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Translation is a fundamental and highly regulated cellular process. Previously, we reported that the kinase and transcription
elongation factor Ctk1 increases fidelity during translation elongation in Saccharomyces cerevisiae. Here, we show that loss of
Ctk1 function also affects the initiation step of translation. Translation active extracts from Ctk1-depleted cells show impaired
translation activity of capped mRNA, but not mRNA reporters containing the cricket paralysis virus (CrPV) internal ribosome
entry site (IRES). Furthermore, the formation of 80S initiation complexes is decreased, which is probably due to reduced subunit
joining. In addition, we determined the changes in the phosphorylation pattern of a ribosome enriched fraction after depletion
of Ctk1. Thus, we provide a catalogue of phosphoproteomic changes dependent on Ctk1. Taken together, our data suggest a
stimulatory function of Ctk1 in 80S formation during translation initiation.

Translation initiation is a very intricate and highly dynamic
process leading to the formation of an elongation competent

80S ribosomal complex at the start codon of the mRNA (1–4).
Translation initiation starts with the association of the methionyl
initiator tRNA (Met-tRNAi) to the GTP-bound eukaryotic initia-
tion factor 2 (eIF2) to form a ternary complex (TC). In Saccharo-
myces cerevisiae, this TC is thought to bind another subset of ini-
tiation factors to form the multifactor complex (5), which then
associates with the 40S ribosomal subunit, resulting in the forma-
tion of the 43S initiation complex. The 43S complex binds to the
mRNA at its 5= 7-methylguanosine cap in a process facilitated by
eIF3, Pab1, eIF4B (B subunit of eIF4), and the multisubunit eIF4F
complex to generate the 48S initiation complex (6). Within the
48S initiation complex, the 40S subunit with its associated initia-
tion factors is thought to scan along the mRNA until it reaches the
start codon. Here, correct base pairing of the initiator-tRNA Met-
tRNAi with the AUG located at the ribosomal P-site causes arrest
of the scanning preinitiation complex (PIC), and eIF5 promoted
hydrolysis of eIF2-bound GTP and dissociation of several initia-
tion factors. eIF5B, a GTPase, facilitates the subsequent joining of
the 60S subunit, which results in an elongation competent 80S
complex (1–4, 6, 7).

In addition to canonical translation initiation, a cap-indepen-
dent mechanism of translation initiation exists. For example,
many viruses contain special sequences in their mRNA named
internal ribosome entry sites (IRESs) that also mediate cap-inde-
pendent translation when canonical translation initiation is shut
down. IRESs can be classified according to their dependence on
translation initiation factors (reviewed in reference 8). At one ex-
treme are the class IV IRESs exemplified by the cricket paralysis
virus (CrPV) IRES that function independently of any translation
initiation factors (8, 9). In addition to viruses, where they have
been mainly studied, IRESs are also present in cellular mRNAs of
eukaryotes. Two examples for eukaryotic IRESs are the ones pres-
ent in the yeast NCE102 and GPR1 mRNAs, which require at least
the initiation factor eIF4G (8, 10). The cellular role, abundance,

and mode of 80S recruitment of eukaryotic IRESs remain largely
enigmatic. It is assumed that the translation of cellular IRES-con-
taining mRNAs is also favored when general translation is shut
down, e.g., under stress conditions (10, 11).

Ctk1 is the kinase subunit of the carboxy-terminal domain
kinase I (CTDK-I) complex. CTDK-I phosphorylates RNA poly-
merase II (RNAPII) on the carboxyl-terminal repeat domain
(CTD) of its largest subunit, which is important for efficient tran-
scription elongation, mRNA 3=-end processing, and transcription
termination of small noncoding RNAs (12, 13). Interestingly,
Ctk1 also plays a role in RNA polymerase I (RNAPI) transcription
(14, 15). Previously, we showed that Ctk1—in addition to its well-
described function in transcription— has a second function in
translation (16). Ctk1 function increases the correct decoding of
mRNA during translation elongation by phosphorylating residue
S238 of Rps2, a protein of the small ribosomal subunit. Rps2 has
long been known to be essential for translational accuracy (17)
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and is located at the beginning of the mRNA entry tunnel of the
small ribosomal subunit (18).

