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Abstract: Although blood oxygenation level dependent (BOLD) functional magnetic resonance imaging
(fMRI) experiments of brain activity generally rely on the magnitude of the signal, they also provide
frequency information that can be derived from the phase of the signal. However, because of con-
founding effects of instrumental and physiological origin, BOLD related frequency information is diffi-
cult to extract and therefore rarely used. Here, we explored the use of high field (7 T) and dedicated
signal processing methods to extract frequency information and use it to quantify and interpret blood
oxygenation and blood volume changes. We found that optimized preprocessing improves detection of
task-evoked and spontaneous changes in phase signals and resonance frequency shifts over large areas
of the cortex with sensitivity comparable to that of magnitude signals. Moreover, our results suggest
the feasibility of mapping BOLD quantitative susceptibility changes in at least part of the activated
area and its largest draining veins. Comparison with magnitude data suggests that the observed sus-
ceptibility changes originate from neuronal activity through induced blood volume and oxygenation
changes in pial and intracortical veins. Further, from frequency shifts and susceptibility values, we
estimated that, relative to baseline, the fractional oxygen saturation in large vessels increased by 0.02–
0.05 during stimulation, which is consistent to previously published estimates. Together, these findings
demonstrate that valuable information can be derived from fMRI imaging of BOLD frequency shifts
and quantitative susceptibility changes. Hum Brain Mapp 35:2191–2205, 2014. VC 2013 Wiley Periodicals, Inc.
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INTRODUCTION

The use of the phase of magnetic resonance imaging
(MRI) signals has proven very useful to investigate human
brain anatomy because of the increased contrast between
and within the gray and the white matter, and the infor-
mation it provides complementary to magnitude signals
for quantification purposes [Duyn et al., 2007].

In functional MRI (fMRI), phase in part reflects blood sus-
ceptibility, whose changes form the basis of the blood oxygen-
ation level dependent (BOLD) effect on magnitude fMRI
signals. The complementary information it contains could
potentially be used to untangle changes in blood fractional ox-
ygen saturation from changes in blood volume. Blood frac-
tional oxygen saturation is an indicator of oxygen delivery
and metabolism, and may provide information about tissue
function and viability. Current methods employed to estimate
changes in the blood fractional oxygen saturation rely on the
use of sophisticated fMRI acquisition sequences and modeling
methods [He and Yablonskiy, 2007] or of invasive procedures
such as positron emission tomography [Ito et al., 2005].

Nevertheless, unlike in structural imaging, the use of
phase in fMRI has been very limited so far, primarily
because of difficulties of its extraction and interpretation.
Phase-based fMRI activity maps have had limited signal-
to-noise ratio and only show robust changes with brain
activation in the larger veins [Menon, 2002; Nencka and
Rowe, 2007]. A problem with phase-based fMRI is the
presence of large instrumental and physiological noise
fluctuations over time that obscure changes related to neu-
ronal activity [Petridou et al., 2009; Hagberg et al., 2012].
Previous attempts at reducing noise in phase fMRI have
included the use of noise regressors derived from physio-
logical monitoring [Petridou et al., 2009], the application of
spatial high-pass filters [Hagberg et al., 2012], or correction
of the estimated frequency offsets with the simulated
phase rewinding method [Hahn et al., 2009].

In this work, we aimed at improving the acquisition and
processing of phase-based fMRI activity time-courses. For
this purpose, we used advanced technology (7 T scanner,
array detectors) and optimized preprocessing to account for
instrumental and physiological noise in phase fMRI images
acquired during stimulation and at rest. Crucially, we
removed the background spatial low-frequency phase varia-
tion by subtracting spatially fitted polynomials on a slice-by-
slice basis, and examined the residual BOLD changes in the
phase time-course. Further, we computed BOLD frequency
shifts from phase values, and estimated quantitative suscep-
tibility changes in the activated area and large draining veins
(for instance the sagittal sinus) using methods developed
previously for structural susceptibility imaging. Finally, in
an initial application, we aimed at estimating the functional
change in blood fractional oxygen saturation in large veins
during task performance from BOLD frequency shifts and
susceptibility values computed from phase signals. Part of
this work was previously published in abbreviated abstract
form (Bianciardi et al., 2011a; Bianciardi et al., 2012).

METHODS

Experimental Design

Groups of eight (four males, four females, age 30 6 3
years, Experiment 1) and six healthy subjects (three males,
three females, 33 6 3 years, Experiment 2) participated in
two separate experiments, after giving written informed
consent. The human subject protocol was approved by the
Institutional Review Board (IRB) of the National Institutes
of Health (NIH).

The first experiment (Experiment 1) was performed to
investigate if small BOLD phase signal changes can be
untangled from confounding noise contributions by opti-
mized preprocessing, and to study the signal change de-
pendence on echo time; in the second experiment
(Experiment 2), we studied the feasibility of computing
quantitative BOLD susceptibility changes from phase sig-
nal changes.

Two conditions were investigated: (1) visual fixation on
a central dot during presentation of a visual stimulus
(black/white checkerboard, flickering at 7.5 Hz, block-
design: 34.5 s OFF/34.5 s ON cycle); (2) resting with the
eyes closed.

Image Acquisition

In Experiment 1, multi gradient-echo (GRE) echo-planar
imaging (EPI) BOLD-fMRI was performed on a 7 T Gen-
eral Electric Signa MRI scanner (GE-Medical-Systems,
Waukesha, WI), using a 32 channel receive-only coil (Nova
Medical, Wilmington, MA) and parameters: echo times
(TEs) 5 [15.0, 31.5, 48.0, 64.5, 81.0] ms, repetition time (TR)
5 2.3 s, flip angle 5 65�, number of slices 5 4, slice orien-
tation 5 oblique axial/coronal (rotation angle with respect
to axial orientation ranging between 7� and 33� across sub-
jects), voxel-size 5 2.5 3 2.5 3 2.5 mm3, field of view 5

