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The development of comprehensive care has decreased early 
mortality and increased life expectancy to 50 years. Transfu-
sion is a key component in the management of SCD patients 
[1], and its use has increased over time for prevention of 
stroke [2] and other complications.

RBC transfusion therapy is complicated by the development 
of antibodies specific for allelic (alloantibodies) or self (autoan-
tibodies) RBC determinants. Alloantibodies are more frequent 
than autoantibodies, the clinical significance of which remain 
questionable. The presence of anti-RBC antibodies may cause 
delay in finding suitable blood for transfusion, which can result 
in life-threatening anemia. In addition, anti-RBC antibodies 
may cause delayed hemolytic transfusion reactions resembling 
sickle cell crises that can be lethal [3–5]. Finally, anti-HLA an-
tibodies promoting rejection of hematopoietic cell grafts are 
more frequent in patients with anti-RBC antibodies [6]. Anti-
RBC antibodies develop in 18–47% of patients with SCD [7–
11], usually after receiving a small number of transfusions (re-
sponders; Rs), while other patients remain antibody-free (non-
responders; NRs), despite extensive exposure to donor RBC 
antigens. RBC-specific antibodies make selection of RBC and 
assurance of cross-match compatibility extremely complicated. 
Further, transfusion of incompatible blood when no other op-
tions exist may result in increased hyper-hemolysis and poor in 
vivo survival of the transfused RBCs. The use of antigen-
matched blood has been suggested to prevent alloimmuniza-
tion, decrease the risk of delayed hemolytic transfusion reac-
tions, and reduce morbidity in transfused SCD patients. This, 
however, has two drawbacks: i) utilizing antigen-matched 
blood for all patients, even if they are NRs; and ii) a lifetime 
commitment of ensuring antigen-matched blood, which is im-
practical for all Rs, given the cost and resources needed.
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Summary
The search for genetic determinants of alloimmunization 
in sickle cell disease transfusion recipients was based on 
two premises: i) that polymorphisms responsible for 
stronger immune and/or inflammatory responses and 
hemoglobin S mutation were co-selected by malaria; 
and ii) that stronger responder status contributes to de-
velopment of lupus. We found a marker of alloimmuni-
zation in the gene encoding for Ro52 protein, also known 
as Sjögren syndrome antigen 1 (SSA1) and TRIM21. Sur-
prisingly, the nature of the association was opposite of 
that with lupus; the same variant of a polymorphism 
(rs660) that was associated with lupus incidence was 
also associated with induction of tolerance to red blood 
cell antigens during early childhood. The dual function 
of Ro52 can explain this apparent contradiction. We pro-
pose that other lupus/autoimmunity susceptibility loci 
may reveal roles of additional molecules in various as-
pects of alloimmunization induced by transfusion as well 
as during pregnancy.

Introduction

About 8% of African Americans are heterozygous carriers 
of hemoglobin S and 1/500 has sickle cell disease (SCD). In 
1973, the average life span of a patient with SCD was 14 years. 
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Factors Influencing the (Non-)Responder Status

The rates of alloimmunization in SCD patients (18–47%) 
are considerably higher than those found in transfused pa-
tients without SCD (0.2–2.8%) [12–15]. This may be due to 
antigenic disparity, i.e., different blood group antigen distri-
bution between predominantly Caucasian blood donors 
and SCD patients who are of African or African-Caribbean 
descent [16]. This concept is supported by reduced alloim-
munization frequency in SCD patients in Saudi Arabia 
(13.7%), Uganda (6.1%), Egypt (21.4%), and Tunisia 
(16.6%) where blood donors and SCD patients are from 
similar ethnic background [17–20]. Even lower alloimmuni-
zation rates (2.6%) were noted in a Jamaican patient co-
hort [21], but might have been secondary to low number of 
units received (1–2 per patient). However, even these re-
duced rates are higher than the ‘background’ rate of 0.2–
2.8%, suggesting that additional factor(s) may influence 
alloimmunization. 

