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Abstract. The effective treatment for cerebral ischemia has 
not yet been established. Hepatocyte growth factor (HGF) 
is a potent pleiotropic cytokine that is involved in cell and 
tissue regeneration, including in the central nervous system. 
Studies have demonstrated that an exogenous administra-
tion of HGF protects brain tissue from ischemic damage. 
In response to binding to the receptor c‑Met, HGF activates 
the downstream signaling pathways (including the phospha-
tidylinositol 3-kinase/Akt, Ras/MAPK and signal transducer 
and activator of transcription pathways) which leads to various 
cellular responses involved in angiogenesis, glial scar forma-
tion, anti‑apoptosis and neurogenesis. The purpose of this 
review is to summarize the present understanding of the thera-
peutic potential of HGF in cerebral ischemia.
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1. Introduction

Cerebral ischemia causes an irreversible and neurodegenerative 
disorder that may lead to progressive dementia and cognitive 

deterioration. However, no effective treatment has been estab-
lished yet to prevent brain injury following ischemia.Hepatocyte 
growth factor (HGF), also referred to as Scatter factor, was first 
identified and purified from plasma and serum as a potent mitogen 
for hepatocytes in 1984 by Nakamura et al (1‑3). Subsequently, 
HGF was identified in several other organs, including the lungs, 
kidneys and heart, as well as in blood vessels (4). In the 1990s, 
the wide distribution of HGF was identified in the central neural 
system (CNS) (5,6). HGF is now a well‑known potent pleiotropic 
cytokine that is involved in mitogenesis, motogenesis, morpho-
genesis, angiogenesis and anti‑apoptosis in a variety of cells, 
and tissue regeneration in several organs (7‑9). HGF has been 
reported to improve the neurological sequelae by reducing the 
infarct volume following a stroke (10‑12). This suggested that 
HGF should be one of the most potent growth factors for treating 
brain ischemia. In this review, we primarily focus on the role of 
HGF as a potential therapy for ischemic brain damage and the 
possible mechanisms.

2. HGF and its receptor c‑Met

HGF was first identified as a mitogenic protein for rat 
hepatocytes in 1984 (13), and was thereafter purified from 
rat platelets, human plasma and rabbit plasma (14). In 1989, 
cDNA for human HGF was cloned and the primary structure 
of HGF was clarified, by which HGF was identified as a novel 
growth factor with unique structural characteristics (3). HGF 
is secreted as a single‑chain, inactive polypeptide by mesen-
chymal cells and is cleaved to its active extracellular form 
by a number of proteases. The active HGF is a heterodimer 
composed of a 69‑kDa α‑chain and a 34‑kDa β‑chain. The 
α‑chain contains an N‑terminal hairpin domain followed 
by four kringle domains, and the β‑chain contains a serine 
protease‑like domain with no enzymatic activity (3,15).

The proto‑oncogene product receptor tyrosine kinase 
c‑Met is the only known receptor for HGF. The human Met 
(HGF receptor) gene is located on chromosome 7q21‑q31. 
c‑Met is synthesized as a 170‑kDa glycosylated precursor 
protein that is cleaved into a 50‑kDa α‑chain and a 140‑kDa 
β‑chain that are linked by disulfide bonds (16).

In response to ligand (HGF) binding, c‑Met undergoes 
autophosphorylation on two tyrosine residues (Y1234 and 
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Y1235) within the activation loop of the tyrosine kinase 
domain, which regulate the intrinsic kinase activity of c‑Met. 
Phosphorylation of Y1349 and Y1356 near the C‑terminus of 
c‑Met forms a multifunctional signal transducer docking site 
(Y1349VHVX3Y1356VNV) that binds a number of substrates 
containing Src homology‑2 (SH2) domains, including growth 
factor receptor‑bound protein  2 (Grb2), Gab1, phosphati-
dylinositol 3‑kinase (PI3K), phospholipase C‑γ (PLC‑γ), Shp2 
and Scr (17,18). This leads to the activation of downstream 
signaling pathways including the PI3K/Akt, Ras/MAPK and 
signal transducer and activator of transcription (STAT) path-
ways (19‑21). Activation of the HGF/c‑Met signaling pathway 
has been shown to lead to various cellular responses including 
proliferation, angiogenesis, wound healing, tissue regeneration, 
scattering, motility, invasion and branching morphogenesis.

3. HGF as a potential therapy for cerebral ischemia

Angiogenesis. Angiogenesis was first described as a vital 
factor in tumor growth in 1971 (22) and then defined as the 
formation of new vessels sprouting from pre‑existing capil-
laries in the pathological or physiological processes in adult 
tissue (23). It may be highly regulated by the action of growth 
factors, proteolytic enzymes or other extracellular matrix 
factors that stimulate the growth of endothelial cells. With the 
increased interest in angiogenesis and more in‑depth research, 
it is considered that angiogenesis plays a significant role in 
minimizing tissue injury as the collateral blood flow supplies 
oxygen and energy substrate to the ischemic area. Therefore, 
the concept of therapeutic angiogenesis was proposed and 
became a new means of therapy, which is the clinical use 
of growth factors to enhance or promote the development of 
collateral blood vessels in ischemic tissue (24).

For a long time, attempts to alleviate ischemic cerebral 
injuries and ameliorate the prognosis have focused on ensuring 
or improving the survival of neurons, while ignoring the role of 
angiogenesis. However, the latter might be closely correlated