In this study, we investigate whether Ctk1 has a second func-
tion in translation, since the dramatic decrease of translation ac-
tivity upon Ctk1 depletion cannot be explained solely by the miss-
ing phosphorylation of Rps2. We show that depletion of Ctk1
leads to a translation initiation defect in vitro. In a proteomic
screen for a substrate(s) of Ctk1, we identify changes in the phos-
phorylation patterns of numerous ribosomal proteins and pro-
teins involved in ribosome biogenesis and translation upon Ctk1
depletion. Interestingly, formation of 80S complexes and subunit
joining is decreased upon Ctk1 depletion. Taken together, Ctk1
stimulates— directly or indirectly—translation initiation.

MATERIALS AND METHODS
Yeast strains and plasmids. All strains are derived from the Saccharomy-
ces cerevisiae W303 wild-type (wt) strain (MATa/� ura3-1 trp1-1 his3-
11,15 leu2-3,112 ade2-1 can1-100 GAL�). The GAL1::CTK1-TAP, �ctk1::
HIS3, and �rps2::HIS3 strains were described previously (16). The �lys::
KANMX6 strain was generated by exchanging the LYS1 open reading
frame (ORF) with the KANMX6 cassette by homologous recombination.
The GAL1::CTK1-TAP �lys::KANMX6 strain was produced by mating the
GAL1::CTK1-TAP and �lys::KANMX6 strains.

For measuring translation activity of capped mRNA, the pSP6-Luc
(Luc stands for luciferase) plasmid (19) and IRES-containing mRNAs
plasmids pWG186 (capped mRNA), pWG290 (GPR1 IRES), pWG324
(NCE102 IRES), and pWG299 (CrPV IRES) (10) were used. Plasmids
pRS315-RPS2 and pRS315-rps2-S238A were described previously (16).
The pRS315-CTK1 plasmid was generated by cloning the CTK1 ORF with
450-bp promoter and 150-bp terminator sequences from a pUN100 li-
brary plasmid into the SmaI site of pRS315 (20). The pRS315-CTK1-
D324N plasmid was generated by site-directed mutagenesis. The BSEF-
RPL38, BSEF-RPL41a-22bp5=UTR, the BSEF-RPL41a-80bp5=UTR, and
BSEF-PGK1 plasmids were generated by exchanging the BamHI-SacI in-
sert of BSEF (21) with the sequence of the corresponding gene (for PGK1,
the ORF was shortened to 203 bp). The length of the 5= untranslated
regions (5=UTRs) of the RPL38, RPL41, and PGK1 mRNAs was chosen by
the method of Miura et al. (22).

In vitro transcription. The IRES plasmids and the corresponding
m7GpppG-capped positive control were linearized with EcI136II before be-
ing transcribed with T7 polymerase (New England BioLabs). The GpppA cap
for the IRES constructs and the m7GpppG cap for the positive control (both
from KEDAR, Poland) were added to the reaction mixture together with
ATP, CTP, and UTP. After a 5-min incubation at 37°C, GTP was added, and
DNA was transcribed for 1 h at 37°C. The template DNA was digested with
DNase for 15 min at 37°C. The capped luciferase mRNA was in vitro tran-
scribed from pSP6P (23) after its linearization with BsrBI (Fermentas). In
vitro transcription was carried out with the AmpliCap high-yield message
maker kit (Biozym) according to the manufacturer’s directions. For generat-
ing radiolabeled mRNA, the BSEF-RPL38, BSEF-RPL41a-22bp5=UTR,
BSEF-RPL41a-80bp5=UTR, and BSEF-PGK1 plasmids were linearized with
HindIII before being in vitro transcribed with T3 polymerase (Roche).
m7GpppG (KEDAR, Poland) together with ATP, CTP, and [�-32P]UTP
were added to the reaction mixture. After a 5-min incubation at 37°C,
GTP was added, and DNA was transcribed for 1 h at 37°C. The template
DNA was then digested with DNase for 15 min at 37°C. Template mRNA
for the toeprint assay was generated accordingly, except for the use of
nonradioactive UTP. All mRNAs were purified by using the RNA Min-
Elute kit according to the manufacturer’s directions (Qiagen).

