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Ultra-deep RNA sequencing (RNA-Seq) has become a powerful ap-
proach for genome-wide analysis of pre-mRNA alternative splicing.
We previously developed multivariate analysis of transcript splicing
(MATS), a statistical method for detecting differential alternative splic-
ing between two RNA-Seq samples. Here we describe a new statisti-
cal model and computer program, replicate MATS (rMATS), designed
for detection of differential alternative splicing from replicate RNA-
Seq data. rMATS uses a hierarchical model to simultaneously ac-
count for sampling uncertainty in individual replicates and vari-
ability among replicates. In addition to the analysis of unpaired
replicates, rMATS also includes a model specifically designed for
paired replicates between sample groups. The hypothesis-testing
framework of rMATS is flexible and can assess the statistical sig-
nificance over any user-defined magnitude of splicing change. The
performance of rMATS is evaluated by the analysis of simulated
and real RNA-Seq data. rMATS outperformed two existing meth-
ods for replicate RNA-Seq data in all simulation settings, and RT-
PCR yielded a high validation rate (94%) in an RNA-Seq dataset of
prostate cancer cell lines. Our data also provide guiding principles
for designing RNA-Seq studies of alternative splicing. We demon-
strate that it is essential to incorporate biological replicates in the
study design. Of note, pooling RNAs or merging RNA-Seq data
from multiple replicates is not an effective approach to account
for variability, and the result is particularly sensitive to outliers. The
rMATS source code is freely available at rnaseq-mats.sourceforge.
net/. As the popularity of RNA-Seq continues to grow, we expect
rMATS will be useful for studies of alternative splicing in diverse
RNA-Seq projects.
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Alternative splicing generates tremendous transcriptomic and
proteomic complexity in higher eukaryotes (1–4). Changes

in alternative splicing underlie gene regulation in diverse bio-
logical and disease processes (5–7). However, it has been chal-
lenging to globally determine and compare gene splicing profiles
among biological states. The RNA sequencing (RNA-Seq)
technology has become a powerful tool for quantitative profiling
of alternative splicing (3, 4, 8). Due to the high cost, earlier
RNA-Seq studies of alternative splicing typically did not in-
corporate replicates in the study design (9–12). Nonetheless, it is
important to note that biological variability remains a critical
issue in high-throughput sequencing studies (13). Furthermore,
as the cost of sequencing continues to decline, it has become
feasible and increasingly common to carry out RNA-Seq on
a large number of samples, with sufficient coverage to quantify
alternative splicing in each individual sample. This creates an
urgent need for new and robust analytic tools to detect alter-
native splicing changes from replicate RNA-Seq data.
Although a variety of computational methods have been de-

veloped for RNA-Seq analysis of alternative splicing (14), the
existing methods have serious limitations and drawbacks for
replicate RNA-Seq data. MISO (9), SpliceTrap (15), ALEXA-
seq (16), and rSeqDiff (17) are designed for two-sample com-
parison and do not handle replicates. Cufflinks (18), FDM (19),

and DiffSplice (20) use the Jensen–Shannon divergence metric to
detect differential isoform proportion while accounting for vari-
ability among replicates. However, FDM and DiffSplice do not
model the estimation uncertainty of isoform proportion in in-
dividual replicates (19, 20), a critical issue in alternative splicing
quantitation as shown in the MISO paper (9). Cufflinks considers
the estimation uncertainty but the test statistic does not distinguish
the contributions from replicates with high or low degrees of esti-
mation uncertainty (18). DEXSeq adopts a different approach of
testing for the deviation of read counts on individual exons from the
counts of the whole gene (21), but the statistical model does not
estimate isoform proportion or use the information about alterna-
tive splicing patterns in splice junction reads. Importantly, no
existing method handles paired replicate data, a popular study de-
sign in many basic and translational research settings (e.g., studies
involving case–control matched pairs). Therefore, there is a need
for new and robust analytic tools to detect alternative splicing
changes from replicate RNA-Seq data, with the flexibility to handle
different types of replicate study design (unpaired or paired).
We previously developed multivariate analysis of transcript

splicing (MATS), a method for detecting differential alternative
splicing between two RNA-Seq samples (22). Here we report
a new statistical model and computer program, replicate MATS
(rMATS), designed for analysis of replicate RNA-Seq data.

Significance

Alternative splicing (AS) is an important mechanism of
eukaryotic gene regulation. Deep RNA sequencing (RNA-Seq)
has become a powerful approach for quantitative profiling of
AS. With the increasing capacity of high-throughput sequenc-
ers, it has become common for RNA-Seq studies of AS to ex-
amine multiple biological replicates. We developed rMATS,
a new statistical method for robust and flexible detection of
differential AS from replicate RNA-Seq data. Besides the anal-
ysis of unpaired replicates, rMATS includes a model specifically
designed for paired replicates, such as case–control matched
pairs in clinical RNA-Seq datasets. We expect rMATS will be
useful for genome-wide studies of AS in diverse research
projects. Our data also provide new insights about the exper-
imental design for RNA-Seq studies of AS.
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Compared with existing methods for alternative splicing analy-
sis of RNA-Seq data, rMATS has several key features. First,
rMATS uses a hierarchical framework to model exon inclusion
levels [denoted as ψ , or percent spliced in (9)], which simulta-
neously accounts for estimation uncertainty in individual replicates
and variability among replicates. Second, in addition to the analysis
of unpaired replicate data, rMATS includes a model specifically
designed for paired replicates. This is achieved by introducing
a bivariate normal distribution with a correlation parameter to
model the correlation among matched pairs. The use of pairing
information in paired replicate data improves the statistical power.
Third, rMATS incorporates a flexible hypothesis-testing framework
in which the null and alternative hypotheses for differential alter-
native splicing are defined by users. Specifically, rMATS uses
a likelihood-ratio test to calculate the P value that the difference in
the mean ψ values between two sample groups exceeds a given
threshold (e.g., jΔψ j  =  jψ i1 −ψ i2j > 5%). Under this framework,
rMATS can assess the statistical significance over any user-defined
magnitude of splicing change, as opposed to only testing the
equality of ψ between sample groups. Additionally, the use of the
likelihood-ratio test in rMATS, as opposed to the sampling-based
P value calculation in MATS (22), substantially improves the speed
of the computation. Finally, it should be noted that the statistical
model of rMATS normalizes the lengths of individual splice var-
iants. This allows rMATS to analyze all major types of alternative
splicing patterns and use RNA-Seq reads mapped to both exons
and splice junctions. The rMATS software and user manual are
freely available for download at rnaseq-mats.sourceforge.net/.

