
Education

Structured Inquiry-Based Learning: Drosophila GAL4
Enhancer Trap Characterization in an Undergraduate
Laboratory Course
Christopher R. Dunne1, Anthony R. Cillo2, Danielle R. Glick2, Katherine John2, Cody Johnson2,

Jaspinder Kanwal2, Brian T. Malik2, Kristina Mammano2, Stefan Petrovic2, William Pfister2,

Alexander S. Rascoe2, Diane Schrom2, Scott Shapiro2, Jeffrey W. Simkins2, David Strauss2, Rene Talai2,

John P. Tomtishen III2, Josephine Vargas2, Tony Veloz2, Thomas O. Vogler2, Michael E. Clenshaw3,

Devin T. Gordon-Hamm1, Kathryn L. Lee1, Elizabeth C. Marin1,2,3*

1 Neuroscience Program, Bucknell University, Lewisburg, Pennsylvania, United States of America, 2 Cell Biology/Biochemistry Program, Bucknell University, Lewisburg,

Pennsylvania, United States of America, 3 Biology Department, Bucknell University, Lewisburg, Pennsylvania, United States of America

Abstract: We have developed
and tested two linked but sepa-
rable structured inquiry exercises
using a set of Drosophila melano-
gaster GAL4 enhancer trap strains
for an upper-level undergraduate
laboratory methods course at
Bucknell University. In the first,
students learn to perform inverse
PCR to identify the genomic
location of the GAL4 insertion,
using FlyBase to identify flanking
sequences and the primary liter-
ature to synthesize current
knowledge regarding the nearest
gene. In the second, we cross
each GAL4 strain to a UAS-CD8-
GFP reporter strain, and students
perform whole mount CNS dis-
section, immunohistochemistry,
confocal imaging, and analysis
of developmental expression pat-
terns. We have found these exer-
cises to be very effective in
teaching the uses and limitations
of PCR and antibody-based tech-
niques as well as critical reading
of the primary literature and
scientific writing. Students appre-
ciate the opportunity to apply
what they learn by generating
novel data of use to the wider
research community.

Students need laboratory courses in

order to supplement the theory they learn

from reading and didactic lectures with

hands-on experience in the scientific pro-

cess. However, mass-produced "canned"

laboratory exercises for which the results

are already known fail to convey the

excitement and satisfaction of professional

scientific research, risking boredom and

frustration. Alternatively, inquiry-based

laboratory exercises enable undergraduates

to learn scientific concepts and methods by

generating, interpreting, and reporting

novel experimental data, giving them a

taste of what being a scientist actually

entails [1–3]. In addition, when employed

strategically, these kinds of exercises can be

used to produce data for the instructor’s

own research program.

The fruit fly, Drosophila melanogaster,

has long been an experimental organism

of choice for classroom genetics studies

because of the relatively low cost of

maintenance, high fecundity, short gener-

ation time, ease of visual screening, and

the large number of mutants and trans-

genic strains available for use. For exam-

ple, undergraduates at the University of

California, Los Angeles have screened a

collection of mutants to uncover novel

genes involved in eye development [4],

while another structured inquiry-based

exercise involved the recombination map-

ping of mutations using eye color pheno-

types [5]. Both of these exercises involved

a type of fly transposon, called a p-

element, that can be mobilized in the

germline to integrate randomly in the

genome, with a documented preference

for the 59 UTRs of genes [6]. However, by

taking advantage of a modified p-element

called pGawB that was genetically engi-

neered to include a yeast-derived tran-

scriptional activator, GAL4, we have

designed an advanced laboratory methods

course that goes beyond classical genetics

to teach undergraduates important molec-

ular biology techniques while generating

novel data of potential interest to the

Drosophila research community.

The GAL4/UAS system is a widely used

genetic tool that permits tissue-specific
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expression of any desired transgene [7].

The GAL4 protein binds to engineered

UAS (Upstream Activation Sequence)

elements to activate expression of a

downstream transgene of choice

(Fig. 1). Expression of the GAL4 protein

is in turn controlled by the location of

pGawB in the genome: its promoter

"traps" the enhancers of nearby genes.