There are NR patients with documented multiple expo-
sures to RBC antigens. So, what other factor may have a 
decisive influence on alloimmunization? Stochastic model-
ing suggested that a subgroup of transfusion recipients has 
genetically determined increased risk of alloimmunization 
[22]. Genetic factors controlling inflammatory responses 
are possible candidates, as the state of inflammation in re-
cipients may activate the innate immune system and con-
vert an inert or even a tolerogenic event into an immuno-
genic one [23, 24]. Indeed, in the SCD mouse model, recipi-
ent inflammation induced with poly (I:C) treatment aug-
mented humoral immune response to transfused antigens 
[23]. However, not every form of inflammation promotes 
alloimmunization in mice, as lipopolysaccharide failed to 
induce the same effect as poly (I:C) [25]. Not surprisingly, 
elevated levels of cytokines are not markers for alloimmuni-
zation [26] and only some forms of pro-inflammatory 
events are associated with alloimmunization (Fasano et al. 
submitted).

Selection of High Responders in Africa

If inflammatory signals contribute to alloimmunization 
and SCD subjects have higher rates of alloimmunization, 
then individuals with SCD (or people of African descent, in 
general) should be prone developing stronger inflammatory 
and immune responses then other transfused subjects. This, 
indeed, appears to be the case, as SCD patients display in-
creased inflammation and activation of innate immunity [27, 
28] and increased levels of serum cytokines [29–32]. Evi-
dence for higher rates of inflammatory conditions in African 
Americans in general also exists. Thus, incidence of lupus 
[33–35], asthma [36], hypertension [37], type 2 diabetes mel-
litus [38], obesity [39], necrotizing enterocolitis [40], and ke-

loid formation [41] is higher in African Americans. In addi-
tion, African Americans display a significantly higher rate 
of arthritis and uveitis associated with Crohn’s disease [42] 
and higher rates of acute graft rejection [43], and they re-
quire higher doses of immunosuppressive drugs post trans-
plantation [44, 45]. Although such ethnic differences have 
traditionally been dismissed as a mix of environmental, so-
cial, cultural, and economic factors, evidence at the cellular 
and molecular level points to a contributing genetic compo-
nent. Thus, African Americans have more robust cellular 
immune responses [46–48] and express higher levels of 
CD80 and CD86 co-stimulatory molecules [49, 50] com-
pared to other ethnic groups. Furthermore, polymorphisms 
in immunomodulatory genes that favor expression of vari-
ants or levels of encoded molecules that promote stronger 
immune responses are more frequent in Africans/African 
Americans. These include multiple cytokine genes [51–53], 
CTLA-4 and PD1 co-stimulatory molecules [53], Duffy anti-
gen receptor molecule [54] proposed to act as a ‘chemokine 
sink’ [55], and CD1d molecule [56] that presents antigens to 
NKT cells. 

Why do Africans have stronger immune/inflammatory re-
sponse? Although selective pressures of evolution on the 
human genome are very small [57, 58], there are several well-
documented examples. Most of them involve selection by in-
fectious agents, except for the intestinal lactase variant se-
lected for amongst the dairy farmers [59]. Thus, sickle cell 
trait was one of the earliest recognized traits selected for. 
Hb S heterozygosity confers about 10-fold increase in protec-
tion against life-threatening forms of the malaria induced by 
Plasmodium falciparum [60]. Similar patterns of heterozygo-
sity advantage are apparently conferred by other hemoglobi-
nopathies as well as by glucose-6-phosphate dehydrogenase 
deficiency [61]. Distribution pattern of cystic fibrosis mutation 
(higher frequency in northwest than in the south east Europe) 
suggests that heterozygosity may have been protective against 
cholera [62]. Perhaps the most striking example of selection is 
the Duffy antigen receptor molecule which is absent from the 
RBCs in almost 100% West Africans and serves as a receptor 
for Plasmodium vivax [63]. 

In addition to the RBC antigens, malaria infection has 
also exerted pressure for the development of strong im-
mune responses. Polymorphic variants in HLA-B, HLA-
DR, IL-4, CD40L, FcGR2A, TNF- , and genes encoding 
other molecules affecting immune responses are more fre-
quent in defined populations with increased resistance to 
malaria [64]. We therefore reasoned that there may be 
other as yet undiscovered malaria-selected polymorphisms 
that promote stronger immune responsiveness, and that 
some of them are likely to be close to Hb . The neighbor-
ing immune response-modifying genetic markers are more 
likely to segregate with Hb S than those located further 
away on the same chromosome, or those located on other 
chromosomes. 
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Polymorphism(s) in Ro52 and Alloimmunization

Based on the above discussion we hypothesized that two 
linked malaria-protective polymorphisms were co-selected: 
the Hb S and an allele of a near-by gene, encoding a mole-
cule with immunomodulatory function. The consequence of 
this co-selection would be stronger immune responses in 
Hb S homozygous individuals, reflected in a high incidence 
of antibody responses following transfusion. The near-by al-
lele may not be the only locus favoring strong immune re-
sponses in SCD patients. Nevertheless, we felt that investigat-
ing this possibility would be an important step in understand-
ing alloimmunization and, by extension, human immune 
responsiveness.