Results
rMATS Statistical Model for Unpaired Replicates. The basic principle
in RNA-Seq analysis of alternative splicing is to use RNA-Seq
reads mapped to different isoforms to estimate the isoform
proportion (3, 4). For example, for an alternatively spliced cas-
sette exon, we can use the counts of reads mapped to the exon
inclusion or skipping isoform to estimate the exon inclusion level
ψ , defined as the percentage of the exon inclusion transcripts
that splice from the upstream exon into the alternative exon and
then into the downstream exon, among all such exon inclusion
transcripts plus exon skipping transcripts that splice from the
upstream exon directly into the downstream exon (Fig. 1). In
a two-group RNA-Seq dataset with replicates, the estimate of ψ
is influenced by multiple factors. In each individual sample, the
estimation uncertainty of ψ is influenced by the sequencing
coverage for the event of interest, with a higher RNA-Seq read
count leading to a more reliable estimate (9). Within each
sample group, there is variability among replicates due to bio-
logical or technical reasons. A robust method for differential
alternative splicing analysis of replicate RNA-Seq data needs to
consider these factors.
In rMATS, we use a hierarchical framework to simultaneously

account for estimation uncertainty in individual replicates and
variability among replicates. Below we briefly introduce the no-
tation and statistical model of rMATS, using the exon skipping
type of alternative splicing events as the example. For a skipped

exon, the exon inclusion level ψ can be estimated by the count of
reads specific to the exon inclusion isoform ðIÞ and the count of
reads specific to the exon skipping isoform ðSÞ (illustration in
Fig. 1). The exon inclusion reads are the reads from the upstream
splice junction, the alternative exon itself, and the downstream
splice junction. The exon skipping reads are the reads from the
skipping splice junction that directly connects the upstream exon
to the downstream exon. Other types of alternative splicing events
can also be modeled by this framework with details illustrated in
Fig. S1. Given the effective lengths (i.e., the number of unique
isoform-specific read positions) of the inclusion isoform ðlIÞ and
the skipping isoform ðlSÞ, the exon inclusion level ψ can be esti-
mated as ψ̂ = ðI=lIÞ=ðI=lI + S=lSÞ. Assuming that the inclusion
read count I follows a binomial distribution with the total read
count n= I + S, we have

Ijψ ∼Binomial
�
n= I + S; p= f ðψÞ= lIψ

lIψ + lSð1−ψÞ
�
; [1]

where the binomial distribution models the estimation uncer-
tainty of ψ as influenced by the total read count n, and the pro-
portion of reads from the exon inclusion isoform is represented
by the length normalization function f ðψÞ that normalizes the
exon inclusion level ψ by the effective lengths of the isoforms.
The variability within a sample group reflects the difference

of exon inclusion levels among replicates. The variability can
be modeled by random effects in a mixed model. Considering
two sample groups j= 1; 2, the first group has M1 replicates
ðk= 1; ::: ; M1Þ and the second group has M2 replicates
ðk= 1; ::: ; M2Þ. For each exon i, we estimate the group mean of
exon inclusion levels of groups 1 and 2 (ψ i1 and ψ i2) as fixed
effects. Then we assume that the logit transformation of exon
inclusion levels in individual replicate k  ðψ ijkÞ follows a normal
distribution with the logit of the group mean ðψ ijÞ and the group
variance ðσijÞ for modeling the variability among replicates:

logit
�
ψ ijk

�
∼Normal

�
μ= logit

�
ψ ij

�
; σ2 = σ2ij

�
: [2]

In sum, rMATS accounts for the estimation uncertainty of in-
dividual replicates (Eq. 1) and the variability among replicates
(Eq. 2) in a hierarchical model (Fig. 2), which simultaneously
estimates both effects. Using a likelihood-ratio test, we test
whether the difference of the group mean between the two sam-
ple groups exceeds a user-defined threshold c, against the null
hypothesis jΔψ ij  =  jψ i1 − ψ i2j  ≤ c. Compared with the commonly
used equality test of whether the difference is greater than 0 (i.e.,
null hypothesis jψ i1 −ψ i2j  = 0), our approach is more generic
and provides the flexibility to assess the statistical significance
over any user-defined magnitude of effect. Details of the rMATS
parameter estimation algorithm and likelihood-ratio test are de-
scribed in SI Materials and Methods.

Simulation Studies of rMATS. We first evaluated the performance
of rMATS using a simulation study. In total 5,000 exons were
simulated for two sample groups, with 5% of the exons from the
alternative hypothesis that the exons were differentially spliced
(jΔψ j> 5% between sample groups) and 95% of the exons from
the null hypothesis that the exons were not differentially spliced
(jΔψ j≤ 5% between sample groups). Three levels of standard
deviations (SDs) of 0.01, 0.02, or 0.05 were used in the simula-
tion to represent the variability of ψ among replicates. The read
counts of exons were sampled empirically from an RNA-Seq
dataset of prostate cancer cell lines (Materials and Methods).
We analyzed these simulated data using rMATS. As a com-

parison, we pooled data from individual replicates and analyzed
the pooled data, using a reduced version of rMATS that adopted
the same likelihood-ratio test for two-sample comparison. This is

