et al. 2014), rates of

population growth (Savage et al. 2004), and rates of vari-

ous ecosystem processes (Ernest et al. 2003; Allen et al.

2005; Yvon-Durocher et al. 2012). These and other rela-

tionships have been used to predict effects of temperature

on population dynamics (Vasseur and McCann 2005).

The overall aim of this paper is to provide improved

inference methods for estimating such relationships.

Methods used to infer the population parameters from

time series data typically range from classic maximum

likelihood estimation (Hilborn 1997) to Bayesian infer-

ence for partially observed Markov processes (Knape and

De Valpine 2012; Dennis and Ponciano 2014). When esti-

mating population parameters, one needs a description of

the sampling error associated with any experiment or field

survey, as well as an explicit model of the dynamics (De

Valpine and Hastings 2002; Dennis et al. 2006; Dennis

and Ponciano 2014). An important decision is thus

whether inference method should explicitly account for

the sampling process, that is, the process that provides

the actual counts of number of individuals. Unless the

entire habitat is sampled (so that every individual is

counted), the observed number of individuals will be a

sample of the actual abundance (De Valpine and Hastings

2002; Dennis et al. 2006; Ross 2012) and not including

sampling error can lead to erroneous parameter estimates

(Ionides et al. 2006). Fitting stochastic population

dynamic models to observed data while taking into

account sampling error is a nontrivial endeavor (Ionides

et al. 2006; Ross 2012). Hence, it would be very useful to

know when such an approach is necessary and when a

simpler approach (e.g., a deterministic model with no

accounting for sampling error) provides sufficiently accu-

rate and precise estimates.

We focus on improving inference of the relationship

between two population parameters (intrinsic growth rate

r and carrying capacity K) and temperature. The Arrhe-

nius law, which was originally proposed to describe the

temperature dependence of the specific reaction rate con-

stant in chemical reactions (Van’t Hoff 1884; Arrhenius

1889), is used to describe the temperature dependence of

whole-organism metabolic rates such as growth rate

(Schoolfield et al. 1981). The Arrhenius law predicts that

the natural logarithm of mass-corrected metabolic rates is

a linear function of the inverse absolute temperature. The

slope of this relationship gives the activation energy of

metabolism (Arrhenius 1889; Schoolfield et al. 1981), and

the intercept gives the natural logarithm of the normaliza-

tion constant (Brown et al. 2004). The temperature

dependence of r has been studied extensively (Dell et al.

2010; Corkrey et al. 2012), especially in microbes (Monod

1942; Weisse and Montagnes 1998; Weisse et al. 2002;

Jang and Morin 2004; Price and Sowers 2004; Krenek

et al. 2011, 2012), rotifers (Montagnes et al. 2001), algae

(Montagnes and Franklin 2001), and insects (Irlich et al.

2009; Amarasekare and Sifuentes 2012). The temperature

dependence of K has received less attention (Yodzis and

Innes 1992; Brown et al. 2004; Savage et al. 2004; Vasseur

and McCann 2005). In this study, we focus on the statis-

tical methods used to infer such temperature rate rela-

tionships. We do not enter the debate about the validity

of Arrhenius law (Knies and Kingsolver 2010) or on the

exact value of activation energy (Glazier 2006), although

in the discussion we will indicate how our insights can be

used to address these debates.

Data needed to assess the temperature dependence of

population parameters come in the form of time series

collected at different (fixed) temperatures (Jang and

Morin 2004; Beveridge et al. 2010; Krenek et al. 2012;

Leary et al. 2012). This is performed in experiments in

which single-species populations are grown at a variety of

temperatures, starting from very low abundances, until

carrying capacity is reached. Population size is recorded

with a certain temporal frequency, most often from a

subsample of the total habitat (i.e., the population is sam-

pled), thus providing a time series for each temperature.

The estimates of r and K obtained at each temperature

over a range of temperatures are used to estimate activa-

tion energy through the Arrhenius law (Gillooly et al.

2002; Savage et al. 2004). Although our study assumes a

temperature range for which the Arrhenius law is appro-

priate, the results will generalize to a wider range of tem-

peratures. We term the use of this approach an “indirect

method” of estimating the activation energy. This is, to

date, the most common approach to estimating activation

energy from growth processes (Weisse et al. 2002; Price

and Sowers 2004; Savage et al. 2004; Angiletta 2006;

Huang et al. 2011; Krenek et al. 2011, 2012; Corkrey

et al. 2012) and from other processes (Rall et al. 2009;

Englund et al. 2011). An alternative approach, which we

term the “direct method”, is to directly fit a model of the

temperature dependence of population dynamics to the

entire dataset, that is, to fit to population dynamics from

all the temperature treatments simultaneously. Based on

limited previous comparisons of indirect and direct esti-

mation methods, we expect the direct method to have

higher accuracy and precision than the indirect method

(Schoolfield et al. 1981; Price and Sowers 2004), because

it is combining more information directly in the inference

process to infer fewer parameters. As well as making this

comparison, we illustrate the ecological consequences of

the observed differences in accuracy and precision.

