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Abstract

We investigate numerically and analytically the coupled dynamics of transmembrane voltage and 

intracellular calcium cycling in paced cardiac cells using a detailed physiological model, and its 

reduction to a three-dimensional discrete map. The results provide a theoretical framework to 

interpret various experimentally observed modes of instability ranging from electromechanically 

concordant and discordant alternans to quasi-periodic oscillations of voltage and calcium.

I. INTRODUCTION

Over the last decade, there has been a growing recognition that dynamic instability of the 

cardiac action potential can play a crucial role in the initiation of life-threatening 

arrhythmias [1–6]. Most studies to date have focused on the dynamics of the transmembrane 

voltage governed by the standard equation

(1)

where Cm is the membrane capacitance, Iion is the total membrane current, which is the sum 

of the individual currents for Na+, K+, and Ca+ ions depicted schematically in Fig. 1, and 

Iext is a current stimulus applied at equally spaced time intervals T. A widely used approach 

to model the nonlinear dynamics of voltage is the one-dimensional discrete map An+1 = f(T

−An) which relates the action potential duration (APD) at two subsequent beats via the 

restitution curve, An+1 = f(Dn), where Dn is the interval between the end of the previous 

action potential and the next [1–6]. The periodic fixed point of this map corresponding to the 

stable 1:1 rhythm undergoes a period-doubling instability to alternans, a sequence of long 

(L) and short (S) (LSLS…) APD, when the slope of the restitution curve is >1.

Even though this map has been successful to model the unstable dynamics of voltage in 

some ionic models [3] and experiments [4], its predictions are inconsistent with a wide range 

of observations [5–8]. For example, Hall et al. [5] found that alternans can be absent even 

when the slope of the experimentally measured restitution curve is significantly larger than 

one, and conversely alternans are observed under ischemic conditions in which the 

restitution curve is flat [8]. Furthermore, recent experimental [7,9,10] and theoretical studies 

[11] suggest that alternans may result from an instability of intracellular calcium cycling. 
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This result clearly indicates that the dynamical behavior of a cardiac cell is governed by 

nonlinear processes that are not taken into account by the restitution relationship.

In this article we explore the coupled nonlinear dynamics of voltage and calcium cycling in 

paced cardiac cells using a physiologically based ionic model. We demonstrate that a paced 

cell can be unstable to three distinct dynamical modes: concordant alternans with a long/

short APD corresponding to a large/small calcium transient on alternate beats, discordant 

alternans with a long/short APD corresponding to a small/large calcium transient, and 

modulated voltage/calcium alternans with amplitudes that vary sinusoidally in time. The 

physiological conditions which favor a given dynamical behavior are explained. Finally, we 

interpret the model results in terms of a three variable iterated map which describes the beat-

to-beat dynamics of calcium and voltage.

II. IONIC MODEL

A. Calcium cycling

To describe the electrophysiology of a cardiac myocyte we integrate a recently developed 

model of calcium (Ca2+) cycling [11], with an established ionic model due to Fox et al. [12] 

that is based on the Luo-Rudy currents [13]. The ionic currents, along with elements of the 

calcium cycling system, are illustrated in Fig. 1. The movement of calcium inside the cell is 

described by

(2)

(3)

(4)

(5)

(6)

where cs, ci, and cj are the concentrations of free calcium in a thin layer just below the cell 

membrane (submembrane space), in the bulk myoplasm, and the sarcoplasmic recticulum 

(SR), with volumes υs, υi, and υsr, respectively, where the SR volume includes both the 

junctional SR (JSR) and the network SR (NSR);  is the average JSR concentration in the 

whole cell as defined in Ref. [11]. The concentrations cs and ci are in units of µM, whereas 

cj and  are in units of µMυsr/υi. All calcium fluxes are divided by υi and have units of 

µM/s. Instantaneous buffering of calcium to SR and calmodulin sites in υi and υs is 
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accounted for by the functions βs ≡ β(cs) and βi ≡ β(ci), and the currents  describe time-

dependent buffering to troponin C [11].

Calcium release from the SR is triggered by calcium entry into the cell via calcium-induced 

calcium release (CICR) [14]. Release occurs at a very large number of junctions where 

several L-type calcium channels (ICa) and a few release channels (ryanodine receptors; 

RyRs) face each other in close proximity. Only one of these junctions is shown in Fig. 1 for 

clarity. The total release current for the whole cell is the sum , of local 

currents  at each junction where release channels are activated. The number of sparks 

N(t) varies in time since sparks are recruited stochastically and extinguish. The spatially 

localized nature of release is described by the dynamical equation for the release current 

[Eq. (6)], which captures phenomenologically three key experimental observations: (i) 

sparks are recruited at a rate proportional to the whole cell ICa, or N~ ICa [16], which insures 

that calcium release is graded with respect to calcium entry [15,17], (ii) the spark lifetime τr 

is approximately constant, and (iii) the amount of calcium released increases with SR 

concentration (SR load) [18].

