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Targeted, capture-based DNA sequencing is a cost-effective method to focus sequencing on a coding
region or other customized region of the genome. There are multiple targeted sequencing methods
available, but none has been systematically investigated and compared. We evaluated four commercially
available custom-targeted DNA technologies for next-generation sequencing with respect to on-target
sequencing, uniformity, and ability to detect single-nucleotide variations (SNVs) and copy number
variations. The technologies that used sonication for DNA fragmentation displayed impressive unifor-
mity of capture, whereas the others had shorter preparation times, but sacrificed uniformity. One of
those technologies, which uses transposase for DNA fragmentation, has a drawback requiring sample
pooling, and the last one, which uses restriction enzymes, has a limitation depending on restriction
enzyme digest sites. Although all technologies displayed some level of concordance for calling SNVs,
the technologies that require restriction enzymes or transposase missed several SNVs largely because of
the lack of coverage. All technologies performed well for copy number variation calling when compared
to single-nucleotide polymorphism arrays. These results enable laboratories to compare these methods
to make informed decisions for their intended applications. (J Mol Diagn 2015, 17: 64e75; http://
dx.doi.org/10.1016/j.jmoldx.2014.09.009)
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Next-generation sequencing technologies have enabled cancer
genomics discovery by providing a high-throughput and cost-
effective strategy to sequence thousands of cancer genomes.1

Next-generation sequencing has helped identify novel
genomic alterations in cancer, including, but not limited to,
single-nucleotide variations (SNVs), copy number variations
(CNVs), and gene fusions that may serve as predictive bio-
markers for matching patients to targeted therapies in trials.2

Although whole genome and exome sequencing enables dis-
covery of novel genomic alterations, clinical-grade applica-
tions must consider constraints, including cost per patient, time
to results, and depth of coverage. Consequently, clinical
implementation of sequencing has focused on customized
sequencing of actionable genes, exons, or regions.3,4 A
targeted-capture next-generation sequencing strategy is clini-
cally pragmatic, because it is scalable, is economical, and al-
lows for deeper sequencing coverage compared to whole
stigative Pathology

.

genome or whole exome approaches. Thus, many laboratories
are using or considering custom capture gene panels for
diverse applications, including discovery, validation testing, or
clinical-grade assay development.3,5e8 To this end, we
compared the proficiency of four methods to capture and
sequence a custom gene panel.
Practical considerations for targeted gene sequencing

include cost of sequencing and wanted depth of coverage.
Thus, ideal methods provide high on-target and uniform
sequencing. Amplicon-based assays for cancer gene
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Targeted Next-Generation Sequencing
hotspots offer high on-target specificity, but can only cover
a limited scope of regions.2 Beyond such assays in can-
cer,5,6,8 hybridization-based capture strategies can focus on
larger regions of interest and additional types of alteration,
such as CNVs.3,7,9

Although earlier studies compared the strengths and
weaknesses of three methods for whole exome capture using
in-solution hybridization,10e14 several new clinically ori-
ented methods have been developed that offer rapid,
simplified sample preparation and lower requirements for
DNA input. Herein, we describe a comprehensive compar-
ison of four DNA capture technologies for a panel of 257
cancer-related genes. We evaluated the ability of four
methods for each to capture targeted regions in 16 samples,
including six pairs of tumor and normal tissue and four cell
lines, in terms of alignment rate, sequencing uniformity, GC
content bias, SNV concordance, and CNV-calling ability.

Materials and Methods

Cell Lines and Tissue DNA Samples

BT-20 and MCF-7 breast cancer cell lines (with PIK3CA hot-
spot mutations), HCC-2218 (with ERBB2 gene amplification),
and HCC-2218’s matching lymphoblastoid cell line, HCC-
2218BL, were obtained from ATCC (Manassas, VA). De-
identified paired tumor and matched-normal DNA samples of
breast, melanoma, lung, and colon were obtained from Origene
Technologies Inc. (Rockville, MD) (Supplemental Table S1).
DNA was extracted from log phase growing cell lines using
Blood and Cell Culture DNAMini-kit (Qiagen, Valencia, CA).
The quantity and quality of DNA were measured with Nano-
Drop 2000c (Thermo Scientific,Waltham,MA) (optical density
ratio: 260:280 Z 1.8 to 2.0; 260:230 Z 2.0 to 2.2) and
TapeStation 2200 (Genomic DNA Screen Tape; Agilent
Technologies, Santa Clara, CA). The double-stranded DNA
was further quantified using Quant-iT dsDNA BR Assay kit by
Qubit 2.0 fluorometer (A260/A280 is 1.8 to 2.0) (Invitrogen,
Carlsbad, CA). All 16 sample DNAs were captured and
sequenced with SureSelect (Agilent Technologies), HaloPlex
(Agilent Technologies), Nextera (Illumina, San Diego, CA),
and SeqCap (Roche Nimblegen, Madison, WI), methods,
except for tissue samples 3, 4, 5, and 6, for which there was
enough DNA input for HaloPlex and Nextera only.