The best candidate gene in the vicinity of Hb  on chromo-
some 11p15 was found 832 kb away. The gene encodes for 
Ro52 protein, also known as Sjögren syndrome antigen 1 
(SSA1) and lately as tripartite motif (TRIM)21 [65]. Ro52 is 
best known as the target for antibodies that develop in lupus 
erythematosus and Sjögren syndrome, two autoantibody-me-
diated autoimmune diseases characterized by overall in-
creased antibody production. Ro52 is part of an RNA-protein 
complex consisting of four small RNA molecules, Ro52 and 
two additional proteins, Ro60 and La [66, 67]. Mice deficient 
in Ro60 develop lupus [68] confirming that the molecule tar-
geted by the autoantibody can have an active role in develop-
ing or protecting against lupus. Interestingly, Ro52 gene har-
bors an SNP, designated rs660, with association with lupus in 
African Americans [69], but not in the Japanese population 
[70]. 

We therefore tested whether the rs660 genotype may be as-
sociated with alloimmunization in SCD. We recruited 83 pa-
tients of African American background homozygous for 

hemoglobin S (HbS) who received at least two ABO- and 
RhD-matched, cross-match-compatible leukodepleted RBC 
transfusions, documented by blood bank review. Overall dis-
tribution of rs660 alleles was unbalanced – 39 SCD patients 
were each of C/T and T/T, with only 5 patients with C/C geno-
type [71], similar to the frequencies previously observed in 
African Americans [70]. Consequently, comparisons were 
made between rs660C/T and rs660T/T patients. The fre-
quency of alloimmunization in rs660C/T and rs660T/T pa-
tients was similar – 31% and 36%, respectively (fig. 1A). In 
addition, the markers of disease severity [72] (fig. 1B), the 
number of patients undergoing hydroxyurea treatment 
(fig. 1C), and the average total number of RBC transfusions 
received were indistinguishable (p = 0.45) in patients with 
rs660 C/T (84.3 ± 13.9) or T/T (101.2 ± 17.5) genotype (see 
also fig. 2D). Thus, rs660 does not associate with an overall 
rate of alloimmunization, or with indicators of severity of 
SCD.

Age at first transfusion is an important contributor to allo-
immunization risk [73]. Mean age at first transfusion of SCD 
patients that developed at least one anti-RBC antibody was 
significantly lower in patients with rs660C/T than in patients 
with T/T genotype (fig. 2A; p = 0.045). In other words, rela-
tive to the rs660C/T patients, patients with rs660T/T genotype 
in general become alloimmunized if they are first exposed to 
RBC antigens late in life. The difference is not due to early 
initiation of transfusion in patients with the C/T genotype, 
since the average age of the first transfusion in antibody-nega-
tive patients was not significantly different (fig. 2A; p = 
0.1601). When age at first transfusion was plotted for individ-
ual patients against the numbers of detected alloantibodies, it 
became clear that the age of 5 years represented the turning 
point (fig. 2B). The rate of alloimmunization in patients first 

Fig. 1. Alloimmuni-
zation rates and rs660 
genotype. A Fre-
quency of alloimmun-
ization in patients 
that received first 
transfusion before 
(closed bars) or after 
(open bars) the age of 
5 (or all ages – shaded 
bars) in the function 
of rs660 genotype. 
The differences be-
tween alloimmuniza-
tion rates in patients 
first transfused before 
or after the age of 5 
were significant (Fish-
er’s exact test) for T/T 
(p = 0.043), but not for C/T (p = 1.00) genotype, or for both groups together (0.195). Exact patient numbers are given above the bars. B Mean (± SE) 
SCD severity scores in patients with C/T or T/T genotype. Scores represent cumulative score B, calculated as described C Frequency of hydroxyurea 
treatment in patients with C/T or T/T genotype.
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transfused before 5 years of age was 30% if they were of C/T, 
and 17% if they were of T/T genotype (fig. 1A).