In addition to choices about inference methods,

a researcher makes choices about the design of the
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experiments used to produce the observed data. Here, we

assess the importance of different experimental designs

and inference methods on the ability to infer activation

energy from time series data on single-species experimen-

tal microcosms. We assess the performance of different

inference methods given particular choices of experimen-

tal designs by estimating the activation energy of simu-

lated population data. We also demonstrate application of

the methods to real data from experiments with Parame-

cium caudatum, a well-studied freshwater protist species

(Krenek et al. 2011, 2012; Fig. 1). We used only one spe-

cies as a case study because the focus of our study is

methodological, rather than descriptive. We chose Para-

mecium caudatum because it shows population growth

that is well captured by the stochastic logistic equation

(Leary and Petchey 2009). We provide advice for experi-

mentalists about the most relevant factors affecting the

precision and the accuracy of the estimates of activation

energy for different inference methods.

To our knowledge, there has been no thorough and

systematic exploration of the relative importance of these

issues (i.e., influence of experimental design, sampling

design, model type, and inference method) for the accu-

racy and precision of estimates of environmental depen-

dence of ecological parameters such as the temperature

dependence of intrinsic growth rate and carrying capacity.

The methods are illustrated with estimation of r and K,

but can be generalized to estimation of the activation

energy of other biological rates, such as maximum con-

sumption rate (Rall et al. 2009; Englund et al. 2011), and

effects of environmental variables other than temperature,

for example, nutrient availability (Weisse et al. 2002;

Price and Sowers 2004).

Methods

We describe population dynamics using a continuous

time, stochastic logistic model (N�asell 2001), a generaliza-

tion of the deterministic logistic equation in continuous

time (McKane and Newman 2004; Gardinier 2009). Sto-

chastic models can provide fundamentally different results

from their deterministic counterparts (Ebenman et al.

2004; McKane and Newman 2005) and provide a more

detailed description of the mechanisms affecting popula-

tion dynamics (Black and McKane 2012). For example,

the carrying capacity (K) in the deterministic logistic

equation is the equilibrium population density of a given

species, namely the maximum sustainable population size

given the available resources (Malthus 1798; Turchin

2003). Conversely in stochastic logistic growth models, K

represents the mean of a long-term stationary distribution

around which the population fluctuates (N�asell 2001;

Dennis et al. 2006).

We performed a simulation study to assess the impor-

tance of experimental protocols and inference methods

on the ability to estimate the activation energy for the

temperature dependence of population parameters. This

involved simulating population dynamic data using a

model with known activation energy in section “Model

and simulations”, and comparison of this true activation

energy to that obtained by various inference methods in

section “Parameter inference”. We illustrated the best per-

forming methods by estimating activation energy from

real population dynamic data of a free-living freshwater

protist species, Paramecium caudatum in section “Case

study”.

Model and Simulations

We used a simple stochastic birth and death processes

(BDP) model to generate time series data of population

dynamics

B n; hð Þ ¼ h1 Tð Þn 1� h2 Tð Þn
N

� �
; and

D n; hð Þ ¼ h3ðTÞn;
(1)

where 0 ≤ n ≤ N is the (integer) number of individuals,

N is population size at which there is zero probability of

births, h1 and h3 are the per capita birth and death rates

in the absence of density dependence, respectively (units:

day�1), h2 controls the strength of density-dependent

effects on the probability of births (dimensionless), and

(T) indicates that all h parameters are dependent on
Figure 1. Picture of the living freshwater species Paramecium

caudatum (courtesy of Dr. Renate Radek).
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temperature, T (measured in Kelvin). We used the BDP 1

because it allows to take into account all biological mech-

anisms affecting population dynamics (for more details

on the model see section “Details on the formulation of

the stochastic model” in Supporting information); for

simplicity, we assume that density dependence only affects

probabilities of births, although in reality, density depen-

dence likely influences the probability of both births and

deaths (i.e., both births and deaths in process 1 would be

influenced by N). We introduce temperature dependence

to the h parameters using the Arrhenius equation (Gillo-

oly et al. 2001)

hi Tð Þ ¼ hi0 exp
EA;iðT � T0Þ

kBTT0
; (2)

where i = 1,2,3 denotes the population parameter in the

BDP 1, EA,i is the activation energy (units: Electron-

Volts = eV) for parameter hi, kB is the Boltzmann

constant, and T0 is a reference baseline temperature,

which we assume to be 301.5 K (28°C). For most of our

analyses, we assume the same EA,i for all parameters.

The mean population abundance over time follows the

logistic equation

dn tð Þ
dt

¼ B nð Þ � D nð Þ ¼ r Tð Þn 1� n

K Tð Þ
� �

; (3)

where r(T) = h1(T) – h3(T) is the maximum population

growth rate and KðTÞ ¼ N h1ðTÞ � h3ðTÞð Þ= h1ðTÞh2ðTÞð Þ
is the carrying capacity (N�asell 2001). The temperature

dependencies of growth rate and carrying capacity are thus

rðTÞ ¼ r0e
EAðT�T0Þ
kBTT0 ; (4)

KðTÞ ¼ K0Ne
�EAðT�T0Þ

kBTT0 ; (5)

where r0 = h01 – h30 and K0 ¼ h10 � h30ð Þ= h10h20ð Þ are

the growth rate and carrying capacity at T0. Expressions 4

and 5 indicate that growth rate and carrying capacity

should increase and decrease with temperature, respec-

tively (Savage et al. 2004).

