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Abstract

Segmentation and parcellation of the thalamus is an important step in providing volumetric 

assessment of the impact of disease on brain structures. Conventionally, segmentation is carried 

out on T1-weighted magnetic resonance (MR) images and nuclear parcellation using diffusion 

weighted MR images. We present the first fully automatic method that incorporates both tissue 

contrasts and several derived features to first segment and then parcellate the thalamus. We 

incorporate fractional anisotrophy, fiber orientation from the 5D Knutsson representation of the 

principal eigenvectors, and connectivity between the thalamus and the cortical lobes, as features. 

Combining these multiple information sources allows us to identify discriminating dimensions and 

thus parcellate the thalamic nuclei. A hierarchical random forest framework with a 

multidimensional feature per voxel, first distinguishes thalamus from background, and then 

separates each group of thalamic nuclei. Using a leave one out cross-validation on 12 subjects we 

have a mean Dice score of 0.805 and 0.799 for the left and right thalami, respectively. We also 

report overlap for the thalamic nuclear groups.
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1 Introduction

The thalamus is a sub-cortical gray matter (GM) structure in the brain of vertebrates that is 

symmetric in the midline and located between the cerebral cortex and midbrain [18]. Its 

principal function is the relaying of sensory and motor signals to the cerebral cortex [18] and 

the regulation of consciousness, sleep, and alertness. The thalamus consists of lamellae—

myelinated fibers—which separate the thalamus into its components and are grouped based 

on the orientation and location of distinct clusters of neurons. The most well known of these 

thalamic nuclear groups are the anterior nucleus (AN), medial dorsal (MD), ventral (VNG), 

pulvinar (PUL), lateral geniculate (LGN) and medial geniculate (MGN)—though each of 
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these groups is made up of several smaller bundles of fibers. These nuclear groups are 

differentially affected in neurodegenerative diseases such as multiple sclerosis [8], 

Alzheimer’s disease [4], schizophrenia [6, 10], and Parkinson’s disease [12]. Unfortunately, 

much of our understanding of the thalamus has come from neuropathological ex-vivo 

studies [6, 10, 12] which is not surprising considering that thalamic nuclei present minimal 

contrast in conventional MRI. Diffusion tensor imaging (DTI) presents a greater opportunity 

to unlock the secrets of the thalamus, as distinct tract connectivities and cytoarchitectures 

[16] provide a platform to distinguish the nuclear groups in-vivo. However, the exclusive 

use of DTI would make it impossible to distinguish the thalamus from other adjacent 

structures.

Previous work [11, 14, 17, 20, 23, 24] has been limited to methods dependent on some level 

of manual interaction. This work presents two innovations: 1) it is the first fully automatic 

multi-modal thalamus segmentation algorithm, and 2) it is also the first fully automated 

thalamic nuclei parcellation—into AN, MD, VNG, PUL, LGN, and MGN—using tensor-

based features within the thalamus and cortical connectivity features derived from 

tractography. Our method starts by generating an estimate of the region of interest (ROI) of 

the thalamus. Within this ROI, features are computed, including diffusion tensors and their 

principal directions and probabilistic connectivities between each voxel and lobar labels on 

the cerebral cortex. These features are used in a hierarchical random forest (RF) classifier 

framework, where the first RF segments the thalamus within the ROI, and a second RF 

identifies the collection of nuclear groups. The method is tested against manual delineation 

and its two phases (thalamic segmentation and nuclear group identification) are compared to 

other methods.

2 Method

2.1 ROI Identification

To reduce the computational burden of training an RF we estimate bounding boxes for the 

left and right thalami, denoted  and  respectively. These ROIs are identified using a 

tissue segmentation and labeling approach based on topology preservation and fuzzy 

classification [1]. For voxel j with spatial position xj in the image domain Ω and with MR 

intensity , there are functions ujk which represent the membership of the voxel with respect 

to structure k. The structures k have an intensity centroid of ck. We introduce rjk as a penalty 

term that discourages unrealistic configurations such as the thalamus touching the 

cerebellum. We have prior probabilities pjk coming from a statistical atlas and weights wkm 

on the intensity difference between the centroids of two classes ck and cm. These terms are 

combined to form the following energy minimization problem,

(1)

where q is a fuzziness parameter. The first term, on the right hand side of Equation (1) 

ensures voxels in the same structure have similar intensity values, while the second term 

controls the smoothness of the memberships, and the final term regulates the influence of the 
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prior probability. β and γ are weights that balance the relative influence of the terms. The 

energy is minimized while simultaneously maintaining the topological arrangements of the 

objects achieved through max membership assignment.