An important related issue is the patient age at antibody 
detection. Is the age at first transfusion an indicator of the age 
when antibodies develop? Age of subjects with C/T or T/T 
genotype when anti-RBC antibodies was detected was not sig-
nificantly different (fig. 2C). This finding shows that patients 
with the C/T genotype are capable of producing anti-RBC an-
tibodies after the age of 5, just like those with T/T genotype. 
In other words, the time it takes from the first RBC exposure 
to production of anti-RBC antibodies is much longer in pa-
tients with rs660C/T than in patients with rs660 T/T genotype. 
However, the latter respond mostly when RBCs transfusion is 
introduced beyond infancy and early childhood. Further, 
there is no correlation between total number of transfusions 
received and age at first transfusion in patients with either 
genotype (fig. 2D). Therefore, low alloimmunization rate in 
subjects with rs660T/T genotype when first transfused within 
the first 5 years of life suggests that they develop tolerance to 
RBCs more efficiently than rs660C/T subjects. The break-
down by antibody specificities suggests that tolerance is rela-
tively equally inducible for several blood group antigens [71], 
excluding ABO and RhD antigens.

The term tolerance in immunology implies an active pro-
cess induced by antigen. So, should the absence of antibody 
responses in SCD patients be designated ‘tolerance’, or per-
haps a more passive term ‘non-responsiveness’ is better 
suited? The findings observed in patients with rs660C/T geno-
type clearly fit the ‘non-responsiveness’ designation: the pa-
tients developed antibodies to RBC transfusions after the age 
of 5 irrespective of whether they received transfusions before 
the age of 5. Thus, for this subset of patients exposure to RBC 
antigens during the early childhood did not alter the immune 
system responses to the same antigens later in life. However, 
administration of RBC transfusions before the age of 5 in pa-
tients with rs660T/T genotype clearly influenced non-respon-
siveness to RBC antigens after the age of 5. Although the 
exact timings of distinct RBC antigen exposures remain to be 
determined, it is evident that the ‘non-responsiveness’ in pa-
tients with rs660T/T genotype is induced, which in turn, is an 
operational definition of tolerance. Thus, we will in this re-
view use the word ‘tolerance’, bearing in mind that it relates 
only to a subset of patients.

How can rs660 contribute to neonatal tolerance? Given 
that there appear to be differences in the levels of Ro52 ex-
pression in cell lines homozygous for rs660C and rs660T [71], 

Fig. 2. Anti-RBC 
antibody production 
as a function of pa-
tient age at first trans-
fusion. A Average 
age (± SE) of anti-
body positive or nega-
tive patients with 
rs660C/T or rs660T/T 
genotype when they 
received first transfu-
sion. B The number 
of distinct anti-RBC 
antibodies detected in 
each patient in the 
function of the age at 
first transfusion of in-
dividual SCD patients 
with C/T (left) or T/T 
(right) genotype.  
C Average age (±SE) 
of patients with 
rs660C/T or rs660T/T 
genotype when indi-
vidual antibodies 
were detected (differ-
ences are not signifi-
cant; p = 0.3615).  
D Correlation between 
age at first transfusion 
with total number of 
transfusions in patients with rs660C/T or rs660T/T genotype. Correlation coefficients were: r = 0.1364 for rs660C/T and r = 0.0712 for rs660T/T patients 
(not significant in either case). Best-fit straight lines were obtained by linear regression analysis and are represented by the following formulas:  
y = –23.7 – 4.17x (rs660C/T) and y = 55.73 – 2.021x for rs660T/T. Deviations from zero were not significant (p = 0.414 for rs660C/T and p = 0.671 for 
rs660T/T genotype. Mean numbers of total transfusions received were 84.29 ± 13.92 for rs660C/T and 101.2 ± 17.47 for rs660T/T (p = 0.451).
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one possibility is that rs660 is involved in enhancing or silenc-
ing the Ro52 expression. Ro52 gene consists of seven exons 
(fig. 3) spanning 8.8 kb (www.ncbi.nlm.nih.gov accession 
number NC_000011). The rs660 polymorphic site is located 
about 600 bp upstream of the initiation codon [70] in the first 
intron [74]. Bioinformatics analysis using MatInspector soft-
ware (www.genomatix.de) indicated that there may be a po-
tential for differential binding of three transcription factors to 
the sequence around and containing the rs660 SNP. These 
factors include nuclear receptor subfamily 2, peroxisome pro-
liferator-activated receptor and Myt1 C2HC zinc finger pro-
tein that can all potentially bind to rs660C, but not to rs660T. 
Interestingly, this pattern of binding, if confirmed, would be 
suggestive of silencing function of the surrounding DNA ele-
ment. Another possibility is that rs660 is in linkage disequilib-
rium with another polymorphism in Ro52 gene, or even out-
side the Ro52, that is directly involved in regulating Ro52 
expression.