We simulated the process 1 and the relations 2 using

the well-known Gillespie algorithm (Gillespie 1976) (see

Fig. 2 for examples). This produced continuous time
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Figure 2. Example of temperature

dependence of a rate for three different

activation energies (Panel A) standardized to

have the same value at 301.15 K (Huey and

Kingsolver 2011). Panels B and C show the

effect of activation energy (panel B) and

temperature (panel C) on time series originated

by the BDP 1 with parameters scaled using

equation 2. The simulated time series all have

an initial condition of 100 individuals are

sampled everyday for 15 days

(TIMESAMP = 15) and are subjected to

demographic noise and sampling error

(FRACSAMP = 0.01). The continuous lines

show the deterministic solution 13. Panel D

shows real time series data (black dots) for 3

replicates of Paramecium caudatum

monocultures (maximum FRACSAMP = 0.001).

We show the corresponding fitted means

(continuous lines) and modeled variances

(shaded areas) using both direct (red) and

indirect (black) methods. The estimated

activation energies are shown in Figure 6.
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series recording the exact times of individual birth and

death events. To make simulated data more representative

of experimental data, we then sampled population size at

discrete times as if only a fraction of the population had

been sampled and counted (examples are shown in

Fig. 2). To simulate sampling, we assumed that the num-

bers measured were drawn from a Poisson distribution

centered on the expected number of individuals contained

in a sample from the population, where the sample size

FRACSAMP is the fraction of the habitat searched. We

do not include an additional source of error from the

imperfect ability of observers to count all individuals in a

sample; thus, demographic stochasticity and sampling

error associated with the fraction of the habitat searched

(FRACSAMP) are the only two sources of stochasticity in

our simulated experimental data.

We chose parameter values for equations 1 and 2 that

lead to similar simulated population dynamics to those

observed in laboratory experiments (see Fig. 2) and that

are consistent with previously published values (Savage

et al. 2004). We set the reference temperature T0 = 28°C
and scaled the other population parameters relative to

their probabilities at that temperature: h1(T0) =
1.5 day�1, h2 T0ð Þ ¼ 1, h3(T0) = 0.5 day�1. The popula-

tion size at which the probability of births is zero, N, was

fixed throughout this study to N = 15,000 individuals.

The importance of this value is detailed in the discussion

and here was chosen in order to represent a typical labo-

ratory experiment with a microcosm of 10 mL.

These choices lead to a maximum population growth

rate of r(T0) = 1 day�1 and a minimum carrying capacity

of K(T0) = 10,000 individuals. All simulations began with

an initial population size of n0 = 100 individuals and

lasted 15 days. We simulated equations 1 and 2 under 81

different sets of experimental conditions, representing the

range of experimental strategies likely to be considered

when conducting laboratory experiments to estimate acti-

vation energy. These 81 experiments arise from a fully

factorial experimental design in which four factors are

varied, with three different values each. We varied

• The number of different temperatures considered,

TEMPSAMP. We generated time series at 11 different

temperatures from 18 to 28°C in steps of 1°C but var-

ied the numbers of different temperatures used in the

estimation of activation energy: either using all 11 tem-

peratures, using only six different temperatures (from

18 to 28°C in steps of 2°C), or using just three different

temperatures (18, 23 and 28°C). Those temperature

gradients were chosen in order to capture the tempera-

ture range where we expect the Arrhenius law 2 to be

valid. Note that if a wider range of temperatures were

to be investigated, then the rates may start to decrease

at higher temperatures, requiring fitting of a hump-

shaped function rather than the Arrhenius equation

(Corkrey et al. 2012; Krenek et al. 2012).

• The number of replicate experiments at each tempera-

ture and activation energy, REPS. We considered one,

three, or five replicates at each temperature. While esti-

mation using one replicate per temperature is possible,

from three to five are typically used in experiments

where population time series are recorded (Leary and

Petchey 2009; Krenek et al. 2011).

• The number of samples taken during an experiment,

TIMESAMP. We considered once every three days

(TIMESAMP = 5), twice every three days (TIMES-

AMP = 10), or once a day (TIMESAMP = 15) over the

course of each 15 days experiment. Fifteen days were

sufficient to capture both the growth phase and the

equilibrium phase (carrying capacity) of the population

dynamics.

• The fraction of habitat sampled, FRACSAMP. We con-

sidered 1%, 0.5%, and 0.1% of the entire habitat

(FRACSAMP = 0.01, 0.005 and 0.001), reproducing the

typical search effort of experiments (De Valpine and

Hastings 2002; Dennis et al. 2006).

For each experimental design, we then estimate activa-

tion energy using different methods.