In vitro translation. In vitro translation active extracts were prepared
as described previously (16, 19). For (mock) depletion, 4-liter yeast ex-
tract-peptone-dextrose (YPD) cultures were inoculated with an overnight
culture of cells grown in yeast extract-peptone-glucose (YPG). Cells were
harvested after 18 h after reaching an optical density at 600 nm (OD600) of

1.0 to 1.2. In vitro translation assays were performed as described in ref-
erence 19. Approximately 300 ng of in vitro-transcribed mRNA was used
for all in vitro translation assays.

Translation initiation assay. Three A260 units of translation active
extract was incubated with 6.25 �g creatine kinase (Roche) for 5 min on
ice, followed by 30-min incubation with 1.25 mM EGTA, 2 mM magne-
sium acetate (MgAc), 76 mM KCl, 0.4 mM GTP, 1 mM ATP, 50 �M each
amino acid, 12.5 mM creatine phosphate, 1 mM cycloheximide, RNase
inhibitor, 35 ng of in vitro-transcribed radioactive mRNA, and where
indicated, 1.25 mM 5=-guanylylimidodiphosphate (GMP-PNP) in a total
volume of 120 �l at room temperature. The entire reaction mixture was
loaded on a 5 to 25% sucrose gradient and centrifuged at 39,000 rpm
(SW40 rotor) for 2 h. Fractions (450-�l fractions) were taken off, and 300
�l of each fraction was counted with 3 ml of scintillation cocktail (Roth)
using a scintillation counter (PerkinElmer Tri-Carb 2810TR).

Toeprint assay. Gradients with translation initiation reaction mix-
tures were set up as described above with the following exception. Only 1.3
mM cycloheximide and, where indicated, 0.3 mM GMP-PNP were used,
and the extracts were incubated with 200 to 250 ng of in vitro-transcribed
nonradioactively labeled RPL38 mRNA. Fractions (400-�l fractions) were
taken off with a Teledyne ISCO gradient machine. Twenty-five microliters
of each fraction was diluted 1:4 with dilution buffer (50 mM Tris-HCl [pH
7.5], 60 mM KCl, 6 mM MgCl2, 5 mM dithiothreitol [DTT], 0.5 mM
cycloheximide, 0.5 mM dTTP, 0.5 mM dCTP, 0.5 mM dGTP, 5 nM dATP,
and RNase inhibitor), and the reaction mixture was incubated for 105 s at
52°C, placed on ice, and incubated with 25 pmol primer (5=-GGCGGTC
TTAACGTCAGCT-3=) at 37°C for 5 min. For reverse transcription, 0.5 �l
[�-32P]dATP and 1 �l SuperscriptII (Invitrogen) were added, and the
reaction mixture was incubated at 37°C for 15 min. SDS and EDTA were
added, followed by a phenol-chloroform extraction of the reverse tran-
scripts. The DNA was precipitated with rRNA as a coprecipitator, resus-
pended in denaturing formamide loading buffer, and loaded on a prerun
13% polyacrylamide denaturing sequencing gel. In the case of the 48S fraction
of Ctk1-depleted cells, only half of the resuspended pellet was loaded on the
gel. The gel was run at 45 W for 1 h 50 min, dried, and exposed to a phos-
phorimager for at least 3 days. The plate was scanned with a Storm 860 imager
(Molecular Dynamics), and the bands were quantified using MultiGauge
software (Fujifilm). The sequencing reaction was done according to the man-
ufacturer’s directions (USB Sequenase 2.0).

Polysome gradients. Polysome gradients were performed as described
in reference 16 except that cells were grown in minimal medium. The absorp-
tion profile was recorded with a Teledyne ISCO gradient machine.