Extended Neonatal Tolerance Concept

The finding of tolerance in early childhood is not a new 
concept. The infants’ immune system has long been thought 
to be prone to induction of tolerance, rather than immunity, 
as suggested by the classic neonatal tolerance experiments of 
Billinghamet al. [75]. They noted that tolerance to paternal 
antigens was acquired during pregnancy. These observations 
were inspired by Owen’s studies of tolerance induction of an-
tibody responses through in utero exposure to red blood cell 
alloantigens in cattle [76]. 

The concept of tolerance has been revisited frequently, and 
the original findings were confirmed in other species, includ-
ing humans, and were extended beyond the neonatal into the 
early childhood period. In addition, most investigators now 
agree that neonates, infants, and children up to 5 years of age 
respond to antigens, but less efficiently than adults [77–80]. 
Examples include responses to malaria [80–82], factor VIII in 
patients with hemophilia [83], RBC antigens in patients with 
SCD [84] and thalassemia [84, 85], response to vaccines [80, 
86], and the intensity of immune cell infiltration in tumors 

[87]. Further, prolonged replication of HBV and human CMV 
[88, 89], and more rapid progression to AIDS [90, 91] when 
infections occur in early life suggest less efficient pathogen 
clearance by the immune system.

What are the mechanism(s) for suboptimal responses in 
neonatal and early childhood period? At least a part of the 
answer may lie in the dynamics of T-cell receptor repertoire 
generation. T cells are generated in the thymus, and 1–2% of 
total thymocytes are each day exported to the periphery as 
mature T cells, referred to as recent thymic emigrants [92]. In 
young adult mice, about 20% of the peripheral T-cell reper-
toire represents recent thymic emigrants, while in the young 
mice (up to 3 weeks of age – corresponding to the early child-
hood in humans) this number is close to 100% [93]. The im-
portant aspect of recent thymic emigrants is their functional 
potential – they are less functionally competent than the long-
term peripheral naïve resident T lymphocytes and require 
post-thymic maturation in the peripheral lymphoid organs to 
acquire full competency [94]. Therefore, a larger fraction of 
functionally less competent T cells repopulate peripheral lym-
phoid organs of neonates and young children. Hence, lower 
level responses are not surprising.

Another factor that may contribute to relatively weaker 
neonatal responses is the ontogeny of terminal deoxynucleoti-
dyl transferase (TdT). This enzyme makes template-inde-
pendent additions at the junctions of variable, diversity and 
joining junctions during T-cell receptor and immunoglobulin 
rearrangement. This is a critical step in generating the diver-
sity of immune receptors – about 90–95% of the T-cell recep-
tor diversity was attributed to TdT [95]. However, in most 
species neonatal T cells do not express TdT. In humans, TdT 
expression is first noticeable around weeks 18–19 [96]. The 
consequence of this pattern is that the neonatal T-cell recep-
tor repertoire is suboptimal, with relatively lower avidity for 
antigens [97]. 

The function of B cells is also suboptimal in early child-
hood. Human neonatal B cells express lower levels of the co-
stimulatory molecules CD40, CD80 and CD86, which de-
creases their interaction with T cells [98]. Further, marginal 
zone B cells are present in lower numbers and display lower 
levels of CD21 (also known as complement receptor 2) that 

Fig. 3. Exon/intron 
structure of the Ro52 
gene and location of 
rs660. The coding and 
non-coding sequences 
are represented by 
closed and open rec-
tangles, respectively. 
Indicated are the po-
sitions of rs660 below 
the line and ten arbi-
trarily chosen HapMap-validated SNPs above the line (1-rs1426378; 2-rs928914; 3-rs928915; 4-rs7947461; 5-rs926101; 6-rs2855142; 7-rs890419;  
8- rs2554933; 9-rs2599586; 10-rs4144331).
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cripples their responses to thymus-independent 2 antigens 
(polysaccharides from encapsulated bacteria such as Strepto-
coccus pneumoniae, Neisseria meningitides, Haemophilus in-
fluenzae) in children under 2 years of age [99–101]. This re-
sults in lower levels of IgG2 and IgG4 isotypes that reach the 
adult levels not until the age of 5–10 [102, 103]. 