Fig. 1. The schematic diagram of an exon skipping event. The exon inclu-
sion reads ðIÞ are the reads from the upstream splice junction, the alternative
exon itself, and the downstream splice junction. The exon skipping reads ðSÞ
are the reads from the skipping splice junction that directly connects the
upstream exon to the downstream exon.
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equivalent to performing RNA-Seq on RNA pooled from mul-
tiple biological replicates. In all three sets of simulations, the
analysis by rMATS on the replicate data outperformed the
analysis of the pooled data, especially when the sample vari-
ability increased (Fig. 3).
To investigate the effect of outliers, we performed a new

round of simulation. Specifically, we simulated 1 outlier replicate
of 10 replicates from the two sample groups with a large SD of
0.2 in the normal distribution. The introduction of outliers
caused a modest drop in the performance of rMATS on the
replicate data, but a much more significant drop on the pooled
data (Fig. 3), indicating that the study design incorporating
replicates is much more robust against outliers. For example, in
the presence of outliers, at the 5% false positive rate the true
positive rates on the replicate data were 76%, 72%, and 61%,
respectively, for the three levels of within-group variation (Fig. 3
A–C), compared with 46%, 47%, and 40% on the pooled data.
Together, these results suggest that with a fixed RNA-Seq budget,
we will obtain more reliable results by indexing and sequencing
multiple replicates from individual sample groups, as opposed to
pooling biological replicates before sequencing. The use of repli-
cates is especially critical in studies with a large sample-to-sample
variation or a high probability of outlier samples.
In addition to the setting of 5% alternative exons being dif-

ferentially spliced, we also performed simulation tests in which

10% (Fig. S2) or 20% (Fig. S3) of the exons were simulated from
the alternative hypothesis (i.e., differentially spliced) and the rest
were from the null hypothesis. We obtained similar results in
these settings (Figs. S2 and S3).

rMATS Analysis of Prostate Cancer Cell Lines. To demonstrate the
utility of rMATS, we analyzed an RNA-Seq dataset generated on
three independent cell cultures of two prostate cancer cell lines,
PC3E and GS689 (23, 24). The PC3E cell line has epithelial cell
characteristics whereas the GS689 cell line is recovered from
a secondary metastatic liver tumor and exhibits mesenchymal
and invasive properties (24). The RNA-Seq data consisted of 746
million 2 × 101-bp paired reads for six unpaired replicates (three
replicates per cell line, Table S1).
At the threshold of jΔψ j> 5% and false discovery rate (FDR)

of ≤1%, rMATS identified 721 differential alternative splicing
events (Table S2) between the two cell lines, using both the splice
junction counts and the exon body counts as the input for rMATS.
An example of a differentially spliced exon in ARHGAP17 is shown
in Fig. 4. We randomly selected 34 exon skipping events for vali-
dation by quantitative fluorescent RT-PCR (Fig. S4). These 34
exons covered a broad range of ψ values with the between-group
difference jΔψ j ranging from 0.10 to 0.90. The Δψ values esti-
mated by RNA-Seq and RT-PCR were highly correlated (Pear-
son’s correlation coefficient r = 0.96, Fig. S5). Thirty-two of the 34

Fig. 2. The statistical framework of the unpaired rMATS model. For exon i and the kth replicate, the total RNA-Seq read counts for the exon inclusion and
skipping isoforms are denoted as ni1k ,ni2k for sample groups 1 and 2, respectively. The read counts for the exon inclusion isoform are denoted as Ii1k , Ii2k . The
exon inclusion levels are denoted as ψ i1k ,ψ i2k . The proportion of the read count from the exon inclusion isoform is adjusted by a normalization function fi that
considers the lengths of the exon inclusion and skipping isoforms. rMATS uses a binomial distribution to model the read count from the exon inclusion
isoform given the exon inclusion level in each individual replicate and a logit-normal distribution to model the variation among replicates within sample
group. The mean and variance of exon inclusion levels in the two sample groups are denoted as ψ i1,ψ i2 and σ2i1, σ

2
i2. A likelihood-ratio test is used to calculate

the P value that the difference between ψ i1 and ψ i2 exceeds a given user-defined threshold c.

Fig. 3. Simulation studies to assess the performance of rMATS and the importance of replicates. We simulated 5,000 exons, where 5% of the exons were
differentially spliced and the rest were not differentially spliced. We simulated five replicates in each sample group. The exon inclusion levels in individual
replicates were simulated from a normal distribution with different SDs in three different studies: (A) SD = 0.01, (B) SD = 0.02, and (C) SD = 0.05. To assess the
effect of outliers, we also simulated an additional dataset where 1 of the 10 replicates (of the two sample groups) had a large SD of 0.2. In all scenarios, the
analysis by rMATS on replicate data always outperformed the analysis of pooled data (without the information of replicates), as indicated by the receiver
operating characteristic (ROC) curves. In addition, the analyses on replicate data were more robust against outliers because rMATS modeled the variation
within sample groups, whereas the ROC curves of the pooled data (without the information of replicates) were heavily influenced by outliers.

Shen et al. PNAS | Published online December 5, 2014 | E5595

SY
ST

EM
S
BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.201419161SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.201419161SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.201419161SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.201419161SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.201419161SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.201419161SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.201419161SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.201419161SI.pdf?targetid=nameddest=SF5


candidate exons were validated by RT-PCR (Fig. S4 and Datasets
S1 and S2), yielding a high validation rate of 94%.