Analysis of rRNA intermediates. Fifty milliliters of phosphate-de-
pleted YPD (YPD-P) was inoculated with wt or GAL1::CTK1-TAP cells
growing at stationary phase in YPG. After 12 h, cells were diluted to an
OD600 of 0.3 in YPD-P and grown exponentially for 6 h. Cells were labeled
at an OD600 of 0.8 with 15 �Ci/ml 32Pi for 5 min. Two milliliters of the cell
suspensions were harvested, washed, and resuspended in buffer contain-
ing 1 M sorbitol. The suspension was incubated with 100 U Zymolyase
20T and 0.2% �-mercaptoethanol at 37°C for 5 min, centrifuged (300
rpm/1 min), and the pellet was washed before lysis according to the
RNeasy standard protocol (Qiagen). The RNA was isolated using the
RNeasy kit (Qiagen). RNA (1 or 3 �g) was mixed with formamide and
ethidium bromide (EtBr) containing loading dye and run on a 1% dena-
turing formaldehyde agarose gel at 110 V for 5 h. The 25S RNA was
detected with UV light, and the rRNA intermediates were analyzed with a
phosphorimager (10-min exposure) and quantified with AIDA software.
For a better comparison of the amounts of processed rRNA intermediates,
wt signals of the lane with 1 �g total RNA and Ctk1-depleted signals of the
lane with 3 �g total RNA were quantified.

Western blotting. After 18-h depletion, Ctk1- and mock-depleted
cells were harvested at an OD600 of 0.5 to 1.0 and lysed via alkaline lysis
with NaOH. SDS-PAGE and semidry Western blotting were performed by
standard methods. The eIF2�-P51 antibody was purchased from Invitro-
gen. For 3-aminotriazole (3AT) treatment, 3AT was added to the yeast
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culture to a final concentration of 80 mM at an OD600 of 0.5. The cells
were harvested at an OD600 of 1.0.

RESULTS
Translation active extracts of Ctk1-depleted cells have a reduced
translation activity for a capped mRNA, but not for a CrPV in-
ternal ribosome entry site (IRES)-containing mRNA. As re-
ported previously, Ctk1 phosphorylates Rps2, a protein of the
small ribosomal subunit, which is essential for translational accu-
racy and located at the beginning of the mRNA entry tunnel (17,
18). Consistently, phosphorylation of Rps2 on S238 by Ctk1 in-
creases translational accuracy (16). However, the translation de-
fect of an rps2-S238A (the S-to-A change at position 238 encoded
by rps2) mutant is not as severe as the translation defect of Ctk1-
depleted cells (16; also see below), indicating that Ctk1 has an
additional role in translation. In order to identify this potential
novel function of Ctk1 in translation, we assessed whether Ctk1 is

important for translation initiation. The �ctk1 strain is not suited
to assess a function of Ctk1 in translation, since it has a severe
growth defect and shuts down translation nonspecifically as as-
sessed by phosphorylation of eIF2� (Fig. 1). Instead, Ctk1 was
depleted from cells by expressing endogenous Ctk1 under the control
of the GAL1 promoter and shift of the cells to a glucose-containing
medium, since this leads to almost complete depletion of Ctk1 but
only a minor growth defect (16). For a control, mock-depleted cells
were used. The mock-depleted cells expressed Ctk1 under the control
of its endogenous promoter, resulting in continued expression of
Ctk1 after the cells were shifted to glucose-containing medium.

To assess a possible function of Ctk1 in translation initiation, we
exploited the fact that translation of IRES-containing mRNAs can
circumvent the cap- and translation initiation factor-dependent
translation initiation mechanism (see the introduction). Translation
of a CrPV IRES-containing mRNA does not require any translation
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initiation factors, whereas translation of two yeast IRESs, from the
NCE102 and GPR1 genes, requires at least the initiation factor eIF4G
(8, 10). We thus compared the activity of translation active extracts of
Ctk1- versus mock-depleted cells to translate a capped mRNA versus
the three different IRES-containing mRNAs in order to distinguish
between a defect in translation initiation versus another step of trans-
lation (Fig. 2A). Translation of the capped mRNA and the two yeast
IRES RNAs was reduced to 20% in extracts of Ctk1-depleted cells
compared to mock-depleted wild-type (wt) cells (Fig. 2B) (16). Im-
portantly, translation of the CrPV IRES-containing RNA was re-
duced to only 80% in Ctk1-depleted extracts, indicating that the
translation defect of these extracts is largely circumvented by the ini-
tiation mechanism of this IRES. The fact that translation of this IRES-