Finally, innate pro-inflammatory immune responses are 
also attenuated during neonatal and early childhood period, 
whereas anti-inflammatory responses (e.g. IL-10 secretion) 
are enhanced [104]. Some suggested mechanisms include 
lower expression of TLR4, CD14, MyD88, and IRF5 [105–
108]. Clearly, more research needs to be done on the func-
tioning of the innate immune system in children, especially 
that related to TLR independent receptors like nucleotide oli-
gomerization receptors (NOD) and retinoic acid-inducible 
gene I-like receptors (RLR) [109]. All in all, however, it is 
clear that both adaptive and innate functions of the immune 
system respond suboptimally during the neonatal period, and 
slowly progress towards adult levels during the early child-
hood.

Of Mice and Men

Our study implied a potential role for Ro52 in promoting 
the neonatal tolerance to RBC antigens. However, direct evi-
dence was missing. To address this question Patel et al. [110] 
examined the role of Ro52 in a mouse model of alloimmuni-
zation using the Ro52 knock-out mice. They transfused wild-
type controls and Ro52 knock-outs with RBCs expressing the 
HOD transgene (a fusion molecule containing hen egg lyzo-
zyme, portion of ovalbumin and human Duffy antigen recep-
tor complex) and tested anti-HOD antibody production 2 
weeks post transfusion. They found that juvenile mice trans-
fused at 3 weeks of age failed to produce specific antibodies, 
while adult mice (10–16 weeks old) produced antibodies with 
maximal frequency, irrespective of their Ro52 genotype. 
These results confirmed the suboptimal alloimmunization 
rates in young individuals, but according to the authors, did 
not support the role of Ro52 in promoting the early childhood 
tolerance.

So, what are the reasons for the discrepancy between the 
human and the mouse model? First, rs660 may be a marker of 
an adjacent functional gene other than Ro52. The association 
of rs660 with early childhood tolerance is through linkage dis-
equilibrium with the causative genetic element that may, or 
may not lie, within the Ro52 gene. If it lies outside, then nega-
tive result is expected if the Ro52 is knocked out.

Species differences in the immune system have been de-
scribed that could account for distinctive experimental obser-
vations [111]. Although at this point no differences in the 
function of the human and mouse Ro52 were noted, it re-
mains possible that human and mouse alloimmunization mod-
els are (partly) unique.

The impact of the complete absence of a protein (such is 
the case in the mouse knock-out model) may be different 
from the impact of changing the protein levels (which is the 
case in SCD patient cohort), even within the same species.

Another possible explanation may be related to the immu-
nogenicity of RBC antigens. The HOD 586 amino acids long 
fusion protein contains three antigens foreign to the mouse im-
mune system, whereas differences between RBC donors and 
recipients are in general less significant. The most drastic dif-
ferences include 417 amino acids when RhD-negative subjects 
respond to RhD antigens (due to RhD matching; however, this 
occurrence is extremely rare in contemporary transfusion 
medicine), or 338 amino acids when Duffy-negative recipients 
respond to Duffy-positive transfusion. Mostly, however, the 
antigenic differences are much smaller and can sometimes be 
only one amino acid [112, 113]. Thus the strength of the anti-
genic stimulation in the mouse system may have over-ridden 
any relatively small impact of Ro52 that might become notable 
only after a more subtle antigenic challenge.

The apparent absence of the impact of the Ro52 in the 
mouse model may be viewed in an entirely different light if 
antibody levels are taken as a key measurement instead of 
 alloimmunization rates. Thus, Patel et al. [110] noted that the 
levels of anti-HOD antibodies were significantly (p = 0.02) 
lower in Ro52 knock-out than in the wild-type mice. Perhaps, 
with a less immunogenic stimulation the lower response in 
Ro-52-deficient mice would be recognized as a reduced allo-
immunization rate.