The Influence of Sample Size and Sequencing Depth on Detection
Accuracy. A common question in designing RNA-Seq studies is
the optimal RNA-Seq depth for analysis of alternative splicing.
With a fixed budget, an investigator has to consider the trade-off
between the number of replicates to profile and the sequencing
depth in each replicate. A better estimation of the variability
among replicates can be achieved by increasing the number of
replicates, but doing so will reduce the sequencing depth and
increase the estimation uncertainty in individual replicates. On
the other hand, a smaller number of replicates will distribute
more reads to each replicate and reduce the estimation un-
certainty in individual replicates, but at the risk of having in-
sufficient replicates to estimate the variability among replicates.
To address this issue, we designed a simulation study to evaluate
the effect of sample size and sequencing depth on detection
accuracy. In the first set of simulations, we set a budget of gen-
erating 200 million paired-end RNA-Seq reads in each sample
group. This is comparable to one lane of RNA-Seq per sample
group on the Illumina sequencer. Under each sample size (from
3 to 10 replicates per sample group), five different levels of SDs
(SD = 0.01, 0.02, 0.05, 0.10, and 0.20) were used to model dif-
ferent levels of variability among replicates. The RNA-Seq read
counts were simulated mimicking the read count distribution in
the prostate cancer cell line data, using the procedure described
in Materials and Methods.
Our analysis shows that the choice of optimal sample size and

sequencing depth is heavily influenced by the level of within-
group variability. We compared the true positive rate at the 5%
false positive rate under different scenarios. With a small SD, the
variability among replicates was low. Therefore, only a small
number of replicates were needed to reach the highest true
positive rate. For example, at SD = 0.01 and 0.02, only three
replicates were needed to reach the highest true positive rates of
92% and 90%, respectively (Fig. 5A). Perhaps not surprisingly,
further increasing the number of replicates led to a reduction in
the true positive rate, likely due to the reduced sequencing depth
and increased estimation uncertainty in each individual replicate.
By contrast, when the level of variability among replicates was
high, more replicates were needed to achieve the best possible
true positive rate. At SD = 0.05 and 0.10, under 5% false positive
rate six replicates were needed to reach the highest true positive
rates of 80% and 64%, respectively. At SD = 0.20, eight replicates
were needed for the highest true positive rate of 44% (Fig. 5A).

We also investigated the situation where a larger budget
allowed 1.6 billion reads in each sample group, comparable to
one flow cell of Illumina RNA-Seq per sample group (Fig. 5B).
The increased sequencing depth reduced estimation uncertainty
in individual replicates. As expected, this always improved the
detection accuracy compared with the low coverage data of 200
million reads per sample group (Fig. 5B vs. Fig. 5A). At this high
sequencing depth, with low levels of within-group variability

Fig. 4. An example of rMATS unpaired analysis of prostate cancer cell lines. (A) The RNA-Seq read counts and estimated exon inclusion levels of ARHGAP17
exon 15 in a pair of epithelial (PC3E) and mesenchymal (GS689) cell lines, each with three biological replicates. (B) The log likelihood of observing the data given
all possible combinations of ψ i1,ψ i2. In this likelihood-ratio test, the null hypothesis is jψ i1 −ψ i2j≤ 5% and the alternative hypothesis is jψ i1 −ψ i2j> 5%. The
combination of ψ i1,ψ i2 that maximizes the likelihood of observing the data under the constraint of the null hypothesis or without such a constraint is indicated.

Fig. 5. Simulation studies to assess the influence of sample size and se-
quencing depth on detection accuracy. We simulated five different SDs (SD =
0.01, 0.02, 0.05, 0.10, and 0.20) within the sample group. The true positive
rate at 5% false positive rate was calculated and plotted for each set of
simulated data. (A) A total of 200 million paired-end reads were simulated
for each sample group and distributed among 3–10 replicates. (B) A total of
1.6 billion paired-end reads were simulated for each sample group and
distributed among 3–10 replicates.
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(SD = 0.01–0.05) we always obtained a true positive rate of ≥90% at
5% false positive rate, regardless of the number of replicates (3–10).
As the within-group variability increased (SD = 0.10 and 0.20),
more replicates were needed to achieve the best possible true
positive rate. For example, at SD = 0.10, 9 replicates were
needed to achieve the highest true positive rate of 91%. At SD =
0.20, 10 replicates were needed to achieve the highest true pos-
itive rate of 60%. These data suggest when the total sequencing
coverage is high, the estimation uncertainty in individual repli-
cates is not a major concern, and it is generally preferable to
increase the sample size to better capture the extent of within-
group variability.

rMATS Statistical Model for Paired Replicates. Transcriptome stud-
ies often adopt paired study design, for example disease-control
matched pairs in the analysis of patient tissue specimens. In
principle, the use of pairing information can reduce individual-
specific variation and improve the statistical power. However,
currently no method is available for alternative splicing analysis
of paired RNA-Seq data. To fill this gap, we developed a model
of rMATS for RNA-Seq data with paired replicates. This model
uses a covariance structure to model the paired replicates be-
tween two sample groups. For each exon i, the correlation be-
tween paired replicates is modeled by the parameter ρi in the
covariance structure (Fig. 6; details in Materials and Methods and
SI Materials and Methods). We observed that some exons had
more variation among different individuals and less variation in
the difference between the two paired samples from the same
individual. These exons had strong correlations between paired
samples. By contrast, some other exons had less variation among
different individuals and more variation in the difference be-
tween the two paired samples, leading to weak correlations be-
tween paired samples. Therefore, we consider that each exon i
has an exon-specific correlation parameter ρi between paired
replicates, which can be estimated from data. Details of the
parameter estimation procedure are described in SI Materials
and Methods.
To illustrate the utility of the rMATS paired model, we used it

to identify differential alternative splicing events from 65 tumor-
normal matched pairs in the clear cell renal cell carcinoma
(ccRCC) RNA-Seq data from The Cancer Genome Atlas
(TCGA) (25), at a threshold of jΔψ j> 5% (i.e., the null hy-
pothesis jΔψ j  ≤ 5%) and FDR ≤ 1%. For comparison, we also
applied the unpaired rMATS model to the same RNA-Seq data,
using the same statistical criteria. The unpaired rMATS model
identified 304 differential exon skipping events. The paired
rMATS model identified 315 differential exon skipping events
(Dataset S3), including all 304 events identified by the unpaired
rMATS. The 11 additional events identified only by the paired
rMATS are listed in Dataset S4. Of these 315 exons, 80 were also