containing mRNA is 20% lower than in wt extracts is most likely
caused by the elongation defect in Ctk1-depleted extracts (16). All
three IRES-containing mRNAs were translated less efficiently than
the capped mRNA (0.2% to 4% of the capped construct), but these
mRNAs were still translated around 100	 more efficiently in the
mock-depleted extracts than in the negative control containing an
ApppG cap and a stem-loop but no IRES. The three different IRES-
containing mRNAs were translated with similar efficiencies with the
NCE102 IRES-containing mRNA being translated best and the GPR1
IRES-containing mRNA being translated least (Fig. 2C). Since only
translation initiation mediated by the CrPV IRES is independent of
any translation initiation factors, this result suggests that Ctk1 medi-
ates the correct and efficient interplay of translation initiation factors
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necessary to recruit translation competent 80S ribosomes to the start
codon.

To assess whether translation initiation by depletion of Ctk1 is
also impaired in vivo, we analyzed polysome profiles of mock- and
Ctk1-depleted cells. Consistent with impaired translation initia-
tion, the 80S peak increases, whereas the polysome peaks decrease
when Ctk1 is depleted (Fig. 2D and E). The decrease in the poly-
some/monosome (P/M) ratio of Ctk1- versus mock-depleted cells
is small but significant (Fig. 2D and E). The surprisingly small
effect on the P/M ratio and the lack of halfmers in gradients (also
see below) of Ctk1-depleted cells is probably due to the fact that in
vitro translation experiments are more sensitive to perturbation
than the polysome gradients that reflect an in vivo situation. Al-
ternatively, the in vitro translation defect could also be due to a
missing or defective translation factor or ribosome that can be
compensated for in the in vivo situation. Taken together, in addi-
tion to its function in translation elongation, Ctk1 stimulates
translation initiation.

Ctk1 depletion causes reduced phosphorylation of proteins
involved in ribosome biogenesis and translation. Since Ctk1 is a
serine/threonine kinase, we determined whether the Ctk1 kinase

activity is needed for efficient translation. Translation active ex-
tracts from a strain depleted for wt Ctk1 but expressing the kinase
dead Ctk1 mutant encoded by ctk1-D324N (24) (Fig. 3A) showed
the same reduction in overall translation efficiency as the Ctk1
depletion (Fig. 3B). Thus, the kinase activity of Ctk1 is essential for
Ckt1’s function in translation. Furthermore, a different substrate
than Rps2 is important for full translational activity, since the
rps2-S238A mutant does not exhibit a translation defect in vitro
(Fig. 3C).

We thus wanted to identify Ctk1’s substrate(s) important for
translation initiation. To this end, we employed a proteomic ap-
proach to analyze the phosphorylation status of ribosomes and
ribosome-associated proteins in mock- and Ctk1-depleted cells
using stable isotope labeling with amino acids in cell culture
(SILAC) and subsequent mass spectrometry (see Fig. S1 in the
supplemental material). Liquid chromatography coupled with
tandem mass spectrometry (LC-MS/MS) analysis of these samples
showed a multitude of changes in the phosphorylation pattern
upon Ctk1 depletion (see Table S1 in the supplemental material).
Interestingly, a number of phosphorylation sites are less phos-
phorylated in Ctk1-depleted cells. The proteins listed in Table S2
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were selected based on their known function in translation or
ribosome biogenesis and tested for direct phosphorylation by
Ctk1 in in vitro kinase assays with purified CTDK-I complex and
the candidate substrate. Three of the 23 candidate substrates
tested were directly phosphorylated by Ctk1, namely, Sda1, Mrs6,
and Ltv1 (data not shown). However, serine-to-alanine mutations
at the site identified in the mass spectrometric analysis in these
three proteins showed unchanged phosphorylation by Ctk1 in
vitro (data not shown), indicating that the decreased phosphory-
lation of this site upon Ctk1 loss is likely not due to a direct phos-
phorylation by this kinase. However, even though we have been
unable to identify a direct target of Ctk1, we provide a catalogue of
phosphoproteomic changes upon Ctk1 depletion, i.e., not ob-
scured by unspecific changes caused by the growth defect of �ctk1
cells, that might provide a valuable resource for other researchers
interested in Ctk1 function.