Finally, there are significant differences in the design be-
tween the mouse and human experimental models. Patients 
were exposed to RBC antigens during the early childhood pe-
riod at least once, while the adult mice used in the study were 
exposed to the fusion antigen for the first time as adults 
(fig. 4). Thus, the mouse model does not replicate conditions 
observed in our study with SCD patients.

How Could Ro52 Induce Tolerance and Promote 
Lupus?

Assuming that rs660 association with both lupus and early 
childhood tolerance reflects a function of the Ro52 protein, 
we raise the following question: how can the same molecule 
be involved in apparently opposing outcomes? Ro52 can per-
form two opposing functions at the cellular level. Ro52 is an 
ubiquitin-conjugating E3 ligase [114] targeting various sub-
strates for proteasome-mediated degradation. The best 
known substrates are IRF-3, IRF-5, IRF-7, and IRF-8 [115], 
hence the overall effect of Ro52 is inhibition of type I inter-
feron production [116]. The overall anti-inflammatory role of 
Ro52 was confirmed by experiments in Ro52-deficient mice 
which mount excessive immune responses, characterized by 
production of autoantibodies and tissue pathology reminis-
cent of lupus [117]. 
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However, Ro52 can also serve as an intracellular receptor 
for antigen-antibody complexes internalized via cell surface 
receptors that infectious agents use to enter the cells. This in-
tracellular interaction results in activation of intracellular im-
mune pathways, such as NF- B, AP-1, IRF3, IRF5, and IRF7 
[118]. This activates the production of pro-inflammatory cy-
tokines, which promote resistance to viruses and intracellular 
bacteria [119]. Thus, depending on the context, Ro52 can 
have proinflammatory or anti-inflammatory actions. RBC an-
tigens following transfusion are unlikely internalized as part 
of complexes with antibodies, hence anti-inflammatory func-
tion of Ro52 prevails. We would have to hypothesize that at 
least some antigen-antibody complexes that are abundantly 
formed in lupus are internalized, activating the intracellular 
immune reaction.

Conclusions and Future Directions

The present findings provide a proof of principle that lupus 
susceptibility locus rs660 may also be a marker of early child-
hood tolerance. There is a high possibility that both associa-
tions are mediated through the opposing functions of the 
same molecule – Ro52 – in regulating inflammation. In a simi-
lar manner, other lupus susceptibility loci [120], especially 
those that overlap with susceptibility to other autoimmune/
inflammatory diseases [121], may be involved in promoting 
(anti-)inflammatory conditions favorable for producing anti-
bodies and/or promoting tolerance following transfusion. For-
mal proof of linkage disequilibrium of rs660 with an element 
in Ro52 gene remains to be established, as well as a more de-
tailed cellular and molecular mechanism of early childhood 
tolerance. 

Fig. 4. Similarities 
and differences be-
tween the studies 
using experimental 
mice and human sub-
jects. 
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The implications of determining the molecular and cellular 
basis of R-NR status in alloimmunization go beyond the 
transfusion medicine. Thus, although the backbone of therapy 
for solid organ transplantation is directed toward altering the 
function of T cells, it is becoming increasingly clear that T 
cells are responsible mainly for acute rejection, while the anti-
bodies are the primary cause of chronic transplant rejection 
[122–124]. Furthermore, biopharmaceuticals such as factors 
VIII and IX, growth hormone, erythropoietin, and IFN-  can 
also induce antibodies that interfere with their therapeutic ef-
ficacy [125]. Finally, alloimmunization may occur naturally 
during pregnancy and cause a host of pathological conditions 
for the fetus as well as consequences for subsequent concep-
tion. The neonatal conditions linked to alloimmunization in-
clude fetal and neonatal alloimmune thrombocytopenia [126, 

127], fetal and neonatal hemolytic anemia [128], alloimmune 
neonatal neutropenia [129], hydrops fetalis [130], neonatal 
hemochromatosis [131], biliary atresia [132], and neonatal 
glomerulopathy [133]. Alloimmunization was also proposed 
to at least partially explain implantation failure, recurrent 
pregnancy loss and pre-eclampsia/eclampsia [134, 135] as well 
as inflammatory lesions of the placental villi during pregnancy 
[136]. It is therefore clear that the lessons learned from genet-
ics of lupus and autoimmunity in general may have a broader 
impact than initially thought.
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