SureSelect Custom Target Enrichment Library
Preparation

The genomic DNA (gDNA; 2 mg) was diluted with 1� low
Tris-EDTA buffer and sheared using Covaris S2 sonicator to
achieve target peak of 150 to 200 bp (SonoLab 7 settings: Duty
Factor, 10%; Peak Incident Power, 175; cycles per burst, 200;
DNA treatment time, 360 seconds; water bath temperature,
4�C) (Covaris, Woburn, MA). Agilent’s SureSelectXT Target
Enrichment protocol version 1.5 was followed for library
preparation without modification. Fourteen cycles of PCRwere
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performed for amplification of the post-captured library, and the
quality of the final DNA library was assessed using the High
Sensitivity D1K ScreenTape and TapeStation 2200 (Agilent
Technologies, Santa Clara, CA). Per manufacturer’s protocol,
library peak size was in the range of 300 to 400 nucleotides.

HaloPlex Custom Exome Library Preparation

gDNA (200 ng; split among eight different restriction re-
actions) plus 25 ng of excess gDNA was used for a total of
225 ng of gDNA, as described in the protocol. Agilent’s
HaloPlex Target Enrichment Protocol version D.3 was fol-
lowed for library preparation without modification. Eighteen
cycles of PCR were completed for amplification of the
captured library. The quality of the final DNA library was
assessed with the High Sensitivity D1K ScreenTape
(TapeStation 2200). Per manufacturer’s protocol, library
peak size was in the range of 225 to 525 nucleotides.

Nextera Custom Enrichment Library Preparation

gDNA (50 ng) was used, and Nextera Custom Enrichment
sample was followed for the preparation protocol without
modification (Illumina). Ten cycles of PCR were completed
for amplification of the final library, as recommended. The
enriched DNA library was quantitated using real-time quan-
titative PCR, as described in the Illumina Sequencing Library
real-time quantitative PCR quantification guide (Illumina).

SeqCap EZ Choice Library Preparation

Standard genomic libraries were initially prepared using 1 mg
of gDNA Illumina TruSeq DNA (Illumina). Next, the library
was amplified by ligation-mediated PCR (eight cycles) and
hybridized to custom probes, and final amplification was
completed of the post-captured library by ligation-mediated
PCR (14 cycles), according to the manufacturer’s protocol
following the SeqCap EZ library preparation guide (Nim-
bleGen, Madison, WI). Roche Nimblegen’s policy prohibited
release of SeqCap’s probe coordinates, but the design is
available on request.

Sequencing of Libraries

Index-tagged libraries were quantified using HS Qubit dsDNA
assay (Invitrogen). SureSelect (Agilent Technologies), Hal-
oplex (Agilent Technologies), and SeqCap (Roche Di-
agnostics, Basel, Switzerland) library samples were pooled
and diluted to 2 nmol/L stocks for multiplexed (four-plex)
sequencing on Illumina’s MiSeq (2 � 100 bp). For Nextera
samples, the library pooling guideline was followed to pool 16
samples at once for sequencing on a MiSeq (2 � 100 bp).
Although we used 100-bp reads for detecting SNVs and
CNVs, users may select an alternate read length, depending on
wanted downstream goal of identifying SNVs, CNVs, or
65
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structural variants (http://www.ncbi.nlm.nih.gov/gap; Acces-
sion number phs000811.v1.p1).

SNP Array

Affymetrix Genome-Wide Human SNP Array 6.0 was per-
formed using DNA isolated from breast cancer cell lines
HCC-2218 and HCC-2218BL through Case Western
Reserve University’s (Cleveland, OH) Genomic Sequencing
Core to determine CNV (Affymetrix, Santa Clara, CA). The
Core followed the Affymetrix Genome-Wide Human SNP
Array 6.0 method for sample preparation. Briefly, 500 ng
gDNA was digested with NspI and StyI restriction enzymes
and then ligated to adaptors. The adaptor-ligated DNA
fragments were amplified, fragmented, labeled, and hybrid-
ized to SNP Array 6.0.

Mycoplasma Testing and Authentication

The cell lines BT-20, MCF-7, HCC-2218BL, and HCC-
2218 were tested negative for Mycoplasma and authenti-
cated (DNA Diagnostics Center, Cincinnati, OH).

Alignment

Adapters were removed from sequencing data using Illumina’s
MiSeq Reporter software version 2.2.29 on SureSelect, Nex-
tera, and SeqCap libraries and Agilent’s SureCall software
version 1.1.0.15 on HaloPlex libraries. Raw paired-end
sequencing FASTQ files were aligned to the human genome
(hg19) using the Burrows-Wheeler Aligner (BWA-0.6.2)15

