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Nuclear dynamics can vary widely between fungal species and between stages of development of fungal colonies. Here we com-
pared nuclear dynamics and mitotic patterns between germlings and mature hyphae in Fusarium oxysporum. Using fluores-
cently labeled nuclei and live-cell imaging, we show that F. oxysporum is subject to a developmental transition from a uninucle-
ate to a multinucleate state after completion of colony initiation. We observed a special type of hypha that exhibits a higher
growth rate, possibly acting as a nutrient scout. The higher growth rate is associated with a higher nuclear count and mitotic
waves involving 2 to 6 nuclei in the apical compartment. Further, we found that dormant nuclei of intercalary compartments can
reenter the mitotic cycle, resulting in multinucleate compartments with up to 18 nuclei in a single compartment.

Cellular growth and the dynamics of organelles in ascomycet-
ous fungi have been studied extensively in different model

organisms, and several common properties have been described.
For example, it is well understood that filamentous fungi grow by
hyphal tip extension and that the vesicle-rich Spitzenkörper is the
main coordinator of tip growth (1, 2). Further, it has been shown
that hyphal compartments are separated from each other by septa,
which can be perforated, ensuring cytoplasmic continuity (3–5).
Vegetative hyphae have the ability to branch and fuse with each
other to form an interconnected mycelial network, which also can
have cytoplasmic continuity (6, 7). In some fungi, such as Neuro-
spora crassa, free nuclear movement between hyphal compart-
ments throughout the interconnected mycelium has been ob-
served (8).

A further common characteristic of the most intensively stud-
ied ascomycete species is that hyphal compartments can be multi-
nucleate. For example, compartments of Ashbya gossypii can har-
bor 8 to 10 nuclei (9). Aspergillus nidulans has been shown to have
compartments with 10 to 60 nuclei (10). The number of nuclei can
go up to hundreds of nuclei (in N. crassa) or even thousands of
nuclei (in aseptate glomeromycete fungi [11, 12; for a review, see
reference 13]). Multinucleated hyphae exhibit different modes of
mitotic divisions. In synchronous mitosis, all nuclei of a hyphal
compartment divide at the same time, as is for instance is the case
in apical cells of Ceratocystis fagacearum (14). An alternative is
parasynchronous mitosis, a wave of nuclear divisions that travels
along the hypha or hyphal compartment, which has been exten-
sively studied in A. nidulans (15). Finally, nuclei of the same com-
partment can undergo asynchronous mitosis independently of
their neighboring nuclei, as has been observed in N. crassa and A.
gossypii (16, 17; for a review, see reference 18). Colletotrichum
lindemuthianum provides an interesting case, in which different
mitotic patterns at different developmental stages were observed.
Apical compartments of hyphae of mature colonies exhibit syn-
chronous, parasynchronous, and asynchronous mitoses, whereas
in subapical compartments, only synchronous and asynchronous
mitoses were observed (19). The mycelium of multinucleate fungi
has the potential to contain genetically different nuclei, leading to
phenotypic plasticity as well as potentially contributing to fungal
virulence (20–23).

Nuclear dynamics in Fusarium oxysporum has not been fully

resolved. In studies from the 1960s, using microscopic methods,
including phase-contrast microscopy and fixed-cell staining, F.
oxysporum was described as a multinucleate fungus undergoing
waves of mitotic nuclear divisions involving several compart-
ments (4, 24, 25). However, in a recent study using modern live-
cell imaging techniques and fluorescent labeling, Ruiz-Roldán et
al. observed F. oxysporum as a uninucleate fungus, in which only
the nucleus of the apical compartment is mitotically active (26).

The aim of this study was to resolve these apparent contradic-
tions and to obtain a fuller understanding of nuclear dynamics of
F. oxysporum using fluorescently labeled nuclei and live-cell im-
aging. We found the following. (i) After completion of colony
initiation, specialized hyphae with a higher growth rate start to
explore the surrounding medium. The higher growth rate is asso-
ciated with a higher number of nuclei in the apical compartment
and mitotic waves involving all nuclei of this compartment. (ii) In
intercalary compartments, dormant nuclei can be reactivated to
enter the mitotic cycle. Apparently, F. oxysporum is subject to a
developmental change from a uninucleate state in germlings and
newly branched hyphae to at least two alternative multinucleate
states in hyphae of the mature colony.