Loss of Ctk1 causes a decrease in 80S initiation complex for-
mation. Since the phosphorylation status of many proteins in-
volved in ribosome biogenesis changed due to Ctk1 depletion (see
Table S1 in the supplemental material), we assessed whether de-
fective ribosome biogenesis could be the cause of the translation
initiation defect in Ctk1-depleted extracts. Consistent with previ-
ous studies (14), the RNAPI transcription rate was decreased in
Ctk1-depleted cells (Fig. 4A). Thus, the decreased amount of
rRNA and consequently ribosomes could cause the decrease in
translation initiation. On the other hand, this seems unlikely, as
the levels of Rps8 and Rpl6 and thus most likely both ribosomal
subunits are not decreased in extracts of Ctk1-depleted cells (25).
In addition, as rRNA processing is not affected by Ctk1 depletion
(Fig. 4B), this is also most likely not the reason for the translation
initiation defect.

In order to corroborate that Ctk1 indeed stimulates translation
initiation and to determine specifically which step in translation
initiation is affected, we next compared the incorporation of ra-
diolabeled mRNA into translation initiation complexes in extracts
of Ctk1- and mock-depleted cells. To do this, we adapted the
initiation assay described by Beckmann and colleagues (21) to
yeast (Fig. 5A). Four yeast transcripts were used for this analysis:
RPL38 mRNA, RPL41 mRNA with two different lengths of the
5=UTR (22 bp and 80 bp), and PGK1 mRNA with a shortened
open reading frame (ORF). These mRNAs were selected based on

their high expression, lack of introns, and—in the case of the
mRNAs coding for the ribosomal proteins—short ORFs necessary
for a good resolution of the initiation complexes on sucrose den-
sity gradients. All mRNAs contain a 3=UTR of approximately 140
bp and a poly(A) tail of 71 adenines. To characterize these four
novel reporter mRNAs, their incorporation into initiation com-
plexes was first analyzed in wt extracts under conditions in which
translation initiation occurs but elongation is blocked by the ad-
dition of cycloheximide. The resulting translation initiation com-
plexes were separated on a sucrose density gradient followed by
scintillation counting of the gradient fractions in order to assess
the distribution of the radioactively labeled mRNA (Fig. 5A). All
four mRNAs were mostly incorporated into 80S initiation com-
plexes with a smaller portion present in the 48S initiation complex
or in the light, ribosome-free fractions.

To assess the translation initiation defect in Ctk1-depleted
cells, initiation assays were performed with extracts from Ctk1-
and mock-depleted cells. Strikingly, the incorporation of mRNA
into 80S ribosomes is lower in Ctk1-depleted extracts than in
mock-depleted extracts. The level of mRNA incorporated in 80S
complexes is reduced to 54 and 70% compared to mock-depleted
extracts as measured by integration of the 80S peak area for each of
the four mRNAs (Fig. 5B to E). Importantly, the decrease in 80S
formation is statistically significant (Fig. 5B to E). This defect does
not seem to be specific for a certain mRNA, since it occurred
with all four reporters (Fig. 5B to E). In addition, the amount of
mRNAs in the messenger ribonucleoprotein particle (mRNP)
and—at least for the RPL38 mRNA (see below)—the 48S PIC
fractions is increased, suggesting a defect in 48S PIC and 80S ini-
tiation complex formation (Fig. 5B to E). In order to corroborate
that formation of 48S complexes is increased in Ctk1-depleted
extracts, an initiation assay was performed in the presence of
GMP-PNP, which prevents subunit joining, leading to an accu-
mulation of 48S PICs and thus rendering an increase of 48S PICs
of Ctk1- versus mock-depleted extracts more visible. The signifi-
cant increase in 48S PICs in Ctk1-depleted extracts (as determined
by comparison of the 48S peak areas and application of Student’s
t test; P � 0.05) suggests that a step in translation initiation after
the formation of 48S PICs is affected upon Ctk1 depletion (Fig.
5F). In contrast to the defect observed for Ctk1-depleted cells, 48S
complex formation is decreased in �ctk1 cells as the peak for
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mRNPs is increased, the 80S peak is decreased, and the 48S peak is
basically unaffected (Fig. 1D). Thus, translation initiation is af-
fected at the stage of 48S complex formation in �ctk1 cells as
indicated by the increased phosphorylation of eIF2� (Fig. 1A),
corroborating that the initiation block in these cells is due to
stress. Taken together, 80S formation is defective in Ctk1-depleted
extracts.