differentially spliced between the PC3E and GS689 cell lines
(Fisher’s exact test P = 5.0 × 10−49 for the significance of overlap
over random expectation), with the splicing profile of tumor
samples resembling that of the mesenchymal GS689 cell line. This
is consistent with the mesenchymal phenotype of ccRCC (26). As
expected, the use of pairing information generally led to in-
creased statistical significance (smaller P value), particularly for
exons with a high degree of correlation among matched pairs
across patients (Fig. 7A). Compared with exons common to both
models, the 11 exons unique to paired rMATS had smaller jΔψ j
between tumor and normal samples (Wilcoxon’s two-sided test
P = 1.4 × 10−11), but the SD of Δψ between matched pairs was
also smaller (Wilcoxon’s two-sided test P = 0.02) (Fig. 7B). This
suggests the paired rMATS model can reveal more subtle but
consistent changes in splicing in paired replicates.
To confirm that the normal distribution appropriately models

the distribution of logit exon inclusion levels, we used the TCGA
ccRCC RNA-Seq data to inspect the distribution of logit exon
inclusion levels. Figs. S6 and S7 show the histograms of logit
exon inclusion levels of 25 randomly selected alternative exons in
normal controls or tumor samples. As demonstrated by these
histograms, the logit exon inclusion levels can be approximated
by a normal distribution. We also analyzed the SDs of exon in-
clusion levels in the ccRCC dataset (Fig. S8). In normal samples,
the vast majority (90%) of exons had SD ≤ 0.2, including 57%
with SD ≤ 0.1 and 15% with SD ≤ 0.05. Interestingly, the ccRCC
tumor samples had larger SDs of exon inclusion levels compared
with the normal samples (one-sided Kolmogorov–Smirnov test
P = 3.4 × 10−8), likely reflecting the increased heterogeneity
among tumor samples.

Comparison of rMATS to Other Methods. We performed simulation
studies to compare the performance of rMATS (the unpaired
model) to Cufflinks (2.2.1) (18) and DiffSplice (0.1.1) (20),
which use the Jensen–Shannon divergence (JSD) metric to test
the difference in splicing levels/isoform proportions between two
sample groups. Our model and the JSD-based methods have
conceptual differences in how they treat data points with dif-
ferent read counts and varying degrees of estimation uncertainty.
Intuitively, in rMATS individual replicates with small read counts
have smaller effects on the overall test statistic than replicates
with large read counts. By contrast, all of the replicates have the
same level of contribution to the JSD-based test statistic, re-
gardless of the read counts and degrees of estimation uncertainty.
To perform a direct comparison between these methods, we
conducted a simulation study following the read count distribu-
tion from TCGA ccRCC RNA-Seq data (details of the simulation
study are in Materials and Methods). Although rMATS has the
flexibility to test splicing difference above any user-defined
threshold ðjΔψ j  > cÞ, because both Cufflinks and DiffSplice only

Fig. 6. The statistical framework of the paired rMATS model. Each replicate in sample group 1 is paired with another replicate in sample group 2. For exon i
and the kth replicate, the total RNA-Seq read counts for the exon inclusion and skipping isoforms are denoted as ni1k ,ni2k for sample groups 1 and 2, re-
spectively. The read counts for the exon inclusion isoform are denoted as Ii1k , Ii2k . The exon inclusion levels are denoted as ψ i1k ,ψ i2k . The proportion of the
read count from the exon inclusion isoform is adjusted by a normalization function fi that considers the lengths of the exon inclusion and skipping isoforms.
rMATS uses a bivariate normal distribution to model the variation among replicates within sample group and the correlation between paired replicates. The
mean and variance of exon inclusion levels in the two sample groups are denoted as ψ i1,ψ i2 and σ2i1 ,σ

2
i2. The correlation parameter is denoted as ρi .

Shen et al. PNAS | Published online December 5, 2014 | E5597

SY
ST

EM
S
BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.201419161SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.201419161SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.201419161SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.1419161111.sd03.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.1419161111.sd04.xls
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.201419161SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.201419161SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419161111/-/DCSupplemental/pnas.201419161SI.pdf?targetid=nameddest=SF8


test the equality of ψ between sample groups, to perform a fair
comparison we ran rMATS to test nonzero group difference
ðjΔψ j> 0%Þ. As shown by the receiver operating characteristic
(ROC) curves (Fig. 8A), rMATS outperformed Cufflinks and
DiffSplice with area under the curve (AUC) of 86% vs. 83% and
81%, respectively. The difference was more prominent in the
most critical area of the ROC curve where the false positive rate
was low (<0.2), with an improvement in the true positive rate of
up to 8% and 15% over Cufflinks and DiffSplice, respectively
(Fig. 8A, Inset). To assess the effects of small read counts or
outliers, we performed additional tests in which one of the
replicates was randomly set to have only 10% of the typical read
coverage (Fig. 8B) or with a large SD of exon inclusion levels
(Fig. 8C) (Materials and Methods). In these simulations, the im-
provement of rMATS over Cufflinks and DiffSplice became
more significant. Specifically, when the false positive rate was
low (<0.2), we observed an improvement in the true positive rate
of up to 19% over both Cufflinks and DiffSplice in Fig. 8B (Inset)
and up to 16% over both in Fig. 8C (Inset). In summary, rMATS
consistently outperformed the two JSD-based methods in all

three settings, illustrating the benefit of appropriately accounting
for the estimation uncertainty of isoform proportions.