under the default parameters. The two resulting suffix array
index files were merged and converted to Sequence Alignment/
Map (SAM); the resulting SAM file was converted to Binary
Alignment/Map (BAM) using the SAMtools16 view command,
and the results were sorted by chromosome and position using
SAMtools-0.1.1816 sort command. After alignment, we
removed duplicate reads from SureSelect, Nextera, and SeqCap
data using the Picard-1.84 MarkDuplicates command with
default parameters (Broad Institute, http://broadinstitute.github.
io/picard, last accessed September 22, 2014). Duplicates were
not removed from HaloPlex data, per manufacturer’s in-
structions. Afterward, the reads in all samples were realigned
around known indels in dbSNP file hg19 snp13717 using
Genome Analysis Toolkit-2.4.7 (GATK)18 using the Realign-
erTargetCreator and IndelRealigner, followed by the Picard
FixMateInformation command. Finally, a quality score recali-
bration was performed for all samples using the GATK Base-
Recalibrator and PrintPreads commands under the default
parameters. Last, we used SAMtools sort to sort the final BAM
files by name to generate a name-sorted BAM file.

We generated alignment statistics and percentage of tar-
geted bases covered at various depths. We used Browser
Extensible Data (BED)Tools19 to calculate three different
alignment percentages: percentage of raw sequenced reads
that aligned to the human genome, percentage of raw
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sequenced reads that aligned to targeted regions for the
respective technology, and percentage of aligned reads that
aligned to targeted regions for the respective technology.
These three different alignment statistics were calculated for
the final BAM file (ie, after removing duplicates, realigning
around indels, and recalibrating quality score). The BED-
Tools bamtobed command was used to convert the name-
sorted BAM files to bedpe format. By using the previously
mentioned bedpe file, we calculated percentage of raw
FASTQ reads to align to hg19. To calculate alignment to
targeted regions for each technology, we used the BEDTools
pairtobed commands using the previously mentioned bedpe
file and each technology’s targeted regions. A read was
considered on target if at least one base from a paired-end
read intersected a target region. To calculate percentage of
targeted bases covered at various depths, we used mpileup
files generated by SAMtools on the final BAM files and a
custom Python script to calculate depth in target bases
(Supplemental Code S1). We also used Picard’s
CollectInsertSizeMetrics under the default parameters, except
for assuming the validation stringency to be lenient.

SNV Calling

By using the final BAM files after raw data post-processing,
we called variants. Tumor-normal analyses followed a
different pipeline from calling single-sample SNVs relative
to the reference genome. For tumor-normal analyses,
SAMtools was used to convert final BAM files into dual
mpileup files. Then, the somatic function in VarScan2
version 2.3.320 performed SNV calls, assuming the tumor
sample was pure and using default parameters. Taking only
the somatic SNVs (ie, where the tumor and normal geno-
types differed and the normal genotype matched the refer-
ence genome at the position in question) and germ-line
SNVs (ie, where the tumor and normal genotyped matched,
but differed from the reference genome at the position in
question), we estimated tumor purity using PurityEst and
custom scripts (for HCC-2218, purity was set to 1).21 With
this calculated tumor purity, we recalculated SNVs using
VarScan2. We also called tumor-normal variants using
MuTect-1.1.422 under the default parameters (MuTect does
not use tumor purity estimates), while inputting each tech-
nology’s respective BED file. Furthermore, we used Strelka-
1.0.1123 to call tumor-normal variants under the default
parameters, except we set isSkipDepthFilters to 1 and
maxInputDepth to �0; we quantified read count for each
SNV using tier2 reads (Strelka does not use tumor purity).
Regardless of SNV caller, somatic SNVs were annotated
using ANNOVAR24 to remove intronic and synonymous
SNVs and to associate exonic SNVs with known genes and
their associated amino acid change, or stopgain, or stoploss.
In addition to the tumor-normal analysis, we also per-

formed single-sample SNV calls relative to the reference
genome for all samples (including cell lines, tumor samples,
and normal samples). BAM files were used to generate
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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mpileup files using SAMtools’ mpileup function under the
default parameters. SNVs were called using VarScan20s
mpileup2snp command under the default parameters.We also
used GATK-2.4.7’s18 HaplotypeCaller under the default pa-
rameters and Mpileup (SAMtools-0.1.18)16 (http://samtools.
sourceforge.net/mpileup.shtml, last accessed August 8,
2014) under the default parameters to make single-sample
SNV calls, except no maximum depth to call an SNV.
GATK required each technology’s respective BED file as
input. Although the tumor purity cannot be calculated for
single-sample analyses, downstream processing of single-
sample SNVs was the same as for tumor-normal SNVs. We
also used Agilent’s SureCall software version 1.1.0.15, a
platform-specific tool, for the analysis of HaloPlex data sets
under the default parameters, according to the manufacturer’s
instructions (Agilent Technologies).

We compared SNV-calling concordance between tech-
nologies using the following equation:

Percent Concordance Z 100% � SNV1 X SNV2

SNV1 W SNV2
ð1Þ

Venn diagrams were generated using Venny (http://
bioinfogp.cnb.csic.es/tools/venny, last accessed August 8,
2014).

CNV Calling

VarScan2’s copynumber function was used to call CNVs for
tumor-normal pairs using the dual mpileup file generated by
SAMtools. This command included a data ratio to correct
for uneven sequencing between a tumor and a normal pair;
our data ratio was the number of reads in the normal
mpileup file/the number of reads in the tumor mpileup file.
The CNV output included chromosomal segments and their
associated tumor-normal log2 ratio.