B. Instability mechanisms

Calcium alternans, a period-doubling sequence of large (l) and small (s) calcium transient 

(lsls…peak ci), can occur independently of voltage alternans in experiments with a single 

cell paced with a periodic voltage wave form [9]. Both theoretical analyses [11,19] and 

recent experiments [10] support that a steep dependence of release on SR load is the 

underlying mechanism of these alternans. The sensitivity of release to SR load is controlled 

in the model by the slope of the function  at high load

(7)

For a large enough slope, the model produces calcium alternans when paced with a periodic 

voltage wave form [11] as in the experiments of Ref. [9].

Steep APD restitution in the absence of calcium alternans can also induce APD alternans. 

This steepness is especially sensitive to the recovery from inactivation of the calcium current 

[12,13]

(8)

where iCa is the single channel current and d(f) is a fast (slow) voltage-dependent activation 

(inactivation) gate. For the intermediate range of pacing rates studied in the present work, 

increasing the time constant τf of the f gate in the equation f = [f∞(V) − f]/τf steepens APD 

restitution and promotes voltage alternans.

C. Voltage-calcium coupling

The mutual influence of voltage and calcium during the action potential is controlled by the 

membrane currents that depend on intracellular calcium concentration. These include ICa 
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and the sodium-calcium exchanger INaCa. A larger calcium transient following a larger 

release enhances inactivation of ICa via the calcium-dependent gate fCa, and hence shortens 

the APD, but increases the chemical driving force for calcium extrusion from the cell via the 

exchanger. Since three Na+ ions enter the cell for every Ca2+ ion extruded, this increase in 

driving force increases the inward membrane current which prolongs the APD. Therefore, 

depending on the relative contributions of ICa and INaCa, increasing the magnitude of the 

calcium transient can either prolong (positive coupling) or shorten (negative coupling) the 

APD, as illustrated in Fig. 2. The sign of this coupling can be changed in the model by 

varying the exponent γ in the phenomenological expression

(9)

for the steady-state value of fCa, where the constant c̃s sets the concentration range for 

inactivation. Increasing γ enhances calcium-dependent inactivation of ICa and tends to make 

the coupling negative.

III. NUMERICAL RESULTS

The dynamics of the system was studied numerically as a function of the two instability 

parameters u and τf which promote calcium and voltage alternans, respectively, and for two 

values of γ that were found to yield a positive (γ = 0.7) and a negative (γ = 1.5) coupling 

between voltage and calcium. All the other parameters are the same as in Refs. [11,12]. We 

study the stability of the periodic fixed by computing the steady-state APD, and the 

corresponding peak calcium transient . The APD is computed by measuring the time 

interval to 80% repolarization. In Fig. 3 we plot the stability boundaries as a function of the 

model parameters at a fixed pacing rate of T = 300 ms.

The results plotted in Fig. 3 highlight the crucial role of the coupling between voltage and 

calcium in the dynamics. For positive coupling, the instability of the 1:1 periodic state 

always occurs through a period-doubling bifurcation to electromechanically concordant 

alternans with the long (short) APD corresponding to a large (small) calcium transient, 

independently of whether voltage or calcium is the dominant instability mechanism. In 

contrast, for negative coupling, three distinct modes of instability are found that correspond 

to: (i) concordant alternans, as for positive coupling, but only when the instability is 

dominated by voltage (large τf and small u), (ii) electromechanically discordant alternans 

with the long (short) APD corresponding to a small (large) calcium transient when the 

instability is dominated by calcium (small τf and large u), and (iii) quasiperiodic oscillations 

of APD and calcium transient amplitude with a phase and a Hopf frequency that vary with τf 

and u for the in between case where the instability is driven by both voltage and calcium. 

Both electromechanically concordant and discordant alternans have been widely observed 

experimentally under various conditions [20]. In addition, there is experimental evidence for 

quasiperiodicity in recordings of voltage [21] and, more recently, calcium [22].
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IV. ITERATED MAP ANALYSIS

A. Iterated map of voltage-calcium dynamics

The numerical findings in the previous section were found to apply at a wide range of 

pacing intervals T. To interpret our results, and investigate the generality of the findings, we 

extend the two-dimensional (2D) iterated map developed in Ref. [11] for calcium cycling 

when the cell is paced with a fixed periodic voltage wave form, to the present case where the 

voltage is unclamped. To a good approximation, cs ≈ ci and  preceding a stimulus 

[11], such that we only need to track beat-to-beat changes of ci and cj. Furthermore, we 

assume for simplicity that buffering of calcium is instantaneous such that there exists a 

unique nonlinear relationship between the concentration of free calcium ci(cj) and total 

calcium (free plus bound) . The basic variables of the map (Fig. 4) are then  and 

at time tn = nT of the nth+1 stimulus, defined by  and 

where both xn and yn are in units of µM, and the APD corresponding to this stimulus, An+1.