240 3 180 mm2, number of scans 5 158, SENSE rate 5 3.
Considering an in vivo measured blood T1 of � 2.6 s at 7
T [Rooney et al., 2007], the chosen flip angle (65�) maxi-
mizes signal (Ernst angle) for the blood compartment. This
is slightly suboptimal for gray matter (a cortical gray mat-
ter T1 of � 2.1 s, Rooney et al., 2007, yields an Ernst angle
of 70.4�). Nevertheless, the conservative low value of the
target flip angle may prevent signal loss in regions with
B1 hot spots typical of high field MRI. In Experiment 2,
data coverage in the z-direction was increased to facilitate
the calculation of magnetic susceptibility from phase data.
For this purpose, the same GRE-EPI parameters as in
Experiment 1 were employed except for: TEs 5 31.5 ms,
number of slices 5 40, slice orientation 5 coronal. The first
image was acquired with flip angle set to zero to estimate
coil noise levels for image reconstruction. Scans 2–4
(approach to steady-state) were discarded and scans 5–7
were used as reference for coil sensitivity mapping.
Remaining scans were used for brain activity analysis.
Head motion was minimized by the use of foam pads,
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placed in the space between the interior coating of the
MRI detector array and the subject’s head.

A high-resolution gradient-recalled echo image was also
acquired (TE 5 16 ms, voxel size 5 0.3125 3 0.3125 3 2.5
mm3, TR 5 1.2 s, flip angle 5 70�, same number of slices
and slice orientation of GRE-EPI images). Real-time modu-
lation of B0 shims up to the second order was applied to
compensate for large-scale B0-field fluctuations induced in
the head by respiration [van Gelderen et al., 2007]. This
was carried out on average across the brain, and finer
spatial scale was removed retrospectively (see next para-
graph). We also recorded the timing of physiological
cycles by the use of a pulse-oximeter and respiratory
bellow provided with the MR scanner, at a sampling rate
of 250 Hz.

Magnitude and Phase Image Processing

Data processing for Experiments 1 and 2 differed only
in a few details which are specified below.

In summary, for both Experiment 1 and 2, the data proc-
essing stream included: image reconstruction; phase data
preprocessing; physiological and instrumental noise cor-
rection; slice timing, and spatial alignment of magnitude
and phase data; computation of magnitude % signal
changes and fractional frequency shifts; computation of
stimulus-related and resting state activity maps for magni-
tude, and phase data. In addition to the steps above, for
Experiment 2 only, susceptibility changes were computed
from fractional frequency shifts, and activity maps were
computed for the obtained susceptibility changes.

For both experiments, multiple coil images were com-
bined to yield complex images (off-line SENSE image
reconstruction), and then magnitude and phase images
were computed (IDL 8.1, Exelis Visual Information Solu-
tions, Boulder, CO).

For each TE and each voxel, phase images were prepro-
cessed as follows (Matlab 7.13, The Mathworks, Natick,
MA): the first value of the phase time-course (Ut0) was

subtracted from each time-point (Ut), resulting in DU 5 Ut

2 Ut0; the phase time-course was then unwrapped by
assuming time-continuity and the linear drift over time
was removed. For each TE, the background spatial low-
frequency phase variation was fitted for each slice and for
each time-point with a spatial polynomial function (model
orders 2, 4, 6, 8 were investigated). Spatial polynomial
functions are also used during real time shimming [van
Gelderen et al., 2007]. These signal fluctuations were
attributed to drifts over time and to the respiratory chest
motion (see Results and Table I) and were employed, on a
voxel-by-voxel basis, as noise regressor (Unoise-regressor)
for both magnitude and phase fMRI data.

Physiological and instrumental noise correction was
then applied on both magnitude and pre-processed phase
images on a slice-by-slice basis, including five different
noise sources, as follows. (1) Instrumental and physiologi-
cal drifts over time were accounted for by third order pol-
ynomials; drifts over time might arise from several sources
of instrumental (radiofrequency transmit/receive, gradient
heating, field of superconducting magnet, etc.) instability
[Smith et al., 1999] but also from physiological sources of
instability [Yan et al., 2009]; drifts over time were therefore
estimated from the regression coefficients of the polyno-
mial fitting. (2) Effects of chest motion associated with the
respiratory cycle were modeled with Unoise-regressor; the
variance explained by Unoise-regressor was compared
with that of four respiratory RETROICOR regressors
[Glover et al., 2000], employed in previous work [Petridou
et al., 2009] to reduce noise in phase fMRI signals. (3)
Effects related to the phase of cardiac cycle were modeled
with four cardiac RETROICOR regressors [Glover et al.,
2000]. Signal fluctuations due to change in (4) the respira-
tory volume rate and (5) cardiac rate [Birn et al., 2006;
Shmueli et al., 2007] were accounted for by a dual-lagged
model [Bianciardi et al., 2009, 2011b; lags 5 22.3 s and
111.5 s for respiration volume rate regressor, and 22.3 s
and 14.6 s for cardiac rate regressor]. RETROICOR, respi-
ration volume rate and cardiac-rate regressors were

TABLE I. Variance (%) of the Unoise-regressor accounted by instrumental noise, physiological noise,

and stimulus regressor

ROIVC ROIGM

TASK REST TASK REST

Drifts 30.10 (7.83)a 25.85 (7.04) 32.09 (8.59) 27.21 (7.49)
Respiratory cycleb 21.42 (4.90) 16.52 (6.77) 20.15 (6.05) 16.16 (6.74)
Cardiac cycle 1.00 (0.73) 0.32 (0.26) 1.65 (0.86) 0.59 (0.43)
Respiratory volume rate 0.67 (0.34) 2.42 (0.71) 0.89 (0.54) 2.44 (0.69)
Cardiac rate 0.86 (0.32) 1.67 (0.55) 0.81 (0.31) 1.59 (0.55)
Stimulus regressor 0.24 (0.12) N/A 0.04 (0.08) N/A
Residual noisec 45.71 (8.50) 53.22 (5.14) 44.37 (8.19) 52.01 (5.61)

aMean (standard error) across six subjects of the average value across voxels of each ROI (VC 5 visual cortex, GM 5 gray matter).
bFour RETROICOR regressors were used to model effects related to the phase of the respiratory cycle.
cResidual noise might include thermal noise, noise related to motion correction (processing step applied afterwards), and residual
uncorrected signal fluctuations due to instrumental noise, physiological noise, and task related neuronal processes.
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estimated from physiological recordings according to strat-
egies described respectively in Glover et al., 2000, Birn
et al., 2006, and Shmueli et al., 2007. For magnitude
images, physiological and instrumental noise was
regressed out using a design matrix comprising noise
regressors 1–5. For phase images, noise source (2) was first
subtracted and then noise sources (1), (3)–(5) regressed
out. For Experiment 1, full physiological and instrumental
noise correction as explained above was performed for six
subjects only, because for two subjects, for technical rea-
sons, real-time shimming did not run and physiological
recordings were not saved. For these two subjects, only
drifts and U noise-regressor were regressed out.