Given a fuzzy segmentation estimate of the left thalamus ,  is defined as

(2)

where lL =  xj, hL =  xj, and rL = 0.1 × (hL − lL), which pads  by 10% 

along each axes. This process is repeated for  from its corresponding fuzzy segmentation 

. Henceforth, when we refer to  it is implied that the process is repeated for both  and 

, independently.

2.2 Knutsson Space and Edge Maps

DTI is acquired from diffusion weighted MRI, using a gradient spin echo pulse sequence 

with a known b-value b and gradient direction g. The diffusion signal, S(b, g), at each voxel 

is an attenuated version of the signal S0 that would be recorded in the absence of diffusion 

weighting. The relationship can be specified using the Stejskal-Tanner equation,

(3)

where D is the 3 × 3 symmetric diffusion tensor,

(4)

The eigenvalues (λ1, λ2, λ3) from Equation (4) have eigenvectors (u1, u2, u3).

Two common quantities computed from the eigenvalues are the mean diffusivity (MD) and 

fractional anisotrophy (FA), denoted  and , respectively. The principal eigenvector 

(PEV) u1 represents the direction of maximum diffusion. As the diffusion occurs either in 

the direction of u1 or in the opposite direction −u1 with equal probability, it is convenient to 

represent the direction u as an orientation using the Knutsson map [15], which transforms 

the eigenvector u from  to  ⊂ ℝ5 by

(5)

This mapping takes opposing Cartesian vectors and sends them to the same location in 

Knutsson space —that is both length and direction are crushed in the transformation to . 

We can now generate an edge map using orientations in . For v = (v1, …, v5) ∈  we have 

the gradient matrix G and its Frobenius norm ||G||F given by
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(6)

This is an edge map representing a change in the direction of the PEV, which will allow us 

to distinguish thalamic nuclei.

2.3 Connectivity to the Cortical Mantle

Connectivity to the cortical mantle is calculated using probabilistic tractography [3] 

implemented in the FSL toolkit. Six cortical masks corresponding to thalamic connection 

sites are used as the targets for the tractography algorithm. Ml is the set of voxels in a 

cortical mask and l is the cortical mask label. The six labels for the cortical masks are 

{frontal, occipital, parietal, temporal, precentral, postcentral}.

Connectivity Cl(x) is defined as the number of times a sample starting at the voxel x forms a 

pathway connecting to any voxel y belonging to the cortical mask with label l,

(7)

5000 samples are initiated per voxel in  and the path direction is determined by local fiber 

directions.

2.4 Features and Random Forest Framework

The first features input into our RF framework are the relative position of xj ∈  and the MR 

intensity value at xj, . These intensities provide clues about the boundary of the thalamus 

with non-thalamus structures. The core distinguishing features of the nuclear groups are 

fiber orientation and strength. Thus the next set of features are the FA, MD, Knutsson 

mapping, and Frobenius norm, denoted as , , {K(xj)}, and ||G(K(xj))||F, respectively. The 

final features are the connectivity between the position xj and the six cortical labels (i.e., the 

Cl(xj)’s), denoted {C(xj)}. The complete feature vector fj is

(8)

which gives us an 18-dimensional feature space.

Our hierarchical RF [5] approach uses fj for each voxel in the available training data to build 

a collection of trees that first distinguishes the thalamus within  from other tissues. This is 

a binary classification task identifying thalamus from background. A second RF is then built 

using the same feature vector, trained to provide a membership for each of the six thalamic 

nuclear groups given that we know the thalamus from the first stage. The first stage 

thalamus identification can be quite noisy due to peripheral objects have a thalamus-like 

appearance. To reduce this artifact, we select the largest connected component foreground 

object which we then close with a 3 × 3 × 3 structuring element. The learnt RFs can be 
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applied to a new subject, with the classification scores determining the segmentation of the 

thalamus and subsequent parcellation of the nuclear groups.