Parameter inference

To conduct parameter inference, we need a mathematical

function defining the probability of a set of parameters

given the data, that is, the likelihood function. We com-

pared different methods for inferring activation energy

(summarized in Table 1) using five different likelihood

functions (for details on the derivation of the likelihood

functions see section “Likelihoods and inference” in Sup-

porting information). The model underpinning methods

M1 and M2 is the solution of equation 3, that is, the likeli-

hood function is parameterized using only the mean popu-

lation abundance overtime, assuming that the dynamics are

deterministic. The second model (underpinning methods

M3–M6) assumes that the dynamics are demographically

stochastic but that there is no sampling error; the corre-

spondent likelihood function is parameterized using both

the mean and the variance of population abundance (see

section “Details on the formulation of the stochastic

model” in Supporting information and Ross et al. 2009 for

the diffusion approximation used in the derivation of the

population variance). In methods M7–M8, we add to the

likelihood function of methods M3–M6 a correction taking

into account for the sampling error.

Methods M1–M8 are defined as indirect as they adopt

the common approach of inferring activation energy
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indirectly, that is, population growth rates (r) or carrying

capacities (K) are inferred at different temperatures. Acti-

vation energy is then deduced from the relationship

between these parameters and the inverse energy 1/kBT

(see Fig. 2B) given by

log K Tð Þ=r Tð Þð Þ ¼ C1 þ 2EA
1

kBT
; (6)

log r Tð Þð Þ ¼ C2 � EA
1

kBT
; (7)

where C1 = log(N/h10/h20) � 2EAkB/T0 and C2 ¼ log

ðh10 � h30Þ þ EAkB=T0 are two temperature-independent

constants. Activation energy is the slope of these relation-

ships, derived using standard linear regression between

the logarithm of the parameters of the logistic equation

and the inverse temperature (Schoolfield et al. 1981; see

Fig. 2B), as it has been extensively performed in previous

studies (Schoolfield et al. 1981; Gillooly et al. 2001, 2002;

Savage et al. 2004).

The other approach we take is to infer activation

energy directly. Method M9 is a generalization of meth-

ods M5–M6, and its likelihood is obtained by summing

the likelihood underpinning methods M5–M6 over all

observed temperatures. Similarly, method M10 is a gener-

alization of methods M7–M8 and takes into account the

sampling error. The likelihood of method M10 is

obtained by summing the likelihoods of models M7–M8

over all observed temperatures (see section “Likelihoods

and inference” for more details on the direct methods).

The indirect methods used to infer activation energy are

characterized by the choice of one parameter (growth rate

or carrying capacity) whose temperature dependence

(relations 6 and 7) provides an estimate of activation

energy. Direct methods, on the other hand, provide an

estimate of activation energy from the global temperature

dependency of all the parameters of model 1.

For each inference algorithm and experiment, we mea-

sured the relative error (R) and precision (P) of the esti-

mate given by

R ¼ EA �mðEAÞ
EA

; P ¼ seðEAÞ
EA

; (8)

where EA is the real value of activation energy used to

produce the simulated data, m(EA) is the mean of the

estimate, and se(EA) is the standard error of the estimate.

The accuracy of the estimates of activation energy is given

by the inverse of the relative error R. When performing

MLE, all the distributions of the parameters were

assumed; Gaussian and the standard deviation were auto-

matically inferred, while, when performing MCMC, we

always checked the shape of the distribution to be a

Gaussian, especially when performing the linear regres-

sions 6 and 7 in the indirect models. Note that an

increase in precision and accuracy corresponds to a

decrease in the percentage given; in other words, high

accuracy and precision correspond with low values of R

and P.

We then applied classification and regression tree

analysis (CART) (Ripley 2007) to the absolute value of

the relative error of the estimates of activation energy

(the response variable) for each of the methods in

Table 1. Methods to infer activation energy.

Inference method Likelihood function Parameter used Estimate Method Corr. Comp. time (h)

M1 Lphen(Θ) (15) logðr Tð ÞÞ INDIRECT MLE NO 0.5*

M2 Lphen(Θ) (15) logðK Tð ÞÞ INDIRECT MLE NO 0.5*

M3 L1(h
0
) (16) logðr Tð ÞÞ INDIRECT MLE NO 0.5*

M4 L1(h
0
) (16) logðKðTÞ=r Tð ÞÞ INDIRECT MLE NO 0.5*

M5 L1(h
0
) (16) logðr Tð ÞÞ INDIRECT MCMC NO 1

M6 L1(h
0
) (16) logðKðTÞ=r Tð ÞÞ INDIRECT MCMC NO 1

M7 L2(h
0
) (18) logðr Tð ÞÞ INDIRECT MCMC YES 2

M8 L2(h
0
) (18) logðKðTÞ=r Tð ÞÞ INDIRECT MCMC YES 2

M9 LD1 ðh00; h4Þ (19) log(EA) DIRECT MCMC NO 1.5

M10 LD2 ðh00; h4Þ (20) log(EA) DIRECT MCMC YES 2.5

Column three (parameter used) specifies which parameter is used to obtain the estimate of activation energy. Column five (Method) refers to the

statistical framework used, that is, MLE (maximum likelihood estimation) or MCMC (Markov chain Monte Carlo). Column six (Corr.) states

whether the correction for sampling error was implemented (YES) or not (NO). The last column of the table shows computational times of each

method when inferring activation energy using the same simulated data for all inference methods (FRACSAMP = 0.01, REP = 5, TIMESAMP = 10,