Before further preprocessing was applied, for Experi-
ment 1 we evaluated the contribution of each noise regres-
sor to magnitude and phase signal fluctuations, and in
particular we compared the performance of U noise-
regressor to that of four respiratory RETROICOR regres-
sors as model for noise source (2). To this end, we esti-
mated the variance each noise regressor explained in a
region of interest in the visual cortex (ROIVC) and in the
gray matter (ROIGM). ROIVC was defined from the task
activation data by thresholded correlation of the magni-
tude images (TE 5 31.5 ms) with a stimulus regressor (P
< 0.05 Bonferroni corrected, both positive and negative
activations). This was done after running the preprocess-
ing [instrumental/physiological noise correction included
only noise source (1) to avoid bias in the comparison of
different correction procedures employed for noise source
(2)]. ROIGM was identified [see also Bianciardi et al., 2009]
from thresholded correlation with the whole brain signal
(P < 0.05 Bonferroni corrected). For the noise source esti-
mation, a set of nested design matrices [see Bianciardi
et al., 2009 for details] was used including noise sources
(1)–(5). The variance explained by each noise source was
computed at the voxel level as the difference between the
coefficients of determination adjusted by the degrees of
freedom of two consecutive regression models, multiplied
by 100. The stimulus regressor was included as an addi-
tional source of variance for the stimulus session only.

After physiological and instrumental noise correction,
further processing of magnitude and phase fMRI data
included: slice-timing (by FMRIB Software Library, FSL4.1,
Oxford, UK), motion correction (by custom routines imple-
mented in IDL 8.1 software, Exelis Visual Information Sol-
utions, Boulder, CO), and co-registration between different
volumes (FSL4.1). Finally, fluctuations in signal magnitude
were converted to % signal changes relative to their time
average (M/M0, %) by dividing the signal at each time
point by the mean signal across time. Fractional frequency
shifts (Dx/x0, ppm) were computed from phase signal
changes (DU 5 Ut 2 Ut0) according to: Dx/x0 5 (xt 2

xt0)/x0 5 2DU/(2p�cTB0TE) (cTB0 5 298 MHz; the minus
sign before DU was used to restore the proper sign con-
vention for frequency shifts on our MRI system).

For Experiment 2 only, susceptibility values Dv (Dv 5 vt

2 vt0) were computed for each voxel and time-point from

Dx/x0 by means of Fourier-based computation by a
masked de-convolution filter [Shmueli et al., 2009; Whar-
ton et al., 2010], according to:

Dv5FFT21½FðkÞ � FFTðDx=x0Þ�

FðkÞ51=ð1=32k2
z=k2Þ

(
(1)

F(k) was set equal to 0 if j1/3 2 k2
z/k2j< 0.3. Equation

(1) was applied to data of Experiment 2 only (data volume
rotation was not required because of coronal slice orienta-
tion). Importantly, the de-convolution filter is a linear ker-
nel, because both the direct and inverse Fourier transforms
are linear functions; this means that the computed suscep-
tibility changes (Dv) on the left side of Eq. (1) represent
the difference between the susceptibility at a certain time
point (vt) and the susceptibility of the first time-point (vt0)
of the time-course.

For a voxel containing a combination of capillaries, ven-
ules, and veins, the susceptibility difference during activation
and baseline (DvA-B) is related to both blood fractional oxy-
gen saturation (Y, range 0–1) and blood volume (CBV)
changes according to:

DvA�B5ðDvoxy�deoxyHctÞ � ð12YAÞ � DCBVA�B2DYA�B

� CBVB (2)

with Dvoxy-deoxy the susceptibility difference between fully
oxygenated and fully deoxygenated hemoglobin (0.18 ppm
was employed, Weisskoff and Kiihne, 1992), Hct the he-
matocrit value (0.4 was used, Guyton and Hall, 2000), and
the subscripts A and B representing the active and base-
line states respectively.

Stimulus-related activity maps of M/M0 and phase sig-
nals (or frequency shifts Dx/x0 and for Experiment 2 only
susceptibility changes Dv) during stimulation were
obtained by linear regression (Analysis of Functional
Neuro Images (AFNI) tool, NIH, Bethesda, MD) of each
voxel signal with a stimulus regressor (statistical thresh-
old: P < 0.05 Bonferroni corrected). The stimulus regressor
resulted from the convolution of stimulus functions (based
on the timing of stimulation events) with the Statistical
Parametric Mapping (SPM, London, UK) standard hemo-
dynamic response function. M/M0 and phase spontaneous
activity maps at rest were generated by computing the cor-
relation of the average time series across voxels of the
magnitude stimulus-related activity map with the signal in
each voxel, after temporal low-pass filtering at fC 5 0.07
Hz (P < 0.05 Bonferroni corrected). The degrees of free-
dom were corrected for the number of noise regressors
included in the preprocessing (stimulus and resting data),
and for low-pass filtering (resting data only).

For each TE and voxel, the amplitude of magnitude
(AmplitudeM/M0) and phase (AmplitudeDU) signal fluctua-
tions was computed as the signal standard deviation over
time. The amplitudes of magnitude and phase signal
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fluctuations were fitted linearly with TE, according respec-
tively to: AmplitudeM/M0 (%) ffi 2DR2* TE 1 Amplitu-
deM/M0 (TE 5 0), and AmplitudeDU 5 22p�cTB0 Dx/x0 TE
1 AmplitudeDU (TE 5 0) (DR2* is the transverse relaxation
rate change).