3 Results

3.1 Data

Our data consists of 12 subjects from a study of cerebellar ataxia. The subject images were 

acquired on a 3T MR scanner (Intera, Philips Medical Systems, Netherlands) and have 

undergone standard neuroimaging processing: inhomogeneity correction [19], skull stripping 

[7], isotropic resampling [22] to 0.828 mm, distortion correction [21], and probabilistic 

tractography [13]. A subject is shown in Fig. 1 showing some of the input contrasts. We 

refer to our method as OM 18F, as in our method using 18 features.

A manual rater first used the FA to find the thalamus boundary, then used the Knutsson edge 

map to delineate nuclear structures that we identify as the AN, MD, PUL, LGN, and MGN 

nuclei. VG is the complement of these structures, within the thalamus boundary. We use 

these reproducible manual delineations as a ground truth for our training and testing.

3.2 Thalamus Boundary

Our first results compare our estimate of the thalamus with those from two whole brain 

segmentation software tools [1, 9]. We used leave-one-out cross-validation to train both our 

RFs, the results are averaged over the different cross-validation runs and Dice scores are 

shown in Fig. 2. A paired Wilcoxon rank sum test comparing our method with Bazin and 

Pham [1] (TOADS) had a p-value < 0.001 for both the left and right thalami (computed 

independently), indicating significant improvement. A similar test between our method and 

Dale et al. [9] (FreeSurfer) gives a p-value < 0.001 for the right thalamus; however for the 

left thalamus the p-value is 0.00684, which is just shy of statistical improvement. We note 

that in this stage, as in the next, there are two RFs one for the left thalamus and the other for 

the right stemming from  and , respectively. Example results and comparison to our 

ground truth is shown in Fig. 1.

3.3 Thalamic Nuclei Segmentation

The second step in our hierarchical RF framework distinguishes thalamic nuclei assuming 

that the thalamus boundary is known from the first stage. The left and right thalami were 

those identified in Section 3.2, which were passed through their respective trained RFs to 

predict the nuclear groups. We also implemented an automated algorithm based on Behrens 

et al. [2], which used only the cortical labels to parcellate the thalamus. The fiber groupings 

in Behrens et al. [2] are different to ours, thus for comparison we merged AN & MD (AN

+MD). Behrens et al. [2] also excluded LGN and MGN from their parcellation. The 

comparable nuclear groups—AN+MD; VNG; PUL—are shown in Fig. 3, as well as the 

additional nuclear groups we can parcellate. A paired Wilcoxon rank sum test comparing the 

results has a p-value < 0.001 for the VNG and PUL on both thalami. We fail to reach 

significance when comparing for AN+MD, because we train for AN and MD separately; 

training on the merging of these groups would perform better. Examples of our parcellation 

for two subjects are shown in Fig. 4.
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4 Conclusion

In this paper we have presented the first fully automatic thalamic parcellation method using 

multi-modal imaging data, and we make two important contributions. Firstly we use a multi-

channel framework to segment the thalamus—the first such method. Secondly, we provide a 

parcellation of the six core nuclear groups of the thalamus in a fully automated fashion.
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Fig. 1. 
Shown are (a) the MPRAGE , (b) the FA , and (c) the edgemap ||G||F. Thalami estimates 

from (d) FreeSurfer [9], (e) our method (OM 18F), and (f) a manual delineation.
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Fig. 2. 
A comparison between our thalamus segmentation (OM 18F) and those of Bazin and Pham 

[1] (TOADS) and Dale et al. [9] (FreeSurfer 5.3.0). The notches give a 95% confidence 

interval for the difference in two medians.
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Fig. 3. 
The plot on the left is a comparison of the Dice score between our implementation of 

Behrens et al. [2] (B) (shades of brown) and our method (OM 18F) (shades of green), see the 

text for details. On the right is the remaining nuclear groups we can generate. Both plots are 

for our 12 subjects. Results for left and right thalami are denoted L and R, respectively. The 

notches give a 95% confidence interval for the difference in two medians.
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Fig. 4. 
Shown are axial slices of (a) a manual delineation and (b) our parcellation for a right 

thalamus on one of our better results and (c) a manual delineation and (d) our parcellation of 

a left thalamus for a bad result. The AN is shown in a slate blue anterior to the thalamus, the 

VNG is the large blue body in the center of the thalamus, while MD and PUL are shown in 

purple and orange, respectively.
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