Discussion
RNA-Seq has become a widely used technology for tran-
scriptome studies, especially the analysis of alternative splicing.
Due to the cost, earlier RNA-Seq studies typically represented
each sample condition by a single or pooled RNA sample
without replicates (9–12). Consequently, many first-generation
tools for alternative splicing analysis of RNA-Seq data were
developed for two-sample comparison without replicates (9, 15–
17, 22). As the cost of RNA-Seq has declined rapidly in the past
few years, it has become common for RNA-Seq studies to ana-
lyze multiple replicates. Moreover, in studies of clinical RNA
samples where the sample-by-sample variability is expected to
be significant, biological replicates are essential. We have de-
veloped rMATS, a new statistical model to identify differential
alternative splicing events from two-group RNA-Seq data with
replicates. rMATS uses a hierarchical framework to simulta-
neously model the variability among replicates and the estimation

Fig. 7. A comparison between paired and unpaired rMATS models. (A) We applied paired and unpaired rMATS to 65 tumor-normal matched pairs in TCGA
RNA-Seq data of clear cell renal cell carcinoma (ccRCC). For 315 exons with FDR ≤ 1% by either model, we compared the P values from the paired and
unpaired models, relative to the estimated correlation parameter ρ between pairs. Paired rMATS produced smaller (more significant) P values, especially for
exons with a high degree of correlation among matched pairs. The 11 exons unique to paired rMATS are marked with red circles. (B) The mean and the SEM
of Δψ (between tumor-normal matched pairs) for the 11 exons unique to paired rMATS and 11 randomly selected exons common to both paired and
unpaired rMATS.

Fig. 8. (A–C) Simulation studies to compare the performance of rMATS, Cufflinks, and DiffSplice. The performances of these methods on a simulated dataset
are indicated by their respective receiver operating characteristic (ROC) curves. Insets (Bottom Right) highlight the most critical area of the ROC curve where
the false positive rate is low (<0.2). (A) Five replicates were simulated for each sample group. The exon inclusion levels in individual replicates were simulated
from a normal distribution with SD = 0.05. The read counts were sampled from TCGA ccRCC RNA-Seq data. (B) One of the replicates was randomly set to have
only 10% of the typical read coverage. (C) One of the replicates was randomly set as an outlier with large SD of exon inclusion levels (SD = 0.2).
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uncertainty of isoform proportion in individual replicates. It should
be noted that the estimation uncertainty of isoform proportion is
a well-recognized issue in RNA-Seq analysis of alternative splicing,
because the confidence level of such estimates depends on the
sequencing coverage for individual splicing events (4, 9). By ap-
propriately modeling the estimation uncertainty, rMATS improves
over other existing methods for differential alternative splicing
analysis of replicate RNA-Seq data, as evidenced by our simula-
tion studies comparing rMATS, Cufflinks, and DiffSplice in
multiple experimental settings (Fig. 8). Another important feature
of rMATS is its much greater flexibility in the detection of dif-
ferential alternative splicing. Different from all other methods that
test only the equality of isoform proportion between sample
groups, the hypothesis-testing framework of rMATS can assess the
statistical significance over any given user-defined magnitude of
splicing change. Additionally, rMATS provides a statistical
model for detecting differential alternative splicing from paired
RNA-Seq replicates. Through simulation studies and the analysis
of real RNA-Seq data together with RT-PCR validation, we
demonstrate that rMATS is a robust and flexible method for
differential splicing analysis of replicate RNA-Seq data.
We carried out a series of simulation studies to evaluate factors

that influence RNA-Seq analysis of differential alternative splic-
ing. Previous studies have investigated the experimental design for
RNA-Seq with respect to the use of replicates, sample size, and
sequencing depth (27–31). These studies have focused on the goal
of detecting differential gene expression. For example, Liu et al.
suggested that 10 million reads would be the appropriate se-
quencing depth for differential expression studies (30). There is
little information in the literature regarding these issues in the
experimental design for alternative splicing studies, which have
unique challenges as reliable quantitative estimates of individual
alternative splicing events would require a much higher sequenc-
ing depth. Here, the statistical framework of rMATS allows us to
perform a series of simulation studies to assess how various ex-
perimental factors influence the ability to detect differential al-
ternative splicing. Our data suggest that even with the need for
much higher sequencing depth, the use of replicates remains es-
sential for differential alternative splicing studies, and it is pref-
erable to incorporate at minimum several replicates even at the
expense of reduced sequencing depth on individual replicates.
Moreover, certain commonly used experimental design or data
analysis strategies in RNA-Seq studies of alternative splicing, such
as pooling RNAs or merging RNA-Seq data from multiple repli-
cates, are not recommended because they do not properly account
for variability. Specifically, when the total sequencing count is
fixed, the analysis of replicates always outperforms the analysis of
a single RNA sample pooled from the individual replicates (Fig.
3). The improvement is particularly significant when the within-
group variability is large or when there are outlier samples. We
further evaluated the influence of sample size and sequencing
depth on the detection accuracy of differential alternative splicing
events. We observed that when there was large variability among
replicates, increasing the number of replicates could increase the
statistical power by up to 31% (Fig. 5). However, when the total
budget was not enough to generate a large number of reads, overly
increasing the number of replicates reduced the statistical power
by increasing the estimation uncertainty in individual repli-
cates. Therefore, under a fixed budget researchers need to
consider the trade-off between sample size and sequencing depth
in designing their RNA-Seq studies. For large projects, it may be
worthwhile to perform a pilot round of low-coverage RNA-Seq
and estimate the level of within-group variability, before making
decisions on the optimal sample size and sequencing depth.
The rMATS statistical framework provides the foundation for

future extensions. rMATS uses the raw (unadjusted) RNA-Seq
read counts as the input. It should be noted that a series of
studies have revealed systematic biases in RNA-Seq data and

have proposed methods to correct for the raw RNA-Seq read
counts (32–35). However, in previous work we tested several
well-known bias correction methods for RNA-Seq data, but did
not observe any improvement in the estimates of exon inclusion
level (22, 36). Nonetheless, the rMATS statistical framework can
readily take the adjusted counts from any bias correction method,
if it is demonstrated to improve the accuracy of splicing analysis.
Another potential area of improvement is to generalize the two-
isoform model of rMATS for any number of isoforms. Currently,
rMATS is designed to analyze basic types of alternative splicing
events involving two isoforms from an alternatively spliced region.
These types include exon skipping, alternative 5′ splice sites, al-
ternative 3′ splice sites, mutually exclusive exons, and retained
introns (Fig. S1). This is the common analytic approach in many
existing tools for RNA-Seq analysis of alternative splicing (9, 15,
16, 22). However, we note these basic types of alternative splicing
events can be coupled to produce more than two isoforms from
a single exon or multiple adjacent exons. It is possible to extend
the binomial distribution in the current rMATS model to a mul-
tinomial distribution, which will enable the analysis of complex
alternative splicing events involving more than two isoforms.
The rMATS source code and user manual are freely available