Estimation of Changes in Fractional Oxygen

Saturation in Large Veins

For Experiment 1, a voxel in the sagittal sinus was iden-
tified (see for example Figure 5B, blue arrow) by inspec-
tion of the high-resolution GRE image. The average signal
change in M/M0 (<DMA-B/M0>) and Dx/x0 (<DxA-B/
x0>) during stimulation (ON periods) with respect to
baseline (OFF stimulation periods) was calculated.

Assuming a cylindrical vessel and no partial volume
effects, the average change in fractional oxygen saturation
during stimulation with respect to rest (<DYA-B>) was
calculated from <Dx/x0> as follows [Ogawa et al., 1993]:

< D YA�B> ¼ 1
1
3 � cos2u
� � �< D x A2B= x 0>

D voxy�deoxy �Hct
(3)

with: h the angle between the vessel axis and B0, Dvoxy-

deoxy and Hct as in Eq. (2). Equation (3) assuming a cylin-
drical model was used only for large vessels and only for
data of Experiment 1.

To overcome frequency shifts dependence on vessel ori-
entation, we also computed changes in fractional oxygen
saturation from susceptibility changes [as obtained from
Eq. (1)] in Experiment 2 which provided extended brain
coverage in the z-direction. The average signal change in
Dv (<DvA-B>) during stimulation with respect to baseline
was calculated in large vessels; assuming DCBV 5 0,
CBVB 5 1 in Eq. (2), <DYA-B> was then computed from
<DvA-B> according to:

< D YA�B> ¼ � < D vA2B>

D voxy�deoxy �Hct
(4)

RESULTS

Optimization of fMRI Phase Image Preprocessing

During calculation of the phase, each preprocessing step
removed a substantial amount of temporal signal instabil-
ity attributed to instrumental and physiological noise. As
seen from comparing Figure 1B with A, after subtraction
of the first phase image of the time-series, voxel-by-voxel
unwrapping over time and removal of linear drift over
time, phase wraps over space and over time and very
slow fluctuations are removed: note that the dynamic
range of phase variation across one slice is decreased by
an order of magnitude. Nevertheless, low frequency

spatial variation of the phase remains, as judged from the
amplitude and time course of the spatial polynomial fit
(Fig. 1C, left and right panels respectively). This high tem-
poral frequency variation follows the respiratory cycle
(shown in Fig. 1C right panel, blue). After subtraction of
spatially fitted polynomials, the resulting phase image is
much more homogeneous (Fig. 1D, left panel), and the
time-course has a lower content of high temporal fre-
quency fluctuation (Fig. 1D, right panel, black). The
remaining phase variation resembles that of the magnitude
time-course (Fig. 1D, right panel, magenta) as well as the
stimulus regressor (Fig. 1D, right panel, red).

Between 45 and 50% of the variance of the Unoise-
regressor was explained by drifts over time and by the re-
spiratory cycle (Table I). Importantly, the stimulus regres-
sor (block-design session only) did not explain a
significant portion of variance of the Unoise-regressor
(<0.24%).

The relative contribution of various noise sources and
the stimulus regressor in phase and magnitude data in
ROIVC is shown in Figure 2. Similar results were obtained
for ROIGM (results not shown). The Unoise-regressor
explained much more (paired t-test, P < 0.002 for both
conditions) variance in phase data (> 64.1%) than the RET-
ROICOR regressors (< 20.2%), and also higher variance in
magnitude data (P < 0.05 for the stimulus condition, and
P < 0.002 at rest). Therefore, for subsequent analysis, we
employed the Unoise-regressor to analyze phase and mag-
nitude fMRI signal fluctuations.

On average across subjects (6 s.e.), the voxel-by-voxel
drift contributions as a fraction of total image intensity
were 2.1 6 0.2% and 1.9 6 0.1% in magnitude data, on av-
erage across voxels of ROIVC and ROIGM respectively;
drifts produced voxel-by-voxel phase signal fluctuations of
0.10 6 0.02 radians in both ROIVC and ROIGM.

BOLD Activity in Magnitude and Phase Signals

To evaluate whether the correction of physiological
noise including the Unoise-regressor increased the sensitiv-
ity of phase images to BOLD signal changes, we calculated
the percentage of commonly activated voxels in phase and
magnitude images at several processing stages. The ration-
ale was that phase and magnitude images should show ac-
tivity in roughly the same areas, and little overlap would
point to the presence of confounding signals. Without any
correction, only few voxels appeared in phase activation
maps (see Fig. 3A, for instance during visual task, subjects
1–2), and large areas of spurious correlation were some-
times seen during rest (see Fig. 3A, subject 1). Correction
with only the RETROICOR respiratory regressors reduced
phase activity to a few isolated spots (Fig. 3B). In contrast,
when using the Unoise-regressor, phase activity maps
more closely resembled the magnitude activity maps
(Fig. 3C). This improved noise filtering with the Unoise-
regressor is reflected in the significantly increased
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Figure 1.

Importance of phase (U) preprocessing to remove noise instabil-

ity. Shown for each of the preprocessing steps are: left panel)

the phase image acquired at a specific single time-point (eighth

TR, in this example) during visual stimulation for an example

data-set; right panel) an example time-course (black curve)

extracted from the voxel indicated by the red arrow in the top

left panel. Preprocessing steps: (A) raw phase data obtained af-

ter image reconstruction; (B) phase data after subtraction of the

first phase image of the time-series, voxel-by-voxel unwrapping,

and removal of linear drift over time; (C) spatial polynomials

(sixth model order) fitted on a slice-by-slice basis to the phase

image shown in (B): this fit accounts for background spatial low-

frequency phase variation mostly due to respiration as shown in

(C), right panel (black: resulting phase time-course from spatial

polynomial fitting 5 Unoise-regressor; blue: respiratory trace

sampled at the slice acquisition timing); in (C) right panel, we

also show a zoomed view (60 s only) of the Unoise-regressor

and of the respiratory trace; (D) phase image obtained after

subtraction of spatially fitted polynomials shown in (C) from

phase image shown in (B). In (D), right panel, black: phase time-

course; magenta: magnitude (M/M0) time-course in the same

voxel; red: stimulus regressor (arbitrary units and offset). [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Figure 2.