The results from sequencing-derived CNV calls were
compared for the cell line HCC-2218 (using HCC-2218BL as
a reference) against CNV calls produced by SNP6.0 array
using Affymetrix’s Genotyping Console software version
4.1.4.840 according to the manufacturer’s instructions
(Affymetrix). CNV log2 ratios were generated at individual
base positions in our panel for HCC-2218 and HCC-2218BL.
To directly compare CNV data from the SNP array and
VarScan2-produced calls, for all base positions of both cell
lines in the SNP array data, 2 to the respective log2 CNV ratio
was raised to get an absolute CNV. Next, for each base po-
sition in the SNP array data, the absolute CNV for HCC-2218
was divided by that of the HCC-2218BL and took log2 of the
quotient.

Log2 ratio CNV calls were correlated from each technol-
ogy against the log2 CNV calls from the SNP array for the
HCC-2218 cell line. For each technology, by using raw CNV
output from VarScan2, for each CNV segment, all bases were
assumed to have the log2 CNV ratio of the whole segment.
Then, for all bases in the VarScan2 output, CNV calls were
paired from VarScan2 and the SNP array (for all bases in
The Journal of Molecular Diagnostics - jmd.amjpathol.org
which a call from the respective technology and SNP array
were available). Before calculating correlation of CNV calls,
any bases that had CNV log2 ratio between �0.5 and 0.5
were first removed from either VarScan2 or the SNP array to
exclude low-amplitude copy alterations from our analysis.
Then, the correlation of CNV calls between VarScan2 and
the SNP array was calculated for each technology.

Statistical Tests

For data on which we performed significance tests, the
two-sided U-test was performed, except when sequencing-
estimated tumor purity was compared, for which a two-
sided sign test was used. P values for all U-tests are listed
in Supplemental Table S2.

Collaboration with GenomOncology

To ensure the reproducibility of some of our results in an
independent analysis, GenomOncology (Westlake, OH) was
contracted to perform analyses using its own computational
pipeline. Paired-end sequencing was aligned to hg19 using
bwa-0.7.5a. By using the SAMtools 0.1.18 view command,
resulting SAM files were converted to BAM. BAM files were
sorted using Picard 1.97 SortSam. Next, read groups were
added using Picard AddOrReplaceReadGroups. Duplicates
were removed from SureSelect, Nextera, and SeqCap using
Picard MarkDuplicates. Then, a base quality recalibration
was performed using GATK 2.2, followed by realignment
around indels from dbSNP file hg19 snp135 using GATK.
All commands were run using default parameters.

After alignment and post-processing, raw sequencing
statistics were calculated and sequencing depth in mutually
targeted regions was compared. Insert size was calculated
using Picard CollectInsertSizeMetrics. By using Picard
CollectAlignmentSummaryMetrics, alignment statistics and
strandedness were calculated. Complexity was calculated,
using Picard CollectAlignmentSummary, by counting the
number of read pairs in the final BAM without duplicates
(including HaloPlex) and dividing by the number of read
pairs in the initially aligned BAM file. Raw sequencing depth
was calculated using GATK DepthOfCoverage in mutually
targeted regions. Normalized coverage and GC content at a
base position were calculated as described earlier herein.

Results

Library Construction and Probe Design Vary between
Targeted DNA Capture Methods

We assessed four commercial methods, Agilent’s SureSelect
and HaloPlex, Illumina’s Nextera Custom Enrichment, and
Roche Diagnostics/NimbleGen’s SeqCap EZ Choice
(Figure 1, A and B, and Table 1) for customized DNA
capture and sequencing for a panel of 257 cancer-related
genes (Supplemental Tables S3eS11) (note that Roche
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Diagnostics/Nimblegen’s policy prohibits release of probe
coordinates). Procedurally, these technologies contrast in
several aspects that may be expected to affect results from
targeted sequencing (Figure 1A and Table 1). First, Sure-
Select and SeqCap use sonication, whereas HaloPlex relies
on restriction enzymes and Nextera uses transposase to
generate DNA fragments. These differences can potentially
affect the diversity of inserts generated for library con-
struction. Second, HaloPlex uses a unique probe design in
which the probes are not directly complementary to targeted
regions, unlike the three other technologies. Instead, Halo-
Plex probe ends are complimentary only to the 50- and 30-
ends of target regions, whereas the middle of the probe is a
HaloPlex-specific motif that leads to the formation of a
circular molecule during hybridization to DNA (Figure 1A).
Third, library preparation for HaloPlex and Nextera requires
only 48 hours, SureSelect needs 72 hours, and SeqCap
needs 72 to 96 hours. Shortened sample preparation time is
accomplished in HaloPlex through combining steps for
adapter ligation with probe hybridization and in Nextera
through combining adapter ligation with transposase-
mediated fragmentation.