40S subunits accumulate at the start codon in extracts of
Ctk1-depleted cells. A decreased conversion of 48S PICs to 80
initiation complexes in Ctk1-depleted extracts could be caused

either by decreased scanning of the 5=UTR by the small ribosomal
subunit or by decreased 60S subunit joining at the start codon. To
distinguish between these two possibilities, we determined the
position of the 40S subunit on the RPL38 mRNA in Ctk1-depleted
extracts by a toeprint assay. Translation reactions were performed
with unlabeled RPL38 mRNA, the proteins were separated on su-
crose density gradients, and fractions containing 48S initiation
complexes were pooled (Fig. 6A to C). Reverse transcription with
a primer annealing to the ORF in the direction of the cap renders
transcription products whose lengths depend on the position of
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the 40S subunit on the mRNA (“toeprint”). Thus, 40S subunits
positioned at the start codon yield a distinct “short” transcription
product, whereas scanning 40S subunits yield a “long” transcrip-
tion product, since loosely bound 40S subunits are either dis-
placed from the mRNA during the reverse transcription reaction
or are not detected, since scanning is a very fast process, rendering
scanning intermediates difficult to detect. Importantly, there was
a clear toeprint signal for 40S subunits positioned at the start
codon in Ctk1-depleted extracts in contrast to mock-depleted ex-

tracts, indicating that 40S subunits accumulate at the start codon
(Fig. 6D). The toeprint for the long transcript, on the other hand,
was about the same in both extracts (Fig. 6D). Thus, the ratio of
the short transcript to the long transcript, i.e., the fraction of
mRNAs with 40S subunits at the AUG codon, increases 1.3-fold
when Ctk1 is missing (Fig. 6E). This indicates a subunit joining
defect caused by the lack of Ctk1. The fact that this defect is not
visible in the absorption profiles (Fig. 6A to C) might be due to the
fact that in the toeprint assay, only newly formed 48S complexes
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are assessed, whereas on the gradient, all ribosomal complexes are
visible. As a positive control for a subunit joining defect, GMP-
PNP, a nonhydrolyzable GTP analogue, which blocks subunit
joining, was added to the mock-depleted reaction mixture. As
expected, this treatment led—as in the case of Ctk1-depleted
cells—to an increased toeprint signal for the short transcripts cor-
responding to 40S positioned at the start codon (Fig. 6D). The
ratio of short to long transcripts in GMP-PNP-treated extracts
increased 1.6-fold (Fig. 6E). Thus, 40S initiation complexes accu-
mulate to a significant degree at the start codon in Ctk1-depleted
and GMP-PNP-treated extracts. These results suggest that the re-
duced formation of 80S initiation complexes in Ctk1-depleted
extracts might be due to a ribosomal subunit joining defect.