The contribution of each source of signal fluctuation varies

between phase and magnitude data, and strongly depends on

noise modeling. The pie charts show the fMRI data variance

explained [%, mean (standard error) across six subjects of aver-

aged values across voxels in ROIVC] by different noise sources

(see legend). We employed as regressor for effects related to

the phase of respiratory cycle: (A) Unoise-regressor; (B) four

RETROICOR respiratory regressors. Note the much larger

amount of variance explained by the Unoise-regressor in phase

data than in magnitude data, and its larger contribution to the

data, compared to that of RETROICOR regressors. Note that

variance due to drifts over time is accounted before further

noise regressor use; therefore, the fraction of the variance

explained by drifts over time is identical when using different

noise regression techniques. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Figure 3.

The removal of background low-frequency phase (U) variation

increases the sensitivity to BOLD signal changes in phase images

and enables the visualization of phase activity maps highly co-local-

ized to magnitude (M/M0) activity maps. Magnitude and phase ac-

tivity maps during visual task (P < 0.05 Bonferroni corrected) and

at rest (P < 0.005 Bonferroni corrected, for display purposes

only) for two subjects (two slices shown, red/green 5 positive/

negative activity) obtained: (A) without and (B) and (C) with

physiological noise correction (temporal drifts were removed in

(A–C). The same noise regressors were employed in (B) and (C),

with the following exception: the effects related to the phase of

respiratory cycle were modeled by (B) four RETROICOR respira-

tory regressors, and (C) a single Unoise-regressor (derived from

spatial polynomial fitting of phase images, polynomial order 5 4).

In (D), we show the percentage (mean 6 standard error across

subjects) of overlapping voxels between magnitude and phase ac-

tivity maps relative to the number of voxels in magnitude activity

maps (P < 0.05 Bonferroni corrected, for both conditions) with

and without physiological noise correction (see legend). In 1,

three to six data from eight subjects were pooled, in 2 only six

subjects were included because of missing physiological recordings

for two subjects. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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(P< 1025) overlap in activity between magnitude and
phase images (Fig. 3D). The order of polynomial spatial
fitting (used to derive the Unoise-regressor) did not signifi-
cantly affect overlap, and we used fourth order polyno-
mials for subsequent analysis. The Unoise-regressor
worked well also for the two data-sets acquired without
performing real-time shimming (the overlap in activity
between magnitude and phase images was 22 and 36%
during stimulation, and 31 and 43% at rest, for the two
subjects, respectively). A notable feature in Figure 3A–C is
the presence of both positive and negative correlations in
magnitude and phase images. For the phase images, these

are expected based on the dipolar nature of field changes
associated with point-source susceptibility changes; nega-
tive magnitude correlations may result from neuronal inhi-
bition or an imbalance between blood volume and blood
flow effects.

After physiological noise correction with inclusion of
Unoise-regressor, similar time-courses were observed for
phase and magnitude signals. For the task data both
strongly resembled the stimulation paradigm, suggesting
they both primarily reflect BOLD activity (Fig. 4A). The
absolute correlation value between magnitude and phase
time-courses (averaged across voxels, and then average 6

Figure 4.

BOLD origin of phase (U) and magnitude (M/M0) signal changes.

(A) Averaged phase (black) and magnitude (magenta) time

courses in common positive and negative magnitude and phase

activity maps (echo time, TE 5 31.5 ms, P < 0.05 Bonferroni

corrected), for one subject during visual task and at rest (before

averaging across voxels, timeseries in negative activity maps

were multiplied by 21). The high temporal correlation between

phase and magnitude time-courses indicates the same BOLD or-

igin of phase and magnitude signal changes. For each condition,

we plot respectively in (B) and (C) the amplitude of magnitude

and phase signal fluctuations versus TE (average 6 standard

error across subjects) and a linear fit to each data-set. For each

subject, the amplitude of signal fluctuations was measured as the

standard deviation of the average time-course across voxels per-

taining to both magnitude and phase activity maps. The increase

in amplitude of signal fluctuations with TE was very similar

between magnitude and phase data (the correlation between the

two was 0.94 6 0.03 and 0.99 6 0.00 for the visual task and

rest data, respectively, mean 6 standard error across eight sub-

jects). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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s.e. across subjects, TE 5 31.5 ms) was 0.52 6 0.02 and
0.42 6 0.01 during visual task and at rest, respectively, P
< 1028 (only time-courses in common positive and nega-
tive magnitude and phase activity maps were considered,
P < 0.05 Bonferroni corrected).

As expected for a BOLD dominated contrast mechanism,
fractional magnitude and phase changes increased approx-
imately linearly with TE (Fig. 4B and C). The slope of a
linear fit of the amplitude of M/M0 signal with TEs (aver-
age 6 s.e. across subjects) DR�2 of 20.51 6 0.05 Hz and
20.27 6 0.02 Hz, yielded respectively, during stimulation
and rest.

Estimation of Changes in Fractional Oxygenation

from Frequency Shifts in the Sagittal Sinus

For Experiment 1, we inspected more closely Dx/x0

and M/M0 during stimulation in the sagittal sinus (Figure
5B, blue arrow, two representative subjects). The strong
anti-correlation (mean r-value 6 standard error across
eight subjects 5 20.63 6 0.07, P < 10216) between the
Dx/x0 and M/M0 time-courses (Fig. 5E) confirmed the
BOLD origin of Dx/x0 signal fluctuations in the sagittal
sinus. In the sagittal sinus, <DxA-B/x0> was (21.6 6 0.3)
ppb (mean 6 standard error across eight subjects); <DYA-

B> computed using Eq. (3) (h 5 (14 6 3)�, mean 6

standard error across subjects) was 0.040 6 0.009 (mean 6

standard error across eight subjects); for each subject, h
was measured from the data accounting for the actual
oblique slice rotation angle.