The map is obtained by extending the restitution map to include the effect of calcium on the 

APD and by integrating the calcium flux equations

(10)

(11)

from time tn to time tn+1. This yields

(12)

(13)

(14)

respectively, where Rn, Un, and Δn are the integrals of Irel, Iup, and −ICa+INaCa over the time 

interval [tn, tn+1], respectively, and are functions of (Dn, xn, yn) for a fixed pacing period; 

υiRn and υiUn are the total amount of calcium released from and pumped into the SR over 

one beat, respectively, and υiΔn is the net total calcium entry into the cell over one beat 

which can be positive (negative) if the exchanger extrudes more (less) calcium from the cell 

than ICa brings into the cell.

B. Stability analysis

To make contact with the numerical stability boundaries in Fig. 3, we study the stability of 

the fixed point of the iterated map. The fixed point will be denoted by (A*,x*, y*). To begin, 

we exploit the fact that the total amount of calcium inside the cell is approximately constant 

during steady-state pacing. Hence, we can approximate the three-dimensional (3D) map 

[Eqs. (12)–(14)] by a 2D map by assuming that zn ≈ z*, where υizn ≡ υi(xn+yn) is the total 
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calcium in the cell at time tn. This 2D map is given by Eqs. (12) and (13) with Dn = T−An, 

Δn = 0, and yn = z*−xn. A linear stability analysis of this 2D map yields the eigenvalues

(15)

where we have defined the quantities

(16)

(17)

(18)

which are evaluated at the fixed point of the map. Here, λυ and λc govern the degree of 

instability of the voltage and calcium systems, respectively, while C determines the sign of 

the coupling between the two systems. Making APD restitution (∂F/∂Dn) or the relationship 

between release and SR load (∂Rn/∂yn) steeper by increasing τf and u in the ionic model is 

equivalent to increasing λυ and λc, respectively. Graded release implies that ∂(Rn−Un)/∂Dn is 

positive for high pacing rates where ICa depends on Dn, such that the sign of C is governed 

by ∂F/∂yn−∂F/∂xn where the latter reflects the effect of the magnitude of the calcium 

transient on APD via ICa and INaCa (Fig. 2). The periodic fixed point undergoes a period-

doubling bifurcation when |λ−| = 1 and a Hopf bifurcation for (λυ−λc)2+4C<0 when the pair 

of complex eigenvalues λ± = rei(π±ω), with  and 

, crosses the unit circle (r = 1). For the latter case, the 

beat-to-beat oscillations of voltage and calcium are modulated with a period 2π/ω. 

Examination of the eigenvectors for C<0 reveals that alternans are discordant when λ− is 

real and λc>λυ.

In Fig. 5 we plot the corresponding stability boundaries for positive and negative coupling in 

the (λc,λυ) plane. We find that the boundaries of stability are remarkably isomorphic to that 

obtained by simulations of the ionic model in the (u,τf) plane of Fig. 3. Note that we have 

not used explicit functional forms for the map terms, but only exploited the basic structure 

of the map given by Eqs. (12)–(14), along with the important assumption that total calcium 

is constant from beat to beat. This agreement shows that the coupled dynamics of voltage 

and calcium can be understood qualitatively in terms of the basic features of the system.

V. CONCLUSION

The numerical study of both the ionic model and the map in the nonlinear regime reveals the 

existence of a rich dynamical behavior including higher order periodicities (3:3, 4:4, etc.) as 

well as transitions to chaos mediated by a period-doubling cascade or intermittency 
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depending on the parameters. Moreover, this model naturally contains memory [21,23] due 

to the slow change of total calcium concentration over several beats. Both of these aspects 

will be discussed in more detail elsewhere.

In conclusion, we have outlined the essential three-dimensional parameter space that 

controls dynamic instability of membrane voltage coupled to calcium cycling, and we have 

presented a theoretical framework in which to interpret experiments beyond the limitations 

of the one-dimensional restitution relationship. The main axes of this parameter space are 

the degree of instability of the voltage and calcium systems, and the sign of the coupling 

between the two systems, which is an important parameter to emerge from this work. These 

results provide a starting point to explore the role of calcium cycling in the spatiotemporal 

dynamics of tissue scale phenomenon. For instance, it will be interesting to see how the 

more complex single cell dynamics presented here, influences the dynamics of spiral waves 

in tissue. Studies in this direction may shed light on the role of calcium cycling on cardiac 

rhythm disorders.