In addition to experimental differences, probe content and
strategy vary widely between each capture method. Each
technology uses distinctive probe lengths, genetic material,
density, and layouts around target regions (Table 1). An
example of probe design for each technology using an exon
B FANCB, Exon 3, 431 bp
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of the FANCB gene is shown in Figure 1B. Although
SureSelect uses RNA probes, the other methods use DNA
probes. Both SureSelect and SeqCap use a tiled probe
design to ensure overlapping capture, but they differ in that
SeqCap uses more shorter probes, whereas SureSelect uses
fewer longer probes. Meanwhile, Nextera uses evenly
spaced, gapped probes and relies on paired-end sequencing
to fill the resultant gaps between probes (Figure 1B).12

Furthermore, the Nextera strategy uses two sequential
probe-hybridization steps and has a requirement for sample
pooling. In contrast, HaloPlex’s probes are complimentary
to the restriction enzyme digestion sites flanking the target
region. The restriction enzyme digest allows simultaneous
fragmentation of multiple samples compared to sonication
that must occur serially.

Comparison of Libraries and On-Target Sequencing
Metrics

We used four well-characterized cancer cell lines and six
matched tumor-normal tissue pairs (Supplemental Table S1) to
appraise each technology’s ability to capture and sequence
target regions. Nextera and SeqCap libraries had the largest
median insert sizes (P Z 3.82 � 10�4) compared to other
technologies (Figure 2A and Supplemental Figure S1A).
Methods that used sonication for DNA fragmentation, Sure-
Select and SeqCap, displayed the highest library complexity
elect (RNA)

Plex (DNA)

tera (DNA)

Cap (DNA)

SeqCap

Sonication

Adapter
Ligation

PCR + Index

Probe Hybridization

PCR

equence

Index

Probe

Figure 1 Methods summary and capture
methods for targeted DNA sequencing. A: Graph-
ical depiction of four experimental protocols for
library construction and capture between the four
technologies. SureSelect and SeqCap have similar
strategies for fragmentation and hybridization,
whereas HaloPlex and Nextera use restriction
enzyme and transposase to fragment DNA,
respectively. B: Distribution of probes relative to
an example target exon (FANCB, chrX: 14,862,977
to 14,863,408). SeqCap is an approximation
(design was not released), whereas the remaining
probes are from the actual design provided.
HaloPlex’s probes are only complimentary to se-
quences near the end of the probe, whereas the
middle of the probe is a HaloPlex-specific motif
(denoted by thick and thin red lines, respec-
tively). SureSelect (blue) and SeqCap (green) use
overlapping probes, whereas Nextera (magenta)
uses gapped probes.
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Table 1 General Features of Targeted Exome Capture Strategies

Approach SureSelect HaloPlex Nextera SeqCap

Fragmentation method Sonication Restriction enzymes Transposase enzymes Sonication
Probe type RNA DNA (molecular inversion probe) DNA DNA
Length of probes (bp) 120 25e30 70 50e105
Probe strategy Tiled Multiple amplicons Gapped Tiled, dense
No. of probes (in this study) 14,368 44,860 7096 2.1 � 10�6

Range of capture recommended 1 kb to 24 Mb Up to 25 Mb 500 kb to 25 Mb 1 kb to 50 Mb
Cost per library (USD) 568 607 452 759

Manufacturers’ locations are given in Materials and Methods.
USD, United States dollars.

Targeted Next-Generation Sequencing
(ie, percentage of unique reads) (PZ 9.24 � 10�6 compared
to other technologies), whereas HaloPlex displayed the lowest
complexity (P Z 9.24 � 10�6 compared to other technolo-
gies; GenomOncology’s calculation of complexity is shown)
(Figure 2B and Supplemental Figure S1B).

Next, we assessed each technology’s on-target alignment
rate, including percentage of sequenced reads that aligned to
the reference genome (hg19) and aligned reads that mapped
to targeted regions (Figure 2C, Supplemental Tables S12
and S13, and Supplemental Figure S1C). SureSelect, Halo-
Plex, and SeqCap showed >90% alignment from raw
sequencing files to the human genome, whereas Nextera
showed (median � median absolute deviation, herein)
70.28%� 4.67% alignment to the genome (PZ 9.28� 10�6