Quantitative BOLD Susceptibility Changes

Analysis of the data obtained in Experiment 2 revealed
widespread susceptibility changes (Dv) for all the subjects
(see, in Figure 6A, two representative subjects, TE 5 31.5
ms). The percentage (mean 6 standard error across sub-
jects) of overlapping voxels between Dv and M/M0 activity
maps relative to the number of voxels in M/M0 activity
maps was 25.1 6 2.5%; the percentage of overlapping vox-
els between Dx/x0 and M/M0 was 35.8 6 2.6%. The
observed quantitative Dv changes in brain (containing tis-
sue and vessels) are directly related to blood fractional ox-
ygen saturation and blood volume changes and overcome
non local effects and the geometry dependence of Dx/x0

signals.
For instance, for a large vein with h 5 80� (indicated by

the blue arrow, in Figure 6A, for subject 2) positive intra-
vascular effects and negative extra-vascular effects are
present in Dx/x0 signals, in agreement with the expected
dipolar fields around areas with susceptibility shifts. After
deconvolution according to Eq. (1), this dipolar activity

Figure 5.

BOLD changes in magnitude (M/M0) and frequency shifts (Dx/

x0) signals in the sagittal sinus. For two subject participating in

Experiment 1: (A) M/M0, and (B) Dx/x0 activity maps (red/

green 5 positive/negative correlation with stimulus regressor, P

< 0.05 Bonferroni corrected) overlaid on a magnitude EPI

image; (C) magnitude EPI image; (D) high-resolution gradient-

recalled echo image; (E) Dx/x0 and M/M0 time-courses in the

sagittal sinus (the sign of Dx/x0 was inverted for display pur-

poses only). The blue arrow indicates the location of the sagittal

sinus. In subject 1 and 2, <DMA-B/M0> was 5 10.5 and 11.0%;

<DxA-B/x0> was 5 22.4 and 22.6 ppb, yielding a <DYA-B> of

0.048 and 0.054, respectively.
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Figure 6.

Quantitative BOLD susceptibility changes. (A) M/M0, Dx/x0,

and Dv activity maps during visual task (P < 0.05 Bonferroni

corrected) for two subjects participating in Experiment 2 (three

slices shown, red/green 5 positive/negative activity) overlaid on

a magnitude EPI image (showed without overlay on the fourth

row). The blue arrow indicates the location of large vessels

scrutinized in (B). (B) M/M0 (green solid line) and Dv (blue solid

line) time-courses extracted from large vessels shown in (A)

[sagittal sinus for subject 1; large vein for subject 2; the sign of

Dv was inverted for display purposes only; Dv was computed

using Eq. (1)]. (C) 	DMA-B/M0
 in visual cortex versus <DYA-

B> in the sagittal sinus across subjects (solid line 5 linear fit).

(D) <DvA-B> and <DMA-B/M0> signal changes (average differ-

ence during stimulation with respect to baseline) versus average

baseline magnitude values <M0> (the sign of <Dv> was

inverted for display purposes only; only voxels showing signifi-

cant positive M/M0 and negative Dv signal changes were consid-

ered, P < 0.05 Bonferroni corrected). Results for subject 1 are

displayed. Similar results were obtained for the other subjects.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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pattern in Dx/x0 signals reduces to negative intravascular
only effects in Dv signals. This intravascular decrease in v
signals is caused by increased blood fractional oxygen sat-
uration. The effects for a large vein (sagittal sinus)
oriented parallel to B0 (measured h 5 0�) are shown in
Figure 6A, subject 1. M/M0 and Dv [computed using
Eq. (1)] time courses extracted from these two veins (sub-
ject 1 and 2, respectively) displayed a significant negative
correlation (P < 10231, Figure 6B), as expected for
increases in blood fractional oxygen saturation. In these
two veins (subject 1 and 2, respectively), the increase in
fractional oxygen saturation <DYA-B> was 0.042 and 0.015,
as computed from Eq. (4) (calculated values for <DvA-B>
were 23.0 and 21.1 ppb respectively). Corresponding val-
ues for <DMA-B/M0> were 5.7 and 6.7%, respectively. At
the group level, in the sagittal sinus, <DYA-B> computed
using Eq. (4) was 0.048 6 0.009 and <DvA-B> was (23.5 6

0.6) ppb (mean 6 standard error across six subjects).
The intersubject variability in <DYA-B> in the sagittal
sinus correlated (P < 0.05, see Figure 6C) with the inter-
subject variability in magnitude signal changes (	DMA-B/
M0
) in the visual cortex (for each subject, 	DMA-B/
M0
 was computed averaging <DMA-B/M0> across vox-
els showing positive correlation of M/M0 signal changes
with the stimulus regressor-P < 0.05 Bonferroni corrected).

Susceptibility changes were not confined only to the
largest vessels, but also appeared to involve the cortex,
probably because of BOLD effects in oriented intracortical
and pial veins (Fig. 6A). Interestingly, in the visual cortex,
the highest absolute <DvA-B> and <DMA-B/M0> occurred
for low values of M0 (Fig. 6D). This probably relates to
higher blood volume fractions in these regions, because
blood T�2 is shorter than tissue T�2 and higher blood vol-
ume fractions result in lower M0. For instance, according
to Eq. (2), a <DvA-B> 5 23.6 ppb is expected for a large
vein (for instance a pial vein or a sinus) with YA 5 0.65,
DYA-B 5 0.05, CBVB 5 1, DCBVA-B 5 0, while a <DvA-B>
5 20.18 ppb is expected for few intracortical veins con-
tained in the same voxel with YA 5 0.75, DYA-B 5 0.10,
CBVB 5 0.05, DCBVA-B 5 0.01.

DISCUSSION

In this study we explored the feasibility to use phase sig-
nals for the detection of BOLD activity and quantify associ-
ated changes in tissue susceptibility related to changes in
blood fractional oxygen saturation and in blood volume.

Optimization of fMRI U Image Processing

BOLD susceptibility changes in response to activation can
be extracted from phase signals by removing confounding
effects due to instrumental and physiological sources, which
so far have limited effective use of phase signals.

We found that instrumental and physiological noise rep-
resented a major source of signal variance in phase signals

(about 94% during stimulation), compared to the contribu-
tion of BOLD signal fluctuations (about 1%). In contrast, in
magnitude data, the contribution of noise sources (var-
iance explained of about 24%) was comparable to that of
BOLD signal changes (25% variance explained). This is in
line with previous work [Hagberg et al., 2012] showing
that noise from physiological and instrumental sources
contributes significantly more to the phase than to the
magnitude signal instability. Our results also indicate the
need of optimized strategies to disentangle tiny BOLD
contributions from large signal fluctuations due to noise.