for download at rnaseq-mats.sourceforge.net/. The rMATS soft-
ware takes the raw RNA-Seq reads, a genome sequence file, and
a transcript annotation file as the input. It identifies alternative
splicing events corresponding to all major types of alternative
splicing patterns (Fig. S1) and calculates the P value and FDR for
differential splicing. For species with poor transcript annotations,
users can apply de novo RNA-Seq transcript assembly tools to
generate transcript annotations, before analysis of differential al-
ternative splicing by rMATS. We anticipate that rMATS will be
a useful tool for robust and flexible analysis of alternative splicing
in diverse RNA-Seq projects. Moreover, as a general method for
analyzing mRNA isoform ratios using sequence count data, the
statistical model of rMATS is also applicable to sequencing-based
analyses of other types of mRNA isoform variation, such as al-
ternative polyadenylation and RNA editing.

Materials and Methods
rMATS Hierarchical Model for Unpaired Replicates. For replicates that are not
paired between sample groups, the hierarchical framework of rMATS com-
bines the binomial distribution for modeling the estimation uncertainty in
individual replicates and the normal distribution for modeling the variability
among replicates (Fig. 2),

Iijk jψ ijk ∼Binomial
�
n= Iijk + Sijk ,p= fi

�
ψ ijk

��
,

logit
�
ψ ijk

�
∼Normal

�
μ= logit

�
ψ ij

�
, σ2 = σ2ij

�
,

[3]

in which Iijk , Sijk , and ψ ijk are the inclusion read counts, the skipping read
counts, and exon inclusion levels for exon i, sample group j= 1, 2, and
replicate k. fiðψ ijkÞ is the length normalization function of exon i that
transforms the exon inclusion level ψ ijk into the proportion of reads from the
exon inclusion isoform, using the effective lengths of the isoforms. ψ ij is the
mean inclusion level of group j; σij is the variance of the group. Based on
model 3, we use a likelihood-ratio test to calculate the P value that the
between-group difference of the mean exon inclusion levels exceeds a given
threshold c. For each exon i, the null hypothesis is that the difference of the
mean exon inclusion levels is smaller than or equal to the user-defined
threshold c (i.e., jΔψ j  =  jψ i1 −ψ i2j  ≤ c), whereas the alternative hypothesis is
jψ i1 −ψ i2j  > c. The likelihood-ratio test compares the maximum value of the
likelihood function under the constraint of the null hypothesis to the max-
imum value of the likelihood function without any constraints (details of the
likelihood-ratio test are in SI Materials and Methods).

Without the length normalization function fiðψ ijkÞ, model 3 is equivalent to
a standard generalized linear mixed model with the binomial distribution
and the logit link function, whose estimation procedure is implemented in
common statistical software. However, the length normalization function
creates a unique link function. Because of it, we need to reprogram the
model-fitting algorithm of our model. The details of our parameter estima-
tion and model-fitting algorithm are described in SI Materials and Methods.
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rMATS Hierarchical Model for Paired Replicates. For each exon i, we model the
correlation between paired replicates by the parameter ρi in the covariance
structure. This leads to a bivariate normal distribution in the hierarchical
model for paired replicates (Fig. 6),

Iijk jψ ijk ∼Binomial
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in which Iijk , Sijk , and ψ ijk are the inclusion read counts, the skipping read
counts, and exon inclusion levels for exon i, sample group j= 1, 2, and
replicate k. ψ i1 and ψ i2 are the mean inclusion levels of groups 1 and 2; σi1
and σi2 are the variances of the two groups. The parameter ρi models the
correlation between paired replicates. The paired rMATS model tests the
same hypothesis as in the unpaired model. For each exon i, the null hy-
pothesis is that the difference of the mean exon inclusion levels is smaller
than or equal to the user-defined threshold c (i.e., jΔψ j  =  jψ i1 −ψ i2j  ≤ c),
whereas the alternative hypothesis is jψ i1 −ψ i2j > c. The paired rMATS model
is more generalized than the unpaired model because of its covariance
structure. If ρi = 0, the paired model is reduced to the unpaired model. The
details of the paired rMATS model including the model-fitting algorithm
and the test statistics are described in SI Materials and Methods.

Simulation Studies of rMATS on Replicate and Pooled Data. We evaluated the
performance of rMATS with a simulation study. A total of 5,000 exons were
simulated for two sample groups, with 5% of the exons from the alternative
hypothesis that the exons were differentially spliced (jΔψ j> 5% between
sample groups) and 95% of the exons from the null hypothesis that the
exons were not differentially spliced (jΔψ j≤ 5% between sample groups).
For each exon, we simulated 5 replicates for each of the two sample groups
(totally 10 replicates). The replicate read counts of each exon were simulated
with a two-step approach, where we first randomly selected one exon from
the significant exon skipping events (FDR ≤ 1%) of the prostate cancer cell
line data and then simulated read counts in individual replicates by ran-
domly sampling the read counts of the selected exon in the prostate cancer
cell line data. We generated data for the null hypothesis by sampling the
mean exon inclusion level of sample group 1 from a uniform (0, 1) distri-
bution and randomly added or subtracted a value sampled from a uniform
(0, 0.05) distribution to generate the mean exon inclusion level of sample
group 2. If the random value caused the mean exon inclusion level of sample
group 2 to be above 1 or below 0, the sampling step would be repeated until
the mean exon inclusion level of sample group 2 was within [0, 1]. Data for
the alternative hypothesis were simulated with a similar procedure, except
that the value randomly added or subtracted to generate the mean exon
inclusion level of sample group 2 was sampled from a uniform (0.05,1) dis-
tribution. The exon inclusion levels in individual replicates were sampled
from a normal distribution with the mean equal to the simulated mean
inclusion level for that sample group and the SD at three different levels at
0.01, 0.02, and 0.05, respectively. In each replicate, the read count of the
exon inclusion isoform was sampled from a binomial distribution of total
read counts and exon inclusion levels. To investigate the effect of outliers,
we also simulated 1 outlier replicate (of 10 replicates from the two sample
groups) with a large SD of 0.2 in the normal distribution. The pooled data
were generated by pooling the read counts of all 5 replicates in each sample
group. After the simulation data were generated, we used rMATS to cal-
culate the P value and FDR of differential splicing, using 5% as the threshold
for between-group difference in exon inclusion levels ðjΔψ j> 5%Þ.