when compared to each technology; alignment is
97.16% � 0.64%, when Nextera duplicates were included).
HaloPlex displayed the highest on-target specificity by
aligning 99.06% � 0.19% of its mapped reads to targeted
regions, significantly greater than 72.98% � 0.74% for
SureSelect, 80.36%� 1.89% forNextera, and 74.10%� 2.75%
for SeqCap (P Z 9.24 � 10�6 when compared to each tech-
nology; HaloPlex showed 98.70% � 0.53% duplicates). All
trends for alignment rateswere similarwhenwe introduced 100-
and 500-bp padding around the target regions (Supplemental
Table S12 and Supplemental Figure S2). In addition to align-
ment rate, we also calculated strand specificity and found a
relatively even distribution of alignments between both
DNA strands for all methods (Figure 2D) (the base calls in
mpileup files were used to calculate strandedness)
(Supplemental Figure S1D) (for GenomOncology’s calculation
of strandedness).
Figure 2 Comparison of various library metrics. A: Library insert size
(median � median absolute deviation throughout figure). B: Library
complexity, as measured by percentage of unique reads (of the total reads)
in each library. C: Alignment metrics for each technology for reads (ie, after
removing duplicates for SureSelect, Nextera, and SeqCap) mapping to hg19
and to each technology’s targeted regions. D: Strandedness for each
technology, as measured by the number of base calls on the positive strand.
*PZ 3.82 � 10�4 (U-test), Nextera and SeqCap have a significantly higher
insert size than SureSelect and HaloPlex (A); *P < 9.24 � 10�6, SureSelect
and SeqCap have significantly greater complexity than HaloPlex and Nex-
tera, whereas HaloPlex has the lowest complexity (B); *P < 10�5, Nextera
has the lowest alignment rate to the genome and HaloPlex has the highest
alignment rate to target regions (C).
Depth and Uniformity of On-Target Sequencing

Given the preceding alignment rates, we next considered the
normalized sequencing depth (read count per million
sequenced reads) in bases that were targeted by all methods
(Figure 3A and Supplemental Figure S3A) (for Genom-
Oncology’s calculation of sequencing depth). HaloPlex had
the greatest average normalized coverage (defined as
means � SD herein) (111.76 � 102.43 reads per million
sequenced reads; P < 10�323 when compared to each tech-
nology), whereas Nextera and SeqCap had the lowest average
The Journal of Molecular Diagnostics - jmd.amjpathol.org
normalized coverage (62.94� 36.07 and 63.22� 16.67 reads
per million sequenced reads, respectively; P < 10�323 when
compared to each technology). However, HaloPlex also dis-
played the greatest average global SD of normalized coverage
(42.97� 42.26 reads per million sequenced reads; P< 10�323

when compared to each technology), whereas SeqCap showed
the smallest average global SD of normalized coverage
(14.80� 16.17 reads per million sequenced reads; P< 10�323

when compared to each technology), suggesting that SeqCap
might be the most uniform of the tested capture methods.
Although each of the method’s designs differed somewhat in
its target regions, we observed a similar trend for uniformity
when evaluating on either commonly or respective target re-
gions (Supplemental Figure S4A).

Although average depth of coverage is an important
metric, ideal on-target sequencing should be equally
69
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distributed across all regions of interest. To assess uniformity
of on-target sequencing, we plotted the percentage of
commonly targeted bases versus minimum average normal-
ized coverage (Figure 3B and Supplemental Figure S3B).
Although none of the technologies is expected to provide
completely uniform capture and sequencing, we sought to
define an ideal plot if one assumed that capture and
normalized sequencing was perfect. In scenarios leading to
the ideal plots, all bases have a normalized coverage equal to
the average normalized coverage for the technology
(Figure 3B). Given the computed ideal curves, we compared
the deviation of each technology from true uniformity. We
found that HaloPlex had the greatest average distance to its
corresponding ideal curve, whereas SeqCap had the lowest
(P < 10�323, for both when compared to each technology).
We observed the same uniformity calculations using each
technology’s respective targeted regions (Supplemental
Figure S4B).
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Impact of GC Content on Target Capture

Regions with low or high GC content can adversely affect
targeted DNA sequencing through affecting probe hybrid-
ization and PCR amplification steps.10,12 Therefore, we
investigated how target base composition affected the per-
formance of each technology for commonly targeted bases
(Figure 3C and Supplemental Figures S5 and S6). HaloPlex
and Nextera exhibited a significant peak in normalized
coverage near 60% GC, whereas coverage decreased
sharply before and after 60% GC content. SureSelect and
SeqCap, on the other hand, performed consistently with
respect to GC content and lacked a clear peak at any GC
percentage.
Having examined uniformity with respect to overall GC

content, we also compared coverage of each technology for
extremes of high-GC (�80%) and low-GC (�25%) regions
in commonly targeted bases (Supplemental Table S14). In
80 90 100

600,000

50 200

Figure 3 Comparison of sequencing depth and
variation in mutually targeted regions. A:
Normalized coverage was calculated (reads per
million sequenced reads) (y axis) for each mutu-
ally targeted base and plotted average (blue) and
SD (red) versus genomic positions (x axis). Read
count was obtained from Sequence Alignment/
MAP (SAMtools) mpileup files. B: Plot of per-
centage of mutually targeted bases that were
covered at average minimum normalized coverages
(solid lines). An ideal curve is included for each
technology (dotted lines), where the average
normalized sequencing is uniformly distributed for
each technology. Different technologies have
different average normalized coverages, so ideal
curves will be different between technologies.
Solid lines should be compared to dotted lines
for the respective technology. C: Average
normalized coverage is plotted against the percent
GC content in 100-bp windows. Darker colors
indicate higher density of points, whereas lighter
colors indicate lower density of points.
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high-GC areas, SureSelect showed the highest median
coverage (P Z 1.10 � 10�47). In low-GC areas, SureSelect
and SeqCap performed the best (P < 10�323). A similar
analysis of GC content in regions targeted specifically by
each technology is shown (Supplemental Table S14).
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Performance of SNV Calling Across Technologies