MATERIALS AND METHODS
Strains and culture conditions. Fusarium oxysporum f. sp. lycopersici
strain 4287 (FGSC9935), Fusarium oxysporum f. sp. melonis strain 001
(FGSC10441), and the nonpathogenic Fusarium oxysporum strain 47
(FGSC 10445) were used as the parent strains for fungal transformation.
They were stored as a monoconidial culture at �80°C and revitalized on
potato dextrose agar (PDA) (Difco) at 25°C. Agrobacterium tumefaciens
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EHA105 (27) was used for Agrobacterium-mediated transformation of F.
oxysporum and was grown in either Luria broth (LB) or 2YT medium (28)
containing 20 �g/ml rifampin at 28°C. Introduction of the plasmids into
the Agrobacterium strain was performed as previously described (29).
Escherichia coli DH5� (Invitrogen) was used for construction, propaga-
tion, and amplification of the plasmid and was grown at 37°C in LB me-
dium containing 50 �g/ml kanamycin.

For microscopy, the fungus was grown on either PDA supplemented
with 2% xylose or on low-nutrient or minimal medium (0.17% yeast
nitrogen base [YNB; Difco] without amino acids and ammonium sulfate,
100 mM KNO3, 2% xylose, 1.2% agarose) at room temperature. Unless
otherwise indicated, the medium was prepared in the shape of a micro-
scope slide. Spores were collected from either PDA plates or NO3 medium
(0.17% YNB, 100 mM KNO3, 3% sucrose), filtered with one layer of sterile
Miracloth (Calbiochem), and washed with sterile water prior to mounting
on agarose slides. These were incubated spore phase down in a microscope
chamber (Nunc) and observed for up to 3 days. To visualize cell walls and
septa, 1 �M calcofluor white (Fluka) was added to the medium (30). To
counterstain DNA, the fungus was treated for 1 min with 1 mg/ml
Hoechst 33342 (Life Technologies) and washed with water before micros-
copy.

Construction of histone H1::GFP fusion protein-expressing vector.
Binary vector pRW2h suitable for Agrobacterium-mediated fungal trans-
formations was used as a backbone for vector construction (31). We con-
structed a new vector, pRW2h � GFP, in a way that any protein of interest
can be expressed as a green fluorescent protein (GFP) fusion protein. For
this we introduced the GFP gene under the control of a promoter and a
terminator with a multiple-cloning site between the promoter and the
GFP gene. This construct was introduced in the multiple-cloning site
between the left border and the hph resistance cassette. To be able to
control expression of the GFP fusion protein, an inducible xylanase pro-
moter from Penicillium chrysogenum (32) was used. The promoter region
was PCR amplified with the primer combination FP2875 (5=-AAAATTA
ATTAACTGATGCGAGCAACAGTATG-3=) and FP3528 (5=-GATATCT
GGTTACCAGATCTTGTTAACAGGGATGGAGGCGATACTTA-3=),
using pXPcFLPnatFRT vector (33) as the template. The resulting ampli-
con was cloned in the PacI/EcoRV site in PRW2h. The terminator region
of Six1 (34) was PCR amplified with the primer combination FP2877
(5=-AAAAGGTAACCATTATAACCTGCAGGGGGCCCGTTGCGAT
CCA-3=) and FP3704 (5=-TTTTGATATCGGCGCGCCATACCTACGGC
ATCGAGTTTC-3=), using F. oxysporum f. sp. lycopersici 4287 genomic
DNA (gDNA) as the template, and cloned in the BstEII/EcoRV site of the
vector resulting from the previous step, thus introducing five additional
restriction sites. Next, the GFP gene was PCR amplified with primer com-
bination FP3510 (5=-AAAAGGTAACCAGCCCGGGCAATTTAAATAT
GAGTAAAGGAGAAGAACTTTT-3=) and FP3513 (5=-TTTTTTATAAT
TTATTTGTATAGTTCATCCATGC-3=), using pGWB451 vector (35) as
the template, and cloned in the BstEII/PsiI site between the promoter and
terminator regions. To generate an F. oxysporum f. sp. lycopersici histone
H1-GFP fusion protein (HH01::GFP), HH01 (FOXG_12732; http://www
.broadinstitute.org/annotation/genome/fusarium_group/) without a stop
codon was PCR amplified with the primer combination FP3516 (5=-AAA
AAGATCTAATGCCTCCCAAAGCCGCT-3=) and FP3517 (5=-TTTTGG
TTACCTTCGCCTTGGCAGCGGCC-3=) from F. oxysporum f. sp. lycop-
ersici 4287 gDNA, and the amplicon was cloned in the BglII/BstEII site
in-frame with the GFP gene. The obtained plasmid, pRW2h � HH01::
GFP was transformed into Agrobacterium tumefaciens EHA105 and used
for subsequent A. tumefaciens-mediated Fusarium transformation. (For
the plasmid map, see Fig. S1 in the supplemental material.).