TEMPSAMP = 11) for a fixed activation energy (EA = 0.2 eV). The computational time was measured on a desktop computer whose processor is

Intel(R) Xenon(R) E5645 2.4 GHz, with installed RAM of 12 GB. The numbers denoted by * are widely variable even on the same operating sys-

tem. In fact, frequently, the algorithm returns NA for the mean and or the variance of the parameter estimates and the time taken to obtain the

parameter estimates are highly variable. The numbers reported are chosen as representative from the runs that reported real numbers for the

mean and variance of the parameter estimates.
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Table 1, in order to assess the relative importance of dif-

ferent experimental factors (the explanatory variables)

and their interaction (see Fig. 3). A regression tree is con-

structed by repeated splits of the data into mutually

exclusive groups. Each split is defined by values less than

some chosen value of one of the experimental factors. At

each split, the data are partitioned into two groups as

homogenous as possible. Each group is distinguished by

the mean of the absolute value of the relative error of the

estimate of activation energy and the values of the experi-

mental factors that define it (De’ath and Fabricius 2000;

Ripley 2007). Splits are chosen in order to minimize the

sum of squared error between the observation and the

mean in each node of the tree. The splitting procedure is

then applied to each group separately partitioning the

response into homogeneous groups and keeping the tree

sensibly small. Appropriate tree size is determined setting

a threshold in the reduction in homogeneity measure

(De’ath and Fabricius 2000). Regression trees are a pow-

erful tool for their capacity of interactive exploration and

description of different subsets of the data and are often

used instead of more classic linear model analysis (De’ath

and Fabricius 2000).

Case study

As a case study, we present data from a microcosm exper-

iment (Leary and Petchey 2009) in which time series of

abundance were collected along a gradient of six different

temperatures between 18 and 28°C, where there were

three replicates and TEMPSAMP = 6 (please see Leary

and Petchey 2009 for supplementary detail). In this case

study, the fraction of habitat searched (FRACSAMP) and

the frequency of sampling (TIMESAMP) were variable,

the latter depending on the temperature and the former

depending on the observed density; this was accounted
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Figure 3. The results of the classification and regression tree (CART) analysis (Ripley 2007) of the relative error of the estimates of activation

energy. The number at the leaves of the tree indicates the mean percentage value of the relative error of the estimate (see expression 8) over all

the simulated experiments, following partitioning of the data in the manor specified by the tree. The threshold above each node indicates the

split criterion used to separate the data. To each tree is associate a bar chart showing the mean percentage value of each leaf. The six panels

correspond to six of the models specified in Table 1: model M1 (panel A), M3 (panel B), M5 (panel C), M7 (panel D), M9 (panel E), and M10

(panel F).
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for in the likelihood functions. We estimated the activa-

tion energy of the protist species Paramecium caudatum

in these microcosm experiments using methods M1, M2,

M7, M8, and M10 (see Table 1 for definitions). Methods

M7, M8, and M10 were used because we found them to

be the most effective in estimating activation energy.

Methods M1 and M2 (using the phenomenological likeli-

hood 15, section “Likelihoods and inference”) in Support-

ing information were included to act as a comparison

with the best performing methods because we wanted to

investigate how important their lack of accuracy and pre-

cision could be when estimating activation energy (see

Fig. S2). We also found that real data do not strictly obey

to the theory presented in (Savage et al. 2004) for carry-

ing capacity (see Fig. 6B); for this reason, while using

model M10, we implemented a likelihood with two differ-

ent activation energies, one for growth rate (EA,r) and one

for carrying capacity (EA,K).

Results

Activation energy was estimated with a wide range of

accuracies across the different experimental conditions

and inference methods considered, varying from high

accuracy (relative error estimates being within <5% of

the mean value on average) to low accuracy (relative

error estimates being >300% of the average; Fig. 3). The

fraction of the habitat sampled, FRACSAMP, was the

most important experimental factor influencing the

accuracy of activation energy estimates, as revealed by

FRACSAMP consistently being the first split in five of

six CART analysis (Fig. 3). An exception was when

using method M1 (Fig. 3A), the phenomenological likeli-

hood (equation 15, section “Likelihoods and inference”)

in Supporting information for parameter inference,

which in general, produced relatively inaccurate esti-

mates of activation energy. Therefore, for most methods,

sampling >0.5% of the habitat leads to the biggest

improvement in accuracy (decrease in relative error R)

in the estimation of activation energy across all experi-

mental factors. Also for the indirect methods which use

carrying capacity as a parameter to infer activation

energy (methods M2, M4, M6, and M8 in Table 1) the

fraction of habitat searched is the most important exper-

imental factor influencing the accuracy of activation

energy estimates (see Fig. S1).