DISCUSSION

Previously, we showed that the transcription factor Ctk1 func-
tions in translation elongation by enhancing translational accu-
racy through phosphorylation of the ribosomal protein Rps2 (16).
In this study, we present a second function of Ctk1 in translation.
We show that loss of Ctk1 also affects translation initiation. Spe-
cifically, depletion of Ctk1 impairs formation of 80S initiation
complexes in vitro. 80S formation is a multistep process, and it
remains to be determined which of these steps is stimulated by
Ctk1— either directly or indirectly. However, initiation factors are
likely to play a role because translation of the CrPV IRES-contain-
ing reporter RNA, which does not depend on any translation ini-
tiation factors, was not significantly affected in cells lacking Ctk1
(Fig. 2). This is consistent with the finding that the levels of the
ribosomal proteins Rps8 and Rpl6 and thus most likely the levels
of ribosomal subunits are not affected in extracts of Ctk1-depleted
cells (16, 25). In addition, the translation elongation defect in
extracts of Ctk1-depleted cells can be rescued by adding purified
CTDK-I complex back, indicating that the ribosomes in these ex-
tracts are functional (16). Ctk1 could, for instance, phosphorylate
an initiation factor and modulate its recruitment to or its dissoci-
ation from initiation complexes. Alternatively, Ctk1 could en-
hance subunit joining by phosphorylation of ribosomal proteins,
which in turn could enhance directly the binding of the small
subunit to the large subunit or the association of translation fac-
tors with or their dissociation from the initiation complex. We
previously showed that Ctk1 consistently associates with ribo-
somal subunits, monosomes, and polysomes (16). In an attempt
to show that Ctk1 directly functions in translation initiation, pu-
rified CTDK-I complex was added to the translation active ex-
tracts of Ctk1-depleted cells prior to the luciferase or initiation
assay. Unfortunately, we could not observe a “rescue” of the trans-
lation activity by the purified complex, and there could be many
possible reasons for this. Thus, Ctk1 could also affect translation
initiation indirectly. Since RNAPI and RNAPII transcription is
decreased upon loss of Ctk1 function, the amount of specific ri-
bosomal components other than Rps8 or Rpl6 (see above) (16, 25)
and/or translation factors might be compromised. Moreover, the
integrity and/or phosphorylation status of these factors could be
affected, since the phosphorylation status of numerous proteins
changed upon depletion of Ctk1 (see Table S1 in the supplemental
material). Even though a major rRNA processing defect could be
excluded (Fig. 4), ribosome biogenesis could be impaired in a
more subtle way, leading to a translation initiation defect.

Using an unbiased SILAC approach, we identified a multitude
of phosphosites on ribosomal proteins and proteins involved in

ribosome biogenesis and/or translation that are less phosphory-
lated in vivo upon Ctk1 depletion (see Tables S1 and S2 in the
supplemental material). Unfortunately, however, we were not
able to identify a direct substrate of Ctk1 with a function in trans-
lation initiation, and there are many possible explanations for this.
Thus, the mechanism by which Ctk1 stimulates translation initi-
ation remains to be determined. Another aspect that remains to be
analyzed is the question whether Ctk1 is important for global
translation or for translation of a specific subset of mRNAs. The
fact that the novel translation initiation defect presented here was
observed with various different reporter mRNAs (luciferase,
RPL38, RPL41, PGK1, two yeast IRESs) favors global translation
control by Ctk1.

Bodenmiller and colleagues recently conducted an extensive
phosphoproteomic analysis determining the impact of a multi-
tude of kinase deletions on the phosphoproteome (26). They
showed that of all the kinases tested, deletion of Ctk1 caused the
most dramatic change in the phosphoproteome. This is consistent
with the results of our study and shows that Ctk1 function is cru-
cial for maintaining homoeostasis of the phosphoproteome. The
changes in the phosphoproteome observed by Bodenmiller and
colleagues are—with the exception of only a few phosphosites—
different from the changes that we determined in this study. Be-
sides technical differences, the main reason for this is most likely
the fact that we used cells depleted of Ctk1 instead of a �ctk1 strain
as Bodenmiller et al. did; the �ctk1 strain has a severe growth
defect that is expected to affect the phosphoproteome also non-
specifically. Thus, our study focusing solely on the function of
Ctk1 most likely represents a more adequate view of phosphory-
lation changes caused by the lack of Ctk1, since any influence of
slow growth on the phosphoproteome as expected for the �ctk1
strain is absent. Thus, we provide a valuable catalogue of phos-
phosite changes on ribosomes and ribosome-associated proteins
when Ctk1 activity is strongly reduced.

Ctk1 is believed to be highly conserved with three potential
human homologues: CDK12 or CDK13 (27) and CDK9, the ki-
nase subunit of the positive transcription elongation factor b (P-
TEFb) (28). Thus, it is of great interest whether its human homo-
logue(s) also influences translation initiation. Interestingly, one of
the potential mammalian homologues—CDK9 —was reported to
shuttle between the nucleus and cytoplasm (29) and to associate
with polysomes (16). Thus, CDK9 might also function in transla-
tion. In addition, it remains to be elucidated whether the newly
identified homologues of Ctk1, CDK12 and CDK13 (27), also
function in translation.
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