Agrobacterium-mediated Fusarium transformation. Agrobacte-
rium-mediated transformation of F. oxysporum f. sp. was performed as
previously described (36), with minor adjustments (37). Transformants
were selected on Czapek Dox agar (CDA; Oxoid) containing 100 �g/ml
hygromycin (Duchefa). Fluorescence was tested on CDA containing 2%
xylose.

Microscopic analysis. Successful transformation and DNA counter-
staining were tested by localization of fluorescent signal using the AMG
Evos FL digital inverted microscope equipped with transmitted light, GFP
(470/22 to 510/42 nm) or DAPI (4=,6-diamidino-2-phenylindole)
(357/44 to 447/60 nm) light cubes, and driven by built-in software for
image acquisition and the inverted agar block method (30).

For confocal microscopy, an Eclipse Ti inverted microscope (Nikon)
with a FN1 spinning disk and electron microscope– charge-coupled de-
vice (EM-CCD) camera, iXon DU897 (Andor), was used with a plan apo
VC 40� 1.4 oil objective (Nikon). GFP was excited with a 488-nm light
(emission 505- to 530-nm-pass filter) and calcofluor with a 405-nm light
(emission 420- to 470-nm-pass filter). Pictures were analyzed with the
Nikon NIS and Fiji software from imageJ (http://fiji.sc/Fiji).

RESULTS
The number of nuclei per compartment varies in Fusarium ox-
ysporum. Studies on nuclear dynamics are often performed with
germlings. To obtain a fuller picture of nuclear dynamics, we com-
pared germlings with hyphae of a mature colony using three dif-
ferent Fusarium oxysporum strains (F. oxysporum f. sp. lycopersici
4287, F. oxysporum f. sp. melonis 001, and F. oxysporum 47) ex-
pressing histone H1 tagged with a green fluorescent protein
(HH01::GFP). We observed nuclear dynamics and number in
germlings after 10 to 15 h and in mature hyphae after 2 days.