After FRACSAMP, there was no consistent ordering in

the rank importance of the other experimental conditions

across the different inference methods (Fig. 3). The num-

ber of different temperatures used along a temperature

gradient and the number of replicates per experiment

were both used for the second split in the classification

trees, depending on the inference method used. For the

number of replicates, accuracy was significantly lower for

experiments with only one replicate than for those with

more than one replicate. For example, when the fraction

of habitat searched is >0.005, having at least three repli-

cates instead of only one increases the accuracy of the

estimates of activation energy from 16% to 10% error for

method M5, from 12% to 6% error for method M7, and

from 13% to 6% error for method M9 (Fig. 3A–D,
respectively). For the number of temperatures, accuracy

was significantly lower when just three temperatures were

used than when more than three temperatures were used.

The number of times in the 15 days period that samples

were taken (TIMESAMP) appeared to have the smallest

effect, although we expect this was because even the least

frequent sampling still included low, medium, and high

population densities in the time series. Replication also

interacts with other factors such as the size of the temper-

ature gradient (TEMPSAMP) to influence the accuracy of

the estimates. For example, at low FRACSAMP, increasing

the number of temperatures at which experiments are

conducted will not increase the accuracy of estimates of

activation energy when only one replicate is used per

temperature when using indirect methods (Fig. 3D).

However, having more temperatures will improve the

estimate of activation energy when using a direct method

(Fig. 3F).

Taking into account, the observation error in the infer-

ence method increased the accuracy of estimates of acti-

vation energy when inferring it indirectly for carrying

capacity (mean relative error of method M6 of 45% vs.

mean relative error of M8 is 36%) and growth rate (mean

relative error of method M5 is 16% vs. mean relative

error of M7 is 11%). However, it led to only a minor

improvement when inferring activation energy directly

(mean relative error of method M9 is 10.6% vs. mean rel-

ative error of M10 is 10.3%). Estimates of activation

energy are generally more accurate when estimated using

MCMC parameter inference than using MLE, although

sampling a larger fraction of the microcosm can clearly

be used to compensate for this (see Fig. 4). Among the

indirect MCMC methods, more accurate estimates of acti-

vation energy were obtained using the inferred growth

rate rather than carrying capacity, and accounting for

observational error improved these estimates further.

These improvements were made with the inevitable cost

of computational time (Table 1).

Figure 3 shows the absolute value of the relative error

of the estimates of activation energy; however, this does

not indicate the degree to which the methods are over or

underestimating activation energy. This is conveyed in

Figs. 4, 5. These results imply that for most of our meth-

ods, the true activation energy lies toward the center of

the predicted probability distribution for that parameter.
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An exception is direct inference method M9 in which

appears to consistently underpredict activation energy at

low sampling intensities, which appears to be corrected

by taking into account sampling error in method M10.

Given the inferior performance of the MLE methods and

the dominance of FRACSAMP, we only describe how the

precision of estimates is affected by FRACSAMP for the

MCMC methods. The most precise estimates of activation

energy tend to be obtained using either the direct meth-

ods or the indirect methods on growth rate only with

sampling error correction (Fig. 5 M7, M9, M10; the

results illustrated in this figure are representative of what

we observed for other sets of experimental conditions). In

general, the most precise estimates were obtained using

the direct methods (M9 and M10) which combine infor-

mation on both growth rates and carrying capacities.

Implementing the sampling error correction also tends to

increase the precision of the estimated activation energies

(Fig. 5). Interestingly, direct methods (M9 and M10) are

clearly more sensitive to changes in the experimental con-

ditions, as shown by the largest number of statistically

significant branches in the regression trees (Fig. 3E and

F).

When used on real time series data, inferred population

growth rate is linearly related to the inverse of tempera-

ture, with a negative slope given by the activation energy,

as predicted by metabolic theory (Savage et al. 2004;

Fig. 6A). In contrast, the temperature dependence of car-

rying capacity does not follow the theory (which predicts

a positive relationship, Savage et al. 2004), showing no

clear directional relationship with temperature (Fig. 6B).

For the best performing methods in our simulation

experiments (methods M7, M8, and M10), the direct and

indirect methods produce different estimates of activation

energy. The estimate for population growth rate from
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the direct method is slightly lower (EA = 0.8 eV) than

the estimate obtained indirectly (EA = 0.9 eV). For the

temperature range we considered, this difference leads to

the largest contrast between predicted growth rates at

T = 28°C, where the difference is roughly 1 day�1. Differ-

ences in the the mean estimates of activation energy of

carrying capacity using direct and indirect methods do

not lead to different predicted mean carrying capacities at

different temperatures (largely because the estimated acti-

vation energy is close to zero). However, the precision of

those predictions do contrast; for example, at T = 28°C,
the standard deviation of the predicted carrying capacity

is approximately 1000 individuals when using the direct

method and is approximately 4500 individuals when

using the indirect methods. An example of the different

estimates obtained with direct and indirect methods at a

given temperature (T = 22°C) is shown in Figure 2D.

The activation energy of growth rate measured with the

direct method is smaller than the one obtained with indi-

rect methods and has a smaller error.