Researchers can mobilize the trans-

poson to re-integrate in random loca-

tions, thereby trapping the enhancers of

different genes that result in expression

in specific times and tissues. These GAL4

driver strains are then combined with

selected UAS-transgenes that will label,

disrupt, or even kill the cells in which the

GAL4 (and thus the transgene) is ex-

pressed. Several research groups have

generated extensive collections of GAL4

enhancer trap strains that allow them to

label and manipulate particular sets of

cells. However, since the scientists who

generate these lines are typically screen-

ing for very specific developmental or

behavioral outcomes, potentially useful

characteristics of each GAL4 enhancer

trap strain—the identity of the associated

gene and the full developmental expres-

sion pattern of the GAL4, for example—

remain ripe for elucidation.

Here we describe an inquiry-based

course integrating didactic, computer,

and laboratory components in which

undergraduates learn to generate and

report novel data in the context of the

scientific literature by characterizing

GAL4 enhancer trap strains (Box 1, S1

Table). In the lecture portion, we intro-

duce the concept of the GAL4/UAS

system for tissue-specific expression of

transgenes (Fig. 1) and the use of p-

element mobilization to trap genomic

enhancers, permitting expression to be

driven in particular patterns. We also

introduce our own laboratory’s tissue of

interest, the mushroom body, an insect

brain structure composed of several

subclasses of intrinsic neurons (Box 2)

that have been associated with different

aspects of olfactory learning and memory.

Key primary research articles on these

topics are assigned with reading guides

(S1 Text) and later discussed in small

groups in class.

For our course, we acquired GAL4

enhancer trap strains previously reported

to be expressed in specific subclasses of

mushroom body neurons in the adult

brain [8,9] and assigned one strain to

each working group (usually a pair) of

students. Because the expression pattern of

a given GAL4 enhancer trap will generally

reproduce the pattern of its associated

gene, identifying its genomic location

using the inverse PCR technique could

result in the identification of novel genes

expressed in the tissue of interest. In the

first part of the course, students review the

concept of conventional PCR, which

requires knowledge of flanking DNA

sequence in order to design complemen-

tary primers to be extended to amplify the

interior sequence. Students are asked in

class to brainstorm ways of instead ampli-

fying the unknown genomic sequence

flanking the known p-element sequence

and then are taught the general technique

of inverse PCR: restriction digestion inside

and outside of each end of the transposon,

circularization of resulting fragments via

self-ligation at low DNA concentrations,

and PCR amplification using primers

complementary to the known p-element

sequence (Fig. 2). To solidify their under-

standing and appreciation of inverse PCR

and its applicability to many problems in

Fig. 1. The GAL4/UAS system. A. The GAL4/UAS system is a binary expression system in which transcriptional activator GAL4 is expressed in
specific tissues by a nearby enhancer (E1), and GAL4 protein binds to engineered UAS sequences to drive the expression of a transgene X of choice in
those tissues. B. For example, OK107-GAL4 traps an enhancer of the eyeless gene and is expressed in all intrinsic neurons of the mushroom body,
allowing a membrane-bound reporter, UAS-CD8-GFP, to label those cells. E1: Enhancer. UAS: Upstream Activation Sequence. X: Gene of interest.
doi:10.1371/journal.pbio.1002030.g001
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biological and medical research, students

select an article featuring this technique

from the primary literature and write or

orally present a brief (1-page or 5-minute)

"highlight" to the class (S2 Text).

In the computer lab, students are taught

to use the pGawB construct schematic and

DNA sequence (http://flybase.org/

reports/FBmc0000381.html) to design

their own primer sets to the 59 versus 39

ends of the p-element for inverse PCR,

giving them experience in optimizing

primer design in the context of a real-

world problem (Fig. 3 and S3 Text). Later,

in the laboratory (S4 Text), they each

isolate genomic DNA from a particular

GAL4 enhancer trap strain and perform

digestion, self-ligation, and PCR. (In our

course, students used previously published

primers [10] instead of the primers they

had designed, but if time and finances

allow, they could instead synthesize and

test their own primer sets.) They then run

their PCR products on an analytic agarose

gel to determine whether they have

amplified a single product. If so, students

purify the inverse PCR products and have

them sequenced. Back in the computer

lab, they analyze the DNA sequence via

the BLAST function with an online

database (FlyBase, http://flybase.org/)