As previously described (26), we saw that during early colony
development, germlings of F. oxysporum have uninucleate com-
partments (see Fig. S3 in the supplemental material). This situa-
tion changed drastically after 2 days, when the number of nuclei
per compartment became highly variable. In addition to compart-
ments with a single nucleus, compartments with two or more
nuclei were observed (Fig. 1). In F. oxysporum f. sp. lycopersici
4287, we recorded a distribution in the range of 0 to 18 with an
average of 3.1 � 2.6 (mean � standard deviation [SD]) nuclei per
compartment after 2 days on minimal medium (Fig. 1a and Table
1). Depending on the nuclear count, the length of the compart-
ments also varied greatly (48 � 49 �m, mean � SD) (Table 1; see
Fig. S2 in the supplemental material). Both odd and even numbers
of nuclei per compartment were observed. Multiple nuclei were
found in apical and subapical compartments of hyphal tips as well
as in intercalary compartments of mature hyphae, in the center as
well as at the edge of the colony. Nonetheless, we could classify
hyphae into three distinct developmental stages based on several
characteristics. First, newly branched hyphae showed the same
nuclear dynamics as germlings and usually contained 1 or 2 nuclei
per compartment (Fig. 1b, upper panel, and c, left panel). Second,
we discovered a specialized hyphal form or developmental stage in
F. oxysporum that is relatively thin (2 to 3 �m in diameter com-
pared to 4 to 6 �m for mature hyphae) (Fig. 1c, middle panel) and
showed a higher growth rate than germlings or newly branched
hyphae (Table 1). This newly described hyphal form, referred to
here as “fast-growing hyphae,” was observed after 2 days but not
during early colony initiation and was mostly encountered in the
growth front of the colony (Fig. 1b, lower panel). With hyphae
176 � 150 �m (mean � SD), apical compartments of fast-grow-
ing hyphae were longer than those of germlings and contained 2 to
6 nuclei (Table 1). Hyphae of the third developmental stage dis-
played a higher nuclear density, manifested in either smaller com-
partments with a single nucleus or larger compartments with mul-
tiple nuclei (up to 18 nuclei were observed) (Fig. 1c, right panel).
Stage III was mostly observed behind the growth front of the col-
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FIG 1 The number of nuclei per compartment is dependent on the hyphal type. (a) Range of number of nuclei per compartment. Calculations were based on
65 hyphae from 5 biological replicates. Both odd and even numbers were found. (b) Different stages of colony development in F. oxysporum. The upper panel
shows a schematic representation of stage I, in which each compartment harbors 1 nucleus. This stage was found in germlings and in newly branched hyphae. The
lower panel shows colony phenotype after 2 days. Stage II, in which fast-growing hyphae with multinucleate apical compartments are frequently encountered, can
be found in the growth front. Stage III with multinucleate intercalary compartments can usually be found in mature hyphae behind the growth front, where aerial
hyphae start to emerge. Scale bar, 1 cm. (c) The three developmental stages were found in all three strains tested: F. oxysporum f. sp. lycopersici strain 4287
(Fol4287), F. oxysporum f. sp. melonis strain 001 (Fom001), and nonpathogenic F. oxysporum strain 47 (Fo-47). All strains expressed HH01::GFP and were stained
with 1 �M calcofluor white. Scale bars, 10 �m.
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ony and represents hyphae of the mature colony (Fig. 1b, lower
panel).

These distinct developmental stages with their characteristic
nuclear dynamics were observed in all three tested strains, suggest-
ing this phenomenon is common in F. oxysporum (Fig. 1c). To
rule out an effect of histone tagging and microscopic setup, we
performed DNA counterstaining of hyphae grown on PDA plates.
After 2 days, stages II and III were clearly distinguishable in colo-
nies of F. oxysporum f. sp. lycopersici 4287 (see Fig. S4 in the sup-
plemental material).

Fusarium oxysporum shows various patterns of mitosis.
Next, we used live-cell imaging to observe nuclear dynamics after
10 to 15 h in germlings and after 2 days in hyphae of mature
colonies. In germlings, only the nucleus of the apical compart-
ment was active and underwent mitosis. This mitosis, then, led to
a mitotically inactive nucleus residing in the newly formed first
subapical compartment and a mitotically active nucleus in the
apical compartment, which entered the next mitotic cycle (see Fig.
S3 and Movie S1 in the supplemental material). Again, newly
branched hyphae behaved similarly to germlings, where only the
apical nucleus was mitotically active (Fig. 2; see Movie S2 in the
supplemental material). This stage of uninucleate compartments
we refer to as stage I. After 2 days this uniform mitotic pattern
changed and became more complicated; hyphae of developing
colonies showed two additional mitotic patterns.

In stage II, apical compartments of fast-growing hyphae con-
tained several nuclei, and these were all mitotically active. Fast-
growing hyphae show a rapid parasynchronous mitotic wave of up
to 6 nuclei coupled to fast growth, which we refer to as “hyphal
growth spurts” from here on. Typically, a hyphal growth spurt
started by extension of the apical compartment and fast migration
of the resident nuclei along the growth vector in the direction of
the hyphal tip (Fig. 3, top 2 panels). During this first phase, nuclei
appear to be elongated, which we attribute to the rapid movement,
probably caused by pulling of the nuclei toward the hyphal tip by
the cytoskeleton machinery. Next, a mitotic wave, including all
nuclei of the apical compartment (usually 2 to 4) occurs, starting
with the most apical nucleus. This is followed by formation of the

TABLE 1 Emergence and characteristics of multinucleate
compartments in F. oxysporum f. sp. lycopersici 4287 on different media

Parameter

Result (n) ona:

Minimal medium PDA

No. of nuclei per compartment on
day 2

3.1 � 2.6 (271) NDb

Size of compartment on day 2, �m 47.5 � 48.6 (271) ND
Size of apical compartment in fast-

growing hyphae on day 2, �m
176.2 � 149.8 (30) ND

Germination start, h 10 10
Growth rate at 15 h, �m/h 19.8 � 7.6 (6) 30.0 � 7.8 (5)
Appearance of fast-growing hyphae,

h after germination
6 10

Growth rate of fast-growing hyphae,
�m/h

164.3 � 64.9 (5) 119.4 � 35.2 (5)

Appearance of intercalary mitosis, h
after germination

23 26

a Values with “�” are means � SD.
b ND, not determined.