Our optimized preprocessing of phase data was based
on a time-point by time-point removal of spatial low-
frequency variation, estimated from phase images with a
spatial polynomial function. The spatial polynomial fit
accounted mainly for slow signal fluctuations over time
(signal drifts) and for signal changes related to the phase
of the respiratory cycle (Fig. 1, and Table I). Our slice-by-
slice approach complements the prospective noise correc-
tion performed by real-time shimming [van Gelderen
et al., 2007], which also employs polynomial models of
phase variation but on average across the whole brain.

Here, we demonstrated that the MRI signal to noise ra-
tio is adequate to fit low-spatial-frequency phase variation
by a spatial polynomial function to each time-point of
phase EPI data. We also demonstrated that the resulting
time-course obtained from this fit can be employed on a
voxel-by-voxel basis as a noise regressor (Unoise-regressor)
both for phase and for magnitude fMRI data. The effec-
tiveness of the Unoise-regressor as a regressor for magni-
tude data does not depend on the sign of the correlation
between phase and magnitude signal changes (the sign is
accounted for in the regression). We found (Fig. 2) that the
Unoise-regressor accounted better (>64% of the variance)
for the spatially varying phase effects of respiration in the
brain than regressors (<21% of the variance) derived from
respiratory recordings [RETROICOR respiratory regres-
sors, Glover et al., 2000]. Its performance was favorable
compared to that of the RETROICOR respiratory regres-
sors even for magnitude images. Previous work [Petridou
et al., 2009] has shown that although RETROICOR regres-
sors accounted for large-scale effects induced by respira-
tion in phase signals, they incompletely accounted for
physiological noise in phase signals in the gray matter for
echo time greater than or equal to 30 ms. The apparently
superior performance of the Unoise-regressor may be
related to the fact that it treats time-points separately, and
thus more generally accommodates a broad variety of
noise sources irrespective of their temporal dynamics,
including sources that are not cyclic in nature (like respira-
tory and cardiac cycles). RETROICOR regressors account
only for effects related to the phase of respiratory (or car-
diac) effects. The ability of RETROICOR regressors to cap-
ture such sources is dependent on the model order used,
and may be rather limited with the second order model
employed in the standard implementation of RETROICOR
[Glover et al., 2000] and in the current study. The
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proposed processing method based on the use of Unoise-
regressor was also effective in reducing phase noise and
unveiling BOLD phase changes for the two data-sets
acquired without real-time B0 shimming. We therefore
believe that real-time B0 modulation may not be necessary
to detect BOLD phase variations; rather, such variations
may be at least partially recovered through the proposed
use of Unoise-regressor or by any other effective process-
ing method. Finally, we found that Unoise-regressor does
not remove stimulus related variance, since the stimulus
regressor explained a negligible portion of its variance (Ta-
ble I). Together, these results demonstrate that the pro-
posed image-based pre-processing procedure of phase
signals allows one to disentangle instrumental and physio-
logical noise from signals of interest and is advantageous
with respect to previously employed methods based on
external physiological monitoring.

The results of this work obtained at 7 T may also trans-
late to lower field strength. Although the BOLD related
phase change will be proportionally smaller at lower field
strength, so will be the major (nonthermal) noise sources;
in addition, the thermal noise contribution may be mini-
mized by increasing the voxel size [Triantafyllou et al.,
2005]. Thus, depending on the scan conditions, the ability
to extract BOLD related phase and frequency changes may
not be substantially different at 3 T or even 1.5 T. Never-
theless, some sensitivity loss may occur at low field when
considering the partial volume effects that occur when
increasing the voxel size.

BOLD Origin of Magnitude and

Phase Signal Fluctuations

After noise correction including the subtraction of spa-
tially fitted polynomials, we obtained phase activity maps
that substantially (�40%) overlapped magnitude maps and
involved a substantial area of the brain. This extends pre-
vious work that showed phase signal changes confined
mainly to large sinuses and largest pial veins [Menon,
2002; Nencka and Rowe, 2007]. The distinct spatial distri-
bution of activity in magnitude and phase data may reflect
the different contribution arising from “randomly” distrib-
uted (e.g., capillary networks) versus oriented (e.g., large
veins, pial, and intracortical veins) vessels to magnitude
and phase signal changes, respectively.

Similar time-courses were observed for phase and mag-
nitude signals, indicating the same BOLD origin of phase
and magnitude signals changes, namely variation in both
blood volume and fractional oxygen saturation. Tempera-
ture variations and direct effects of neuronal currents on
the B0 field are therefore unlikely to explain the observed
phase signal changes. Moreover, from multiecho magni-
tude and phase data, we estimated a change in transverse
relaxation rate R�2 of 20.51 and 20.27 Hz associated to a
frequency shift Dx/x0 of 0.25 and 0.18 ppb during stimula-
tion and at rest respectively. These values are of the same

order of magnitude as those reported in the visual cortex
during stimulation in previous work [Zhao et al., 2007] on
animals at 9.4 T (DR�2 of 20.87 Hz, and a slope—i.e. angu-
lar frequency—of 1.86 radians/s for phase changes with
respect to TE, which corresponds to 0.74 ppb).

Finally, our work demonstrated that BOLD changes in
phase signals can be detected with comparable sensitivity to
those in magnitude signals. This is visible from Figure 4A)
(both M/M0 and DU are within the 65% range around the
baseline value), and also comparing (Figure 4B and C) the
absolute value of DR�2 (i.e. 0.51 and 0.27 Hz during stimula-
tion and rest, respectively) with the change in angular fre-
quency in the same conditions (equal to 2p�cTB0�Dx/x0, that
is 0.47 and 0.34 radians/s, respectively).

Quantitative BOLD Susceptibility Changes

In previous work, information from fMRI phase signals
was used to improve the specificity of BOLD magnitude
signal changes, for example to suppress the signal from
large vasculature [Menon, 2002], or to increase the sensi-
tivity of BOLD signal changes by performing complex
based fMRI analysis [Calhoun et al., 2002; Rowe and
Logan, 2004; Lee et al., 2007].