Identification of SNVs is a major goal of targeted DNA
sequencing in cancer. For each cell line, tumor sample, and
matched normal sample (limited to 12 samples because there
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was insufficient DNA for samples 3 to 6 on SureSelect and
SeqCap), we generated single-sample SNV calls relative to
the human genome (hg19) across the four technologies using
VarScan2,20 GATK,18 and Mpileup.16 For concordance
analysis, we limited our variant calls only to targeted regions
common to all methods so we could directly compare the
ability of each technology to call SNVs at identical genomic
positions (Supplemental Tables S15eS17). Figure 4A shows
the single-sample SNV concordance of the technologies
using the previously mentioned variant callers (for concor-
dance calculations among technologies) (Supplemental
Table S18). We also called variants on HaloPlex data using
Agilent’s SureCall software version 1.1.0.15 and found a
similar level of concordance with the other three technologies
and three separate variant callers (Supplemental Figure S7
and Supplemental Tables S19 and S20) (two-tailed U-tests
for numbers were P Z 0.86, P Z 0.96, and P Z 0.96 for
VarScan2, GATK, and Mpileup, respectively) (Figure 4A
and Supplemental Figure S7).
72
In addition, we assessed the four technologies’ abilities to
support SNV calling in cancer samples relative to a matched
normal. Therefore, for each normal-matched cancer sample
(Supplemental Table S1), we used VarScan2, MuTect,22 and
Strelka23 to call tumor-normal SNVs in regions common to
all technologies (Figure 4B and Supplemental Tables
S21eS24). The concordance among technologies was
generally lower in calling tumor-normal SNVs than in calling
single-sample SNVs. The percentages of tumor-normal
SNVs nominated by at least three technologies varied be-
tween 46.73% and 73.10%, depending on variant caller
(Figure 4B). On the other hand, the equivalent for single-
sample SNVs ranged between 76.29% and 94.65% for
SNVs nominated by at least three technologies (Figure 4B).
Although there was a reasonable amount of agreement with

respect to the percentage of SNVs called by all technologies
independent of the SNV caller (between 34.17% and 80.99%),
we observed some discordance between technologies (ie, an
SNVmissed by at least one technology). Thus, we investigated
Figure 5 Comparison of copy number variation
(CNV) detection. A: Copy number ratio (log2 scale)
plotted against genomic position for technology-
specific targeted bases demonstrating overall
comparable copy number calling between four
technologies. A similar graph for single-nucleotide
polymorphism (SNP) array is included for bases in
any technology’s target region. B: Correlation be-
tween CNV detection for each technology and SNP
array was determined for high absolute threshold
copy number gains and losses. Any base whose
absolute value of log2 CNV ratio for either
sequencing or SNP array was <0.5 (ie, between
�0.5 and 0.5) was excluded from these graphs,
because they were deemed copy neutral. Chr,
chromosome.
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and found several possible causes for SNV discordance by
inspecting aligned reads across all four methods using the
Integrative Genomics Viewer.25 We focused on single-sample
SNVs called in the four cell lines, because we had abundant
DNA available for validation (Supplemental Figures S8 and S9
and Supplemental Table S25). Of 131 discordant SNVs, 72
(56.49%) that were not called in one or more technologies
could, in most cases, be explained by a lack of coverage
(Supplemental Figure S10) or the SNV caller failed to detect the
SNV, because of an insufficient number of quality reads
(Supplemental Figure S11). (Various studies have found 30%
to 60% concordance between SNV callers applied to the same
data.26,27) Furthermore, we observed that HaloPlex consistently
produced unique outlier SNVs compared to other technologies,
which Agilent’s proprietary SureCall software version 1.1.0.15
failed to resolve (Supplemental Figures S8A and S9). Almost
all SNVs called solely by HaloPlex data were caused by certain
motifs known to cause Illumina sequencing errors [24 (18.32%)
such SNVs of 131 discordant SNVs; we found that GATK
correctly excludes SNVs in such error-prone reads]28,29

(Supplemental Figure S12 and Supplemental Table S26).
Furthermore, several SNVs were missed by HaloPlex libraries,
possibly because of their location in the vicinity of a HaloPlex
restriction-enzyme digestion site, causing a bias toward wild-
type base calls (Supplemental Figure S13).