FIG 2 In newly branched hyphae, only the apical nucleus is mitotically active. Shown are time-lapse sequences of mitosis of uninucleated apical compartments
of newly branched hyphae. The numbers indicate nuclei that will undergo mitosis, and arrowheads indicate newly formed septa. Shown is F. oxysporum f. sp.
lycopersici 4287 HH01::GFP stained with 1 �M calcofluor white. Scale bars, 10 �m.

FIG 3 Spurts of mitotic waves occur in fast-growing hyphae. Shown are time-
lapse sequences of mitotic waves in fast-growing hyphae. In fast-growing hy-
phae (164 � 65 �m/h on minimal medium), nuclei migrate toward the hyphal
tip. A mitotic wave follows, starting from the apical nucleus. This mitotic wave
can include several compartments and up to six nuclei. The number of septa
formed is the same as the number of mitoses, and the same number of apical
nuclei will enter the next mitotic cycle. Numbers indicate nuclei that will
undergo mitosis, and arrowheads indicate newly formed septa. Shown is F.
oxysporum f. sp. lycopersici 4287 HH01::GFP stained with 1 �M calcofluor
white. Scale bars, 10 �m.
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same number of septa resulting mostly in uninucleate subapical
compartments, leaving again the original number of nuclei (2 to
4) in the apical compartment (Fig. 3, bottom 2 panels). In some
cases, the first subapical compartment with 1 to 3 nuclei was in-
cluded in the mitotic wave. Interestingly, the same number of
nuclei that entered the first mitotic cycle reenter the next cycle.
Always the most apical nuclei of the apical compartment enter the
next mitotic cycle, independent of their individual ancestry (see
Movie S3 in the supplemental material).

Intercalary compartments represented a further intriguing
case. Dormant nuclei of older compartments (so-called “interca-
lary compartments”) were in some cases reactivated and under-
went mitosis. However, this was not associated with hyphal
growth in the form of elongation, extension, or branching, result-
ing in the high nuclear density described above. Intercalary mito-
sis included one or several compartments, each with one or more
nuclei. All nuclei involved showed a mitotic wave that was asyn-
chronous within the compartment as well as between different
compartments (Fig. 4, top 4 panels). It was previously reported
that mitosis is followed by septum formation between the two
daughter nuclei (26). However, after intercalary mitoses, septum
formation took place between some sister nuclei but not all, ex-
plaining the occurrence of higher and odd numbers of nuclei per

compartment (Fig. 4, bottom panel; see Movie S4 in the supple-
mental material). Compartments with a very high nuclear density
may result from a progressively lower frequency of septum forma-
tion as nuclei multiply within a compartment, which is in accor-
dance with the limited number of cases that we have observed.
Additionally, an intercalary mitotic wave can include some com-
partments while excluding their neighboring compartments (see
Movies S3 and S4 in the supplemental material). Within the time
frame of our studies, we did not observe the continuation of an
intercalary mitotic wave to adjacent compartments. This indicates
a strict regulation of the entry point of individual compartments
into mitosis, which does not necessarily travel along the hypha.

Emergence and characteristics of fast-growing hyphae dur-
ing colony development depend on medium composition. For a
better understanding of the development from a uninucleate to a
multinucleate state, we monitored nuclear dynamics and mitotic
patterns for 48 h. For our microscope studies, we usually use min-
imal medium, since in this medium hyphal growth is less dense
and there is less production of aerial hyphae compared to with
PDA medium (see Fig. S5 in the supplemental material). Addi-
tionally, aromatic compounds in PDA medium show a strong
autofluorescence in the GFP channel, leading to more background
signal. However, to exclude malnutrition as a cause for the distinct
nuclear behavior during the different stages of development, we
tested nuclear dynamics of hyphae grown on PDA as well as on
minimal medium (Table 1).