ACNOWLEDGMENT

This research was supported by NIH SCOR P50-HL52319.

References

1. Karma A. Chaos. 1994; 4:461. [PubMed: 12780121] 

2. Garfinkel A, et al. Proc. Natl. Acad. Sci. U.S.A. 2000; 97:6061. [PubMed: 10811880] 

3. Courtemanche M, Glass L, Keener JP. Phys. Rev. Lett. 1993; 70:2182. [PubMed: 10053491] 
Echebarria B, Karma A. ibid. 2002; 88:208101.

4. Nolasco JB, Dahlen RW. J. Appl. Physiol. 1968; 25:191. [PubMed: 5666097] Guevara, MR., et al. 
Proceedings of the 11th Computers in Cardiology Conference; IEEE Computer Society; Los 
Angeles. 1984. p. 167

5. Hall GM, Bahar S, Gauthier DJ. Phys. Rev. Lett. 1999; 82:2995.Hall GM, Gauthier DJ. ibid. 2002; 
88:198102.

6. Fox JJ, Bodenschatz E, Gilmour RF Jr. Phys. Rev. Lett. 2002; 89:138101. [PubMed: 12225067] 

7. Pruvot EJ, et al. Circ. Res. 2004; 94:1083. [PubMed: 15016735] 

8. Dilly SG, Lab MJ. J. Physiol. (London). 1988; 402:315. [PubMed: 3236241] 

9. Chudin EJ, et al. Biophys. J. 1999; 77:2930. [PubMed: 10585917] 

10. Díaz ME, ONeill SC, Eisner DA. Circ. Res. 2004; 94:650. [PubMed: 14752033] 

11. Shiferaw Y, et al. Biophys. J. 2003; 85:3666. [PubMed: 14645059] 

12. Fox JJ, McHarg JL, Gilmour RF. Am. J. Physiol. 2002; 282:H1534.

13. Luo CH, Rudy Y. Circ. Res. 1994; 74:1071. [PubMed: 7514509] 

14. Fabiato A. J. Gen. Physiol. 1985; 85:189. [PubMed: 3981128] 

15. Bers, DM. Excitation-contraction Coupling and Cardiac Contractile Force. Boston: Kluwer; 2001. 

16. Collier ML, Thomas AP, Berlin JR. J. Physiol. (London). 1999; 516:117. [PubMed: 10066927] 

17. Wier WG, et al. J. Physiol. (London). 1994; 474:463. [PubMed: 8014907] 

18. Shannon TR, Ginsburg KS, Bers DM. Biophys. J. 2000; 78:334. [PubMed: 10620297] 

19. Eisner DA, et al. Circ. Res. 2000; 87:1087. [PubMed: 11110764] 

20. Rubenstein DS, Lipsius SL. Circulation. 1995; 91:201. [PubMed: 7805204] Walker ML, 
Rosenbaum DS. Cardiovasc. Res. 2003; 57:599. [PubMed: 12618222] and earlier references 
therein.

Shiferaw et al. Page 7

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2014 December 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



21. Gilmour RF, Otani NF, Watanabe MA. Am. J. Physiol. 1997; 272:H1826. [PubMed: 9139969] 
Otani NF, Gilmour RF. J. Theor. Biol. 1997; 187:409. [PubMed: 9245581] 

22. Yin L, Bien H, Entcheva E. (unpublished). 

23. Watanabe MA, Koller ML. Am. J. Physiol. 2002; 282:H1534.

Shiferaw et al. Page 8

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2014 December 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



FIG. 1. 
Illustration of currents that control the dynamics of voltage and intracellular calcium 

cycling.
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FIG. 2. 
Illustration of the effect of an increase in the magnitude of the calcium transient, which can 

prolong or shorten the APD for (a) positive and (b) negative coupling, respectively. The sign 

of the coupling depends on the relative contributions of ICa and INaCa to the APD. The solid 

or dashed lines correspond to the same beat.
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FIG. 3. 
Stability boundaries in the ionic model for positive (dashed line; γ = 0.7) and negative (solid 

line; γ = 1.5) coupling. T = 300 ms. Examples of steady-state dynamics close to the stability 

boundaries are illustrated by plots of peak calcium concentration  vs APD for a few 

labeled points. Higher order periodicities and irregular dynamics are observed further away 

from these boundaries.
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FIG. 4. 
Definition of map variables.
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FIG. 5. 
Stability boundaries from the map analysis for positive coupling C = 0.1 with concordant 

alternans along the dashed line, and negative coupling C = −0.1 (solid line), with concordant 

alternans, discordant alternans, and quasiperiodicity along the segments a–b, c–d, and b–c, 

respectively.

Shiferaw et al. Page 13

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2014 December 29.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