and learn how to use the website and

primary literature searches to find out

what is already known about the associ-

ated gene. In a lab report written in the

style of a primary research article, stu-

dents describe and interpret their find-

ings, summarize any reported information

about their gene, and discuss its possible

role in the development and/or function

of the neurons of interest (S5 Text). Thus

far, our students have identified six novel

genes expressed in subsets of mushroom

body neurons (Table 1), three of which

are being further investigated in our

laboratory.

In the second part of the course,

students are taught about the production,

use, and limitations of antibodies for

protein detection, with an emphasis on

immunohistochemistry as a technique for

labeling proteins of interest in situ (S4

Text). The course instructor crosses each

GAL4 strain to a reporter transgene,

UAS-CD8-GFP, which allows the GAL4

expression pattern to be viewed in the

progeny (either via live fluorescence or

after fixation, using an antibody to CD8

along with a second antibody to Fasciclin

II for orientation; see Box 2). Students

have one lab session in which to practice

dissecting the third instar larval central

nervous system, with the option of learn-

ing to dissect additional stages (white

puparium formation and adult). In the

next three laboratory sessions, they dissect,

fix, stain, dehydrate, and mount the

tissues, culminating in image collection

with a confocal microscope (Fig. 4 and S4

Text). At the end of the course, they revise

their earlier lab reports according to

instructor feedback and add their results

from the immunohistochemistry experi-

ment (S5 Text). In particular, they are

asked to assess whether the expression

pattern of their assigned GAL4 strain in

larvae is consistent with that previously

reported in the adult brain, suggesting that

the expression pattern is stable and specific

enough for that GAL4 driver to be used

for reliable labeling and genetic manipu-

lation of a particular mushroom body

subclass throughout development. To

date, our students have shown that most

GAL4 strains with subclass-specific ex-

pression in the adult mushroom body

have confounding expression in other

subclasses of mushroom body neurons

earlier in development (Fig. 5 and data

not shown).

These exercises are modular and ame-

nable to variation, depending on the size

of the class and the resources of the

institution and instructor(s) (S4 Text). For

example, conducting the inverse PCR

exercise alone requires only adult flies for

DNA extraction; the GAL4 enhancer trap

strains can be chosen for specific expres-

sion patterns or mutant phenotypes re-

ported in other studies or simply sampled

from a p-element collection. The immu-

nohistochemistry module additionally re-

quires that these GAL4 strains be crossed

to strains with the UAS-reporter gene of

choice and that progeny of the appropriate

stage be available for dissections so that

the desired expression pattern can be

analyzed. Other variables include the

use of homemade solutions versus com-

mercial kits for genomic DNA isolation,

the resources to sequence DNA on-

versus off-site, the time spent incubating

samples with primary and secondary

antibodies, and the availability of epi-

Box 1. Concepts At a Glance

Draws on genetics and molecular biology

Leads into developmental biology, neuroscience, and biotechnology

N Introduction to engineered gene expression systems (focusing on GAL4/UAS in
Drosophila)

N Design of inverse PCR primers to amplify unknown flanking sequences

N Planning, performance, interpretation, and troubleshooting of novel inverse
PCR experiment

N Use of publicly available online databases and the primary literature to analyze
flanking DNA sequence data and associated genes

N Introduction to antibody-based protein techniques (focusing on immunohis-
tochemistry)

N Use of fine dissection, immunohistochemistry, and epifluorescence or confocal
microscopy to characterize developmental expression pattern of a reporter
gene

Course prerequisites

ECM designed and ran this module as part of BIOL 340/CHEM 358 (Biochemical
Methods), an upper-division laboratory methods course required for all Cell
Biology/Biochemistry majors at Bucknell University. It required nine class
meetings of 2–4 hours each. Prerequisites included introductory courses in cell
and molecular biology and in genetics and a laboratory course involving
basic molecular biology techniques (pipetting, restriction digests, and agarose
gel electrophoresis). No previous independent research experience was assumed.