In this work, we investigated the feasibility of computing
dynamic BOLD susceptibility changes from phase signal
fluctuations; we also investigated the feasibility of estimat-
ing quantitative information from BOLD frequency shift
and susceptibility maps, namely changes in the blood frac-
tional oxygen saturation in large vessels during stimulation.

We found significant BOLD susceptibility changes Dv
not only inside large vessels, but also in the parenchyma,
probably indicating the contribution of oriented pial and
intracortical veins. According to our calculations (see
Results section), changes in blood fractional oxygen satura-
tion and blood volume in intracortical and pial veins may
induce changes in susceptibility ranging from fractions of
a ppb to a few ppb. Our data (see also Figure 6B,C,D)
demonstrate that high field MRI has adequate sensitivity
to detect such small susceptibility variations.

In contrast, blood oxygenation and blood volume
changes in capillaries are not expected to be easily detecta-
ble in susceptibility images because of their pseudo-ran-
dom orientation. Interestingly, previous work [Lee et al.,
2010] on phase structural imaging in rats showed a detect-
able contrast due to intracortical veins; this was not the
case for the gray matter containing capillaries.

Computation of Dv has certain benefits compared to DU
and Dx/x0, since it overcomes their geometry dependence
and nonlocal effects. This means that the sign of the
observed quantitative Dv changes in tissue (for instance con-
taining oriented intracortical veins) may directly depend on
the counterbalancing effects of blood fractional oxygen satu-
ration and of blood volume changes (and not on the vessels
orientation with respect to B0). For example, negative Dv
changes in tissue may result from increased blood fractional

r BOLD Resonance Frequency Shifts at 7 Tesla r

r 2203 r



oxygen saturation in intracortical veins, this effect dominat-
ing the counterbalancing effect of increased blood volume
changes in the same vessels. Similarly, a shift of this balance
could result in positive Dv changes in tissue. Nevertheless,
this suggests that it may be difficult to separate the contribu-
tion of fractional oxygen saturation changes from that of
blood volume changes to the measured Dv changes in tis-
sue. Dv [Eq. (2)] is linearly related both to baseline values
and to changes in blood oxygenation and blood volume
(four unknown parameters); this is also true for magnitude
BOLD signal changes. Untangling these contributions may
require separate measurement of baseline blood volume
and baseline fractional oxygen saturation, some modeling of
the network geometry, and the combined use of magnitude
and phase information.

Estimation of Changes in Fractional

Oxygenation in Large Veins

In this work, we showed the feasibility of estimating
changes in the blood fractional oxygen saturation in large
vessels during stimulation. The obtained average change in
blood fractional oxygen saturation (<DYA-B>) in the sagit-
tal sinus and large veins of 0.02–0.05 is close to previous
findings obtained with PET imaging [Ito et al., 2005], which
report a change in the oxygen extraction fraction (equal to
minus the change in fractional oxygen saturation) during
motor task with respect to baseline ranging between 20.01
and 20.12, depending on the brain area. Previous MRI
work [Haacke et al., 1997] using gradient-recalled-echo
images and steady state conditions, reported in pial veins a
change of fractional oxygen saturation of 0.14 during finger
tapping with respect to baseline. Note that the change in
blood fractional oxygen saturation in the sagittal sinus and
large veins is expected to be smaller than that in the cortex
due to downstream dilution from the activation site
[Turner, 2002]. For vessels with their axis nearly parallel or
perpendicular to B0, the estimate of <DYA-B> from <DxA-

B/x0> is robust (<4% error) provided small estimation
errors (<10�) in the vessel orientation, but it becomes
increasingly dependent on the vessel orientation with
respect to B0 when it is close to the magic angle (54.74�).
Computation of susceptibility changes instead overcomes
the orientation dependence and local effects of <DxA-B/
x0>, though the measurement constrains the acquisition to
coronal/sagittal slices (or to a thick axial slab, with a good
z-coverage) and requires the use of procedures to compute
susceptibility from frequency shifts [Shmueli et al., 2009;
Wharton et al., 2010] that are not fully developed yet.

The method employed here to estimate the changes in
the blood fractional oxygen saturation from standard gra-
dient-echo EPI images complements previous work meas-
uring baseline values in large vessels by means of
gradient-recalled-echo structural images [Jain et al., 2010;
Fan et al., 2012]. It is also an improvement in terms of tem-
poral resolution with regard to previous work measuring

changes in blood fractional oxygen saturation in large ves-
sels by means of gradient-recalled-echo images under
steady state conditions [Haacke et al., 1997]. Nevertheless,
our estimation of blood fractional oxygen saturation is re-
stricted to large vessels “containing” the imaging voxel
(for instance the sagittal sinus), and therefore is limited by
the spatial resolution. The employed spatial resolution (2.5
mm isotropic) in this work is below the achievable resolu-
tion with cutting edge technology (around 1 mm in plane,
or slightly below), and future work with higher spatial re-
solution EPIs should investigate if this method of estimat-
ing blood fractional oxygen saturation changes can be
applied more locally (for example to pial veins).

CONCLUSIONS

Widespread BOLD-related phase changes, frequency
shifts and susceptibility changes could be detected at 7 T
with sensitivity comparable to that of magnitude signals
by the use of optimized preprocessing to remove
unwanted phase signal fluctuations. The measured suscep-
tibility changes do not seem to be confined to venous
sinuses, but rather indicate widespread involvement of
pial and intracortical veins. BOLD susceptibility changes
obtained from phase images are related to average quanti-
tative susceptibility changes due to variation in blood vol-
ume and fractional oxygen saturation, and might provide
complementary information to BOLD relaxation rate
changes obtained from magnitude images.

We also demonstrated the feasibility of estimating the
functional change in blood fractional oxygen saturation in
large veins during task performance by analyzing BOLD
frequency shift and susceptibility maps computed from
the phase signal in gradient-echo fMRI. With activation,
fractional oxygen saturation in the sagittal sinus and large
veins was found to increase by about 0.02–0.05, consistent
with estimates reported in literature.
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