The different media did not affect germination of micro-
conidia, the most frequently occurring conidia in F. oxysporum
cultures, and after 10 h, most spores were germinated on both
minimal medium and PDA. In general, the hyphal growth rate on
PDA (30 � 8 �m/h) was higher than on minimal medium (20 �
8 �m/h). Fast-growing hyphae first emerged after completion of
colony initiation—i.e., germination, conidial anastomosis tube
(CAT) fusion, and maturation of germ tubes into vegetative hy-
phae (38). The medium composition influenced the timing of the
appearance of fast-growing hyphae. On minimal medium, the
first fast-growing hyphae were observed 6 h after germination,
whereas on PDA the first fast-growing hyphae were seen 10 h after
germination. The medium composition also influenced the
growth rate of fast-growing hyphae: at 164 � 65 �m/h, they grew
faster on minimal medium than on PDA (119 � 35 �m/h). Com-
pared to the growth rate of regular hyphae on the respective me-
dia, fast-growing hyphae grew approximately 8 times faster on
minimal medium and 4 times faster on PDA, indicating a role of
medium composition and perhaps nutrient availability in the de-
velopment of fast-growing hyphae. At this stage, namely, where
fast-growing hyphae appeared on a regular basis on both minimal
medium and PDA, multinucleate compartments were almost ex-
clusively observed in the apical compartment of fast-growing hy-
phae. The occurrence of intercalary mitosis was not dependent on
medium composition, and the first multinucleate intercalary
compartments were observed 23 or 26 h after germination on
minimal medium or PDA, respectively.

DISCUSSION

In this study, we showed that within the first 48 h of colony for-
mation by Fusarium oxysporum, hyphal characteristics and nu-
clear dynamics change, and these changes can be grouped into
three developmental stages. The first stage is colony initiation,
including germination, CAT fusion, and maturation of germ

FIG 4 Intercalary compartments undergo asynchronous mitoses. Time-lapse
sequences of asynchronous mitoses in intercalary compartments. Nuclei of
intercalary compartments can be activated from their dormant state and un-
dergo a mitotic wave, which can include several compartments and a number
of nuclei, varying from 1 to 8 or more per compartment. The mitotic wave is
asynchronous within and between compartments. Formation of septa does
not always occur between daughter nuclei. Numbers indicate nuclei that will
undergo mitosis, and arrowheads indicate newly formed septa. Shown is F.
oxysporum f. sp. lycopersici 4287 HH01::GFP stained with 1 �M calcofluor
white. Scale bars, 10 �m.
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tubes into vegetative hyphae, which at this stage contain exclu-
sively uninucleate compartments. Depending on the medium
composition, this stage can last 16 to 20 h after seeding of spores.
The second stage is marked by the emergence of fast-growing hy-
phae that fan out with a 4 to 8 times higher growth rate, presum-
ably to sample the surrounding environment for nutrient avail-
ability. At this stage, the first multinucleate compartments, the
apical compartments of fast-growing hyphae, emerge. Fast-grow-
ing hyphae are present throughout further colony development,
in line with a role of these specialized hyphae as scouts. Supporting
this idea, we observed that on nutrient-limited medium, fast-
growing hyphae are formed earlier and show a higher growth rate.
In addition to the proposed function as scouts, fast-growing hy-
phae might also play a role in pathogenicity of F. oxysporum. The
very thin hyphal tips of these specialized hyphae might facilitate
the penetration of the host’s root surface in the absence of appres-
soria, as was suggested by Ruiz-Roldán et al. (26, 39). The third
stage is characterized by a dramatic change in nuclear dynamics in
intercalary compartments of mature hyphae: dormant nuclei of
intercalary compartments are reactivated and undergo mitoses.
Not all of these mitoses are followed by septum formation, result-
ing in highly multinucleated compartments and hyphae with a
high nuclear density.

Newly branched hyphae, which appear first during stage II,
behave much like germlings. In the cases where we observed the
transition from a uninucleate stage to a multinucleate stage was
shorter, it was reached after a few mitoses rather than many hours
after germination, as is the case for germlings (Table 1).