Ten to 20 juniors and seniors working in groups of two to three students performed
the experiments in this module each year, but we estimate that a larger laboratory
classroom and a teaching assistant to maintain the flies and supervise the students
could have accommodated twice that number in each section. We also built in
redundancy by assigning each GAL4 strain of interest to two or three groups,
allowing students to share samples and continue their experiments even if
individual steps failed.
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fluorescence versus laser scanning confo-

cal microscopes. We have prepared an

estimate of the costs associated with each

module, based on our own experience

(S2 Table).

In conclusion, we used these exercises to

teach the uses and limitations of PCR and

antibody-based techniques as well as

critical reading of the primary literature

and scientific writing. Anonymous course

evaluations indicated that students genu-

inely appreciated the opportunity to apply

what they had learned by generating novel

data of potential use to the wider scientific

community. Students are also likely to take

more care with their procedures when they

believe that the results actually matter.

Finally, GAL4 strains can be selected to

align with the specific research interests of

particular instructors, and research projects

in our own laboratory have already been

launched from preliminary data generated

in this course (see Box 2).

Box 2. Scientific Results

The mushroom bodies are bilaterally symmetric insect brain structures with an
important role in associative learning and memory. In Drosophila melanogaster,
they are composed of four main subclasses of intrinsic neurons that are
generated sequentially during development: the c neurons in the embryo and
larva, the a9/b9 neurons from mid-third larval instar to puparium formation, the
pioneer a/b neurons for ,6 hours after puparium formation, and the a/b neurons
until a few hours before adult eclosion [11,12]. In the adult brain, these neurons
can be distinguished by their contributions to five lobes of fasiculated axons as
well as by their levels of expression of FasII (Fasciclin II, a member of the Ig-related
cell adhesion molecule superfamily). OK107-GAL4 is a commonly used enhancer
trap expressed in all three subclasses of intrinsic neurons throughout
development and served as our positive control.

In our course, undergraduates found that most GAL4 enhancer trap lines reported
to be expressed in a particular subclass of mushroom body neurons in the adult
brain, at earlier stages of development either failed to be expressed in that
subclass or were also expressed in other subclasses of mushroom body neurons
(Figure 4 and data not shown). Thus, with the exception of 6-54 (a9/b9 neurons),
these GAL4 lines are not appropriate for the expression of transgenes in specific
subclasses throughout development. Our undergraduates also used inverse PCR
to reveal the genomic locations of the GAL4 element, thereby identifying six
novel genes not previously reported to be expressed in the mushroom body
(Table 1). All of these data were successfully confirmed in our own lab, and we are
currently carrying out tissue-specific gain- and loss-of-function experiments to
examine the roles of these genes in mushroom body development. All students
from the course were offered co-authorship of this article, along with the Marin
lab undergraduates who verified and extended their results.

Fig. 2. Inverse PCR schematic. Inverse PCR is used to amplify and identify DNA flanking a known sequence. (1) Isolation of genomic DNA from flies
of a specific p-element strain (green) is followed by (2) restriction digestion with a frequent cutter such as HpaII; (3) self-ligation at low DNA
concentrations that yields circular DNA templates, a few of which will include genomic DNA (blue) flanking the known p-element sequence (green) to
which complementary primers (dashed arrows) have been designed; (4) PCR and agarose gel electrophoresis to analyze PCR products; (5) purification
and sequencing of PCR products; and (6) BLAST analysis of the recovered flanking DNA sequence using online databases. Asterisk: junction between
p-element and flanking genomic DNA. H: HpaII site. P59: 59 sequence of p-element. P39: 39 sequence of p-element.
doi:10.1371/journal.pbio.1002030.g002
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Fig. 3. Inverse PCR from pGawB insertion. Genomic DNA from a GAL4 enhancer trap strain containing integrated pGawB (p-element engineered
to contain GAL4) is digested with a frequent cutter, HpaII, and the resulting fragments are circularized by intramolecular ligation. Primers (dashed
arrows) designed against either the 59 or 39 ends of the pGawB construct (green) will selectively amplify the flanking genomic DNA (blue). Asterisk:
junction between pGawB and flanking genomic DNA. GAL4: GAL4 coding sequence. H: HpaII site. Hsp70: Hsp70 promoter sequence. P39: 39 end of p-
element. P59: 59 end of p-element. pBS (AmpR): BlueScript plasmid sequence with ampicillin resistance. white: mini-white gene, an eye color marker.
doi:10.1371/journal.pbio.1002030.g003

Table 1. Novel genes expressed in adult mushroom body.