Applying the phenomenological methods leads to nota-

ble differences in the accuracy of the estimates of activa-

tion energy for the microcosm experiments. Using

indirect method M1 (phenomenological) to estimate acti-

vation energy leads to an estimate, that is, 0.2 eV lower

than that generated by indirect method M7 (0.7 eV com-

pared to 0.9 eV, respectively; Fig. S2A). This difference

translates to a difference in predicted growth rate at

T = 28°C of 1.2 day�1. A similar difference is observed

when estimating the activation energy of carrying capac-

ity: indirect method M2 (phenomenological) gives an

estimate, that is, 0.2 eV higher than that generated by

indirect method M8 (0.03 eV compared to 0.2 eV,

respectively; Fig. S2B). In this example, this could lead to

a qualitatively different conclusion about whether carrying

capacity is related to temperature, with the phenomeno-

logical method implying a positive relationship, whereas

method M8 implies no relationship.

Discussion

Our results revealed how experimental factors and param-

eter inference methods interact to influence the accuracy

with which activation energy can be inferred. We found

that the fraction of habitat searched is the most impor-

tant factor in determining the accuracy of the estimates

of activation energy. We also provided a list of inference

methods from the least to the most accurate, for a set of

experimental designs (see Fig. 4), including a classic phe-

nomenological likelihood (Pascual and Kareiva 1996)

where no information about demographic stochasticity

was included, likelihoods that accounted for demographic

stochasticity (Ross et al. 2006), and likelihoods that

accounted for demographic stochasticity and sampling

error (Ross et al. 2009). Inference methods that included

the different sources of stochasticity improved the preci-

sion and the accuracy of the estimates of activation

energy of at least one order of magnitude, for a given

experimental design, especially when the fraction of habi-

tat searched was small. The largest improvement in the

accuracy of the estimates was obtained using a diffusion

approximation (Ross et al. 2006, 2009) for continuous

time stochastic processes. The use of such approximation
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each temperature separately. The black continuous line and shaded

area represent the estimate of activation energy and the 95%
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M10 (as in Table 1) with two different activation energies.
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enabled us to disentangle different sources of noise

(demographic and sampling) and could be extended to

more complex models. Another key improvement to the

inference was fitting (directly) to all available data simul-

taneously. Moreover, taking into account the sampling

error correction in direct methods, where the information

of both temperature dependencies of growth rate and car-

rying capacity is taken into account, slightly improved the

estimate of activation energy. Application of these simula-

tion-based findings to real data suggests that although this

direct method is more accurate, prior use of the indirect

method is useful to reveal the functional form of the tem-

perature dependency.

Comparison of the indirect and direct methods of

inference revealed the unique strengths of each approach.

Indirect methods are useful to identify the strengths and

weaknesses of the different models describing single tem-

perature time series. Once a suitable functional form is

implemented, the temperature dependence of ecological

parameters can be better inferred using direct methods;

yet direct methods could be misleading if applied with-

out having a clear understanding of the outcome of the

indirect methods. For example, in our study, we based

our simulations on a specific exponential function

(Arrhenius law) scaled with a single parameter (activation

energy). Different functional forms (such as hump-

shaped functions) would have required a different imple-

mentation into direct methods. Similar approaches have

been used in other modeling frameworks (Grimm et al.

2005; Smith et al. 2013) where parameter borrowing

between different experiments is used to inform the glo-

bal parameterization of the model (McInerny and Purves

2011; Sibly et al. 2013; Smith et al. 2013). The direct

approach could be further generalized in more complex

models such as food web models (Petchey et al. 2010) or

stage-structured models (Ananthasubramaniam et al.

2011). When assessing the performance of different mod-

els against data, direct and indirect methods should be

combined.

When using direct methods on time series data for

Paramecium caudatum, we found that the estimates of

growth rate at each temperature were affected by the

estimates of carrying capacity, thus giving “neighborly

advice” (McInerny and Purves 2011) on the temperature

dependence of growth rate. The difference in estimation

between direct and indirect methods led to large differ-

ences in predicted population dynamics (Fig. 2D). The

thermal performance curves of Paramecium caudatum

have been assessed only using indirect methods (using

growth rate as reference parameter; Krenek et al. 2011),

and several models have been proposed to capture the

temperature dependence of microbial growth (Huang

et al. 2011; Krenek et al. 2011). We provide a frame-

work to test further the thermal performance of micro-

bial organisms, combining the information of carrying

capacity with the information on growth rate. Our

methods could be used to compare different thermal

performance curves in microbial experiments (Angiletta

2006) and be further tested with different processes such

as feeding rates (Rall et al. 2009; Englund et al. 2011;

Fussmann et al. 2014) and with different environmental

variables such as nutrient concentration (Weisse et al.

2002).

The use of stochastic models such as continuous birth

and death processes (McKane and Newman 2004; Black

and McKane 2012) provides a probabilistic framework to

derive inference schemes from (Ross et al. 2006, 2009)

and provides insight into the determinants of population

dynamics (Black and McKane 2012). Despite the lack of a

mathematical expression for the probability distribution

of the populations in our study, the use of approxima-

tions, such as the diffusion one, provided an analytical

expression for the first two moments of the population

probability distribution (Ross et al. 2009; Ross 2012).