Simulation Studies to Evaluate the Influence of Sample Size and Sequencing
Depth on Detection Accuracy.We designed a simulation study to evaluate the
influence of sample size and sequencing depth on detection accuracy. In the
first set of simulations, we set a scenario where the budget was to generate
200 million paired-end RNA-Seq reads in each of the two sample groups.
Assuming that these read counts are evenly distributed to all replicates, we
simulated 3–10 replicates per sample group, with total read counts per
replicate Nk = 67–20 million. We mimicked the read count distribution in the
prostate cancer cell line data when distributing the total read counts to each
alternative splicing event. Specifically, we randomly selected one exon i from
the exon skipping events of the prostate cancer cell line data. For each
simulated replicate k of this exon i, the simulated replicate read count nik

was generated by randomly sampling replicate read counts of this exon in
the real data, scaled by the total read counts per replicate in the simulated
data (67–20 million) and in the real data (∼120 million reads). After gener-
ating the read count for each replicate, the replicate exon inclusion levels

and the inclusion/skipping read counts were simulated using the same pro-
cedure as described above. In total we simulated data for 5,000 exons in this
manner. For each number of replicates (from 3 to 10 replicates), five dif-
ferent SDs were used (SD = 0.01, 0.02, 0.05, 0.10, and 0.20), representing
different levels of variability of exon inclusion levels within the sample
group. A second set of simulations was carried out under the budget of 1.6
billion paired-end RNA-Seq reads in each of the two sample groups.

Simulation Studies to Compare rMATS with Other Methods. We designed a
simulation study to evaluate the performance of rMATS to Cufflinks (2.2.1)
(18) and DiffSplice (0.1.1) (20). A total of 5,000 exons were simulated for two
sample groups, with 5% of the exons from the alternative hypothesis that
the exons were differentially spliced (jΔψ j> 0% between sample groups)
and 95% of the exons from the null hypothesis that the exons were not
differentially spliced (Δψ = 0% between sample groups). For each exon, we
simulated 5 replicates for each of the two sample groups (10 replicates in
total) with a within-group SD of ψ of 0.05. The individual replicate read
counts of each exon were randomly sampled from TCGA ccRCC RNA-Seq
data. We used the same procedure as in other simulations to generate the
inclusion and skipping isoform read counts. To input the simulated data into
Cufflinks and DiffSplice, we made artificial RNA-Seq SAM files with inclusion
and skipping reads generated based on the simulated inclusion and skipping
read counts. To assess the effects of small read counts or outliers, we per-
formed additional tests in which one of the replicates was randomly set to
have only 10% of the typical read coverage or with a large SD (SD = 0.2) of
exon inclusion levels.

RNA-Seq Analysis of PC3E and GS689 Cell Lines.We analyzed our RNA-Seq data
on two prostate cancer cell lines, PC3E and GS689 (23, 24). The PC3E cell line
was obtained by selecting E-cadherin positive PC-3 cells, using fluorescence-
activated cell sorting (FACS). The GS689 cell line was isolated from a second-
ary metastatic liver tumor after intravenous injection of PC-3 cells into mouse.
As a result, the PC3E cell line had epithelial cell characteristics whereas the
GS689 cell line exhibited mesenchymal and invasive properties (24). The RNA-
Seq data are available at the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) under accession no. SRS354082.

We first mapped RNA-Seq reads to the Ensembl transcripts (release 65),
using the software TopHat (37), allowing up to 2-bp mismatches per 25-bp
seed. After mapping to the Ensembl transcripts, TopHat mapped the
remaining reads to the human genome (hg19) and discovered novel splice
junctions not present in the Ensembl transcripts. Each mapped splice junc-
tion read required at least 8 bp (anchor length) from each side of the splice
junction. Major categories of alternative splicing events (i.e., skipped exons,
alternative 5′ splice sites, alternative 3′ splice sites, mutually exclusive exons,
and retained introns) were then detected from the RNA-Seq mapping results
by our software. For the identified alternative splicing events, we used the
splice junction counts plus the exon body counts or the splice junction counts
alone as the input for rMATS.

TCGA Data of Tumor-Normal Matched Pairs of ccRCC. We obtained the RNA-
Seq read counts of 65 matched tumor and normal samples in the ccRCC RNA-
Seq data from TCGA. The sample IDs of these 65 tumor-normal matched pairs
are provided in Dataset S5. The RNA-Seq data were mapped to the splice
junctions by TCGA consortium. We downloaded the mapped splice junction
read counts from TCGA data portal (tcga-data.nci.nih.gov/tcga/). In total,
956 million splice junction reads were mapped to the 65 tumor samples, with
3–23 million reads per tumor sample. A total of 944 million splice junction
reads were mapped to the 65 normal samples, with 4–23 million reads per
normal sample.

RT-PCR Validation. Quantitation of exon inclusion levels was carried out using
fluorescently labeled RT-PCR as described previously (36). Because we used
rMATS to test whether the difference in mean ψ values between two sample
groups exceeded 5% ðjΔψ j  > 5%Þ, we defined a candidate differential al-
ternative splicing event as validated if the average RT-PCR–based exon in-
clusion levels differed by at least 5% between the three replicates of the
PC3E and GS689 cell lines, with the direction of the change matching the
RNA-Seq prediction.
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