Strain Adult MB Gene Location Predicted Protein Reported Function Reported Exp.

G0451 c taranis 3R (89B8-89B9) CDK4-interacting motif chromatin regulation; lateral
inhibition

Peaks at emb. stage 6–24
and early pupa; CNS

G0050 a9/b9 pickled eggs X (6C1–6C3) calponin homology domain;
Growth-arrest-specific protein 2
domain

ovarian follicle cell development Adult CNS

6-54 a9/b9 frizzled 3 X (1C4) Wnt-protein binding establish/maintain cell polarity N/A

c305a a9/b9 jing 2R (42C1–42B2) C2H2 zinc finger axon guidance; embryonic brain
development

embryo: midline glia &
neurons

c708a pioneer a/b CG42684 X (16C5–16C8) Ras GTPase activation N/A embryonic stage 4–6

c44a inner a/b CG1673 X (11F1–11F3) branched-chain-amino-acid
transaminase

glutamate synthesis adult head

Inverse PCR uncovered six novel genes expressed in specific subsets of adult mushroom body neurons, suggesting that these genes play roles in the neurons’
development and/or function. CNS: central nervous system. Exp.: expression pattern. MB: mushroom body.
doi:10.1371/journal.pbio.1002030.t001
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Fig. 4. Characterization of GAL4 expression patterns. Flies from a GAL4 strain of interest are crossed to flies carrying the reporter gene UAS-
CD8-GFP. Animals are dissected at the wandering third instar larval stage or as adults. Whole nervous systems are fixed, stained, mounted, and
imaged. In larvae, c neurons bifurcate to innervate both dorsal and medial lobes. In adults, c neurons innervate a broad medial lobe, the a9/b9
neurons bifurcate to innervate FasII-negative dorsal and medial lobes, and the a/b neurons bifurcate to innervate FasII-positive dorsal and medial
lobes. Green: anti-CD8. Red: anti-FasII.
doi:10.1371/journal.pbio.1002030.g004

Fig. 5. Expression patterns of GAL4 enhancer trap lines in the fly brain. Each GAL4 strain was used to drive a UAS-CD8-GFP reporter gene
(green) and brains were dissected at the wandering third instar larval stage (WL3) and adult. All samples were counterstained with an antibody to
FasII (red) to label the developing axon scaffold and specific mushroom body lobes: c in larva, c (low) and a/b (high) in adult. OK107-GAL4 is
expressed in the entire mushroom body throughout development. Reporter gene expression in larval c neurons is indicated where present. In adult
brain, G0451 labels c; G0050, 6-54, and c305a label a9/b9; c708a labels pa/b (pioneer a/b); G0391 labels oa/b (outer/earlier born a/b); and c44a labels
ia/b (inner/later born a/b) neurons.
doi:10.1371/journal.pbio.1002030.g005
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Supporting Information

S1 Table Sample course schedule for

GAL4 enhancer trap undergraduate lab-

oratory module. Day: sequence of labs,

assuming class meetings twice per week.

Lecture Topics: topics to be covered in

pre-lab lectures. "IN LAB" signifies that

the full class period is to be spent in lab.

Lab Activity: experiments to be performed

by students during each class period.

Reading Due: handouts and primary

research articles to be read prior to each

class period. Assignment Due: assignment

to be handed in or presented by students

during each class period.

(TIF)

S2 Table Estimated course budget.

(XLSX)

S1 Text Article reading guides.

(DOC)

S2 Text Article highlight assignment.

(DOC)

S3 Text PCR primer design assignment.

(DOC)

S4 Text Abridged course laboratory

manual.

(DOC)

S5 Text Lab report assignment.

(DOC)
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