One question emerging from these observations is what the
benefit could be, if any, of the transition from a uninucleate to a
multinucleate state. The answer to this question may well be dif-
ferent for fast-growing hyphae versus intercalary compartments.
Although in their final form (smaller diameter, long apical com-
partment, and mitotic wave), fast-growing hyphae were only
found after completion of colony initiation, initial steps toward
their formation appear already shortly after germination. As de-
scribed by Ruiz-Roldán et al., the size of apical compartments
increases after each mitosis, which could be a consequence of ac-
celerating growth (26) (Fig. 1 and Table 1). To maintain a certain
nuclear density in these fast-growing apical compartments, we
propose that multiple nuclei have to undergo mitosis. A similar
model has been suggested for other filamentous fungi with a high
growth rate, like N. crassa, in which the nuclear population in
the growing tip is supported by multiple mitoses and rapid
migration of the newly formed nuclei through interconnected
hyphae (13, 40).

The advantages of multinuclearity and multiple mitoses in in-
tercalary compartments have been investigated in several fungi,
for example in N. crassa and Fusarium moniliforme. These studies
revealed that the same colony contained different nuclear popu-
lations (20, 41), demonstrating the potential importance of multi-
nuclearity for fungal diversification and evolution. This is impor-
tant for two reasons. (i) If only the apical nucleus is mitotically
active, propagation of a spontaneous mutation would be limited
to few points within a fungal colony, and the generation of diver-
sity would mostly occur at the edges of the colony (13). (ii) In
previous studies, the important role of horizontal gene and chro-
mosome transfer in generating genomic diversity in filamentous
fungi was demonstrated (22, 23, 42, 43). Horizontal gene and
chromosome transfer requires at least a temporary tolerance for a

multinucleate state in the mycelium. To have an effect on genetic
diversity, new hyphae and/or spores should emerge from multi-
nucleate compartments to produce offspring. We have not ob-
served this in our study. As far as production of microconidia
goes, in F. oxysporum this takes place in phialides in which nuclei
of all spores originate from a single nucleus (26) (see Movie S5 in
the supplemental material).

Storage of nitrogen and phosphorus could represent a further
functional advantage for the transition to multinuclearity in com-
partments of older mycelium (20). Under starvation conditions,
the filamentous fungus Aspergillus oryzae is capable of degrading
nuclei from compartments of older mycelium through macroau-
tophagy and utilizing the released nutrients to support colony
survival and growth (44). Conversely, in F. oxysporum, compart-
ments of older mycelium might reactivate dormant nuclei to un-
dergo mitosis as a way to store nutrients in the form of DNA.

Another interesting question is how the transitions discussed
above are regulated. A strict regulation must be in place to control
entry into mitosis in some compartments and exclude the neigh-
boring compartments. Aspergillus nidulans displays an elaborate
system to regulate cell-to-cell connectivity during the cell cycle.
Cytosolic continuity during interphase but not during mitosis is
achieved by localization of the NIMA (i.e., “never in mitosis A”)
kinase to septal pores from the time of septum formation
throughout interphase. During mitosis, NIMA transiently locates
to nuclei, where it plays an important role in entry into mitosis as
well as in nuclear pore complex disassembly (45–47). A similar
system could be in place in F. oxysporum, facilitating the inclusion
of some compartments and exclusion of others from entry into the
next mitotic cycle.

One of the challenges of a multinucleate fungal lifestyle is po-
tential nuclear competition during reproduction and spore dis-
persal. We propose a model in which F. oxysporum essentially
follows a multinucleate lifestyle. This multinucleate state would be
repressed during sporulation to overcome nuclear competition
and is again derepressed after colony initiation, when a multinu-
cleate lifestyle is advantageous. It will be interesting to see what
happens during fusion between older hyphae and whether the
postfusion nuclear degradation described by Ruiz-Roldán (26) is
indeed the result of a repression of tolerance of the multinucleate
state.

It stands to reason that a similar system as described here for F.
oxysporum is also in place for other fungi. For example, Magna-
porthe grisea, which was described as uninucleate, sometimes also
exhibits multinucleate compartments in older mycelium (48). A
future challenge could be to determine the advantages of this life-
style, perhaps by finding a way to suppress either the multinucle-
ate state or the uninucleate state through specific mutations.
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