For the remaining five discordant SNVs, we used Sanger
sequencing to determine whether the SNV was actually
present in the cell line or whether it was being called in error
by one or more of the technologies (Supplemental
Figure S14). Sanger sequencing confirmed three SNVs
called by all technologies, except HaloPlex, and one SNV
called by all technologies, except Nextera. Sanger
sequencing refuted one SNV called only by HaloPlex.
Using SNV Variant Fractions to Calculate Tumor Purity

Considering that tumor samples generally contain admixtures
of cancer and normal cells, variant fractions can be used to
estimate or correlate with expected tumor purity.21We used an
Table 2 Comparison of Four Methods for Targeted DNA Sequencing

Variable SureSelect

Time (hours) 72
Recommended input DNA (mg) 2
Pooling Optional
Alignment (%)
Manufacturer specified 30e70
This study 73.25

Library complexity (%) 97.45
Base calls on positive strand (%) 50.89
Uniformity High
SNV Yes
CNV Yes

Alignment herein means percentage of reads that aligned to the genome that
CNV, copy number variation; SNV, single-nucleotide variation.
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ad hocerendered version of PurityEst21 to calculate approxi-
mate tumor purity for all tumor samples. Our computational
estimates of tumor purity on all four technologies for the four
tumor samples were concordant with available histology-
estimated tumor purities (Supplemental Table S1). Sign tests
between sequencing- and histology-estimated tumor purities
showed no significant difference for each technology
(PZ 0.13, PZ 0.47, PZ 0.31, and PZ 0.25 for SureSelect,
HaloPlex, Nextera, and SeqCap, respectively).

Comparison of CNV Calling with SNP Array

In addition to SNV detection, another application for tar-
geted sequencing is the determination of CNVs on the basis
of read depth.20 We calculated CNVs in the HCC-2218
cancer cell line relative to the matched normal HCC-
2218BL for each capture method using VarScan2. Inde-
pendently, we determined CNVs using a SNP array as a
gold standard comparison30 on the same samples (Figure 5A
and Supplemental Table S27). For each capture platform,
we compared the log2 CNV ratios to the SNP array CNV
ratios for the bases that were common to the respective
technology and the SNP array (Figure 5B). We focused on
high-amplitude and clinically significant CNV gains or
losses.3,7 When we excluded positions whose sequencing or
SNP array log2 CNV ratio fell between �0.5 and 0.5 (such
positions we deemed copy neutral), correlation coefficients
were 0.93, 0.92, 0.91, and 0.89 for SureSelect, HaloPlex,
Nextera, and SeqCap (P < 0.001 for all technologies),
respectively.

Discussion

We examined the ability of four targeted DNA capture
technologies to enrich and identify SNVs and CNVs in
selected genes that are known to play important roles in
cancer. Newer methods, such as HaloPlex and Nextera,
require less experimental time and lower DNA input than
older methods, such as SureSelect and SeqCap (Table 2).
HaloPlex Nextera SeqCap

48 48 72e96
0.2 0.2 2
Optional Required Optional

30e70 >65 70e80
98.98 80.18 73.73
21.82 83.33 98.34
49.26 49.88 50.46
Low Low High
Yes Yes Yes
Yes Yes Yes

aligned or should align to target regions.
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We sought to assess the advantages and disadvantages that
may be inherent to differences in experimental procedures
and probe design.

We expected some degree of variation in library
complexity, on-target enrichment, and capture uniformity
between protocols. Methods involving sonication for DNA
fragmentation displayed the highest complexity in libraries
compared to restriction or transposase enzymes (Figure 2).
Although HaloPlex had the highest alignment percentage to
the targeted region, most aligned data were, in fact, dupli-
cates involving highly oversequenced regions and thereby
contributing to lower uniformity (Figure 3B). HaloPlex and
Nextera had the highest SD of normalized coverage
(Figure 2B) and divergence from their respective ideal
curves compared to SureSelect and SeqCap. In addition,
HaloPlex and Nextera were adversely affected by variations
in GC content, with coverage peaking at approximately 60%
GC, whereas SureSelect and SeqCap displayed more evenly
distributed performance.

In addition to library complexity, on-target alignment,
uniformity, and variant calling, we noted several method-
specific nuances. An experimental limitation of Nextera is
its requirement for sample pooling during hybridization,
unlike other methods, in which individual samples are hy-
bridized to probes separately. Although this can save on
costs of probe manufacturing, it can make ensuring equal or
wanted sequencing depth difficult to achieve (Supplemental
Table S13). The relative costs for each method are similar
(Table 1). Because the HaloPlex design is dependent on
restriction enzyme digest sites for capture, it functions like a
PCR amplicon, leading to its high duplicate rate. Thus,
SNVs occurring in or near digest sites may physically limit
targeted capture (Supplemental Figure S13). More impor-
tant, SureSelect is the only method that uses RNA probes
for hybridization capture.31 For clinical laboratories devel-
oping custom gene panels, long-term storage of RNA
probes is an important limitation, because these laboratories
must consider quality control and there is an advantage to
lot-tested reagents that can withstand long-term storage.

In summary, we have compared four custom-targeted
DNA capture methods with respect to uniform sequencing
and variant calling. This study demonstrates the potential
biases of capture strategies due to differences in experi-
mental procedures and probe design that may affect per-
formance, including alignment and uniformity. Given the
results herein, our laboratory prefers SeqCap or SureSelect
approaches, mainly due to capture uniformity. This report
may be used by other laboratories to select their preferred
approach on the basis of their objectives.
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