Extending stochastic models to different systems with

more than one species is analytically daunting, but

numerically feasible. The mechanistic understanding of

more complex multispecies models is then limited by

their mathematical intractability. When it is not possible

to obtain analytical expressions for population probability

distributions, the Bayesian framework can be still used

with numerical techniques such as particle filters (Ionides

2003; Ionides et al. 2006) or approximate Bayesian com-

putation (Beaumont 2010). Those methods simulate

directly, with a given precision, the likelihood of the

model at each iteration of the Markov chain (Hartig et al.

2011). Markov chain Monte Carlo methods are more

computationally demanding than classic maximum likeli-

hood estimation, especially when implementing state

space models; however, they give a more complete esti-

mation of the probability distribution of the parameters

of the model and of their correlation, especially when the

distribution of those parameters is not Gaussian.

We chose not to vary N for simplicity in this study

although we expect that changes in N to influence our

estimates of activation energy in two ways. Firstly, varying

N by large amounts (e.g., over an order of magnitude)

will significantly change the time the populations take to

approach equilibrium, meaning that an adjustment to the

sampling design (frequency and intensity) may be needed

to obtain a good characterization of the population

dynamics. Secondly, the difference between N and K

determines the magnitude of demographic fluctuations in

the population (see section “Details on the formulation of

the stochastic model”) in Supporting information. As a

consequence, we expect that differences in N would lead
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to differences in demographic noise which could influence

the precision with which we can estimate activation

energy. However, the temperature dependence of growth

rate and carrying capacity is not dependent on N in our

simulation experiments, and so we expect that, given an

adequate amount of sampling and a sufficiently large

temperature range, our conclusions about the effects of

likelihood methods and experimental design on estimates

of activation energy will be insensitive to our choice of N.

Again for simplicity, we assumed that density dependence

only influences the probability of births while in reality, it

commonly influences the probability of both. In section

“Details on the formulation of the stochastic model”, in

Supporting information we give the formulations for the

more general birth and death processes in which both

birth and death rates depend on N. When combined,

these lead to more free parameters, but identical formula-

tions for the temperature dependence of population

growth rate and carrying capacity; thus, our results would

be unaffected.

Our methods could improve the development of the

ecological theory aimed at understanding the temperature

dependence of population rates (Brown et al. 2004;

Amarasekare and Savage 2012) or inform debates about

the precise value of activation energy (Glazier 2006). The

use of classic indirect methods can be used as a first step

in identifying reasonable functional forms for the temper-

ature dependence of population parameters, as biologists

have extensively performed for a variety of taxa (Gillooly

et al. 2001; Savage et al. 2004; Amarasekare and Sifuentes

2012). Different models associated with different func-

tional forms of the rate temperature relations have now

been proposed (Brown et al. 2004; Knies and Kingsolver

2010; Amarasekare and Savage 2012), and those models,

arising from the combination of data and theory, can be

further tested using the direct estimation methods we

describe here.

One of the remaining conundrums in population and

community ecology is about predictive ability. Studies

have shown that uncertainty in parameter estimates can

preclude predictions of even the direction (increase or

decrease) of the effects of a perturbation (Yodzis 1988;

Wells et al. 2014) but also that more accurate estimates

will provide better predictions (Novak et al. 2011). Our

findings support the idea that considerable potential for

improved predictive ability lies in improving inference

methods, including using quite complex mathematics and

fitting algorithms, as well as continuing to use appropri-

ate experimental designs and sampling schemes. The

resulting increases in accuracy are likely to be very impor-

tant, given the documented high sensitivity of model pre-

dictions to variation in parameter values.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Data S1. Time series of the species Paramecium caudatum

at different temperatures.

Figure S1. The results of the classification and regression

tree (CART) analysis (Ripley 2007) of the relative error of

the estimates of activation energy. The number at the

leaves of the tree indicates the mean percentage value of

the relative error of the estimate (see expression 8) over

all the simulated experiments, following partitioning of

the data in the manor specified by the tree. The threshold

above each node indicates the split criterion used to sepa-

rate the data. To each tree is associate a bar chart show-

ing the mean percentage value of each leaf. The four

panels correspond to four of the models specified in

Table 1: model M2 (panel A), M4 (panel B), M6 (panel

C), and M8 (panel D).

Figure S2. Estimates of the logarithm of the growth rate

(panel A) and carrying capacity (panel B) of Paramecium

caudatum. The error bars show the 95% confidence

interval of the estimates obtained at each temperature

separately using the phenomenological likelihood 15. The

red continuous line and shaded area represent the esti-

mate of activation energy and the 95% confidence inter-

val of the estimate of activation energy obtained from a

weighted linear regression from the values observed at

each temperatures (methods M1 for panel A and M2 for

panel B, for the methods, see Table 1). The black line

and shaded area represent the estimate of activation

energy and the 95% confidence interval of the estimate

of activation energy obtained from a weighted linear

regression from the values observed at each temperatures

obtained using likelihood 18 (methods M7 for panel A

and M8 for panel B, for the methods, see Table 1) as

shown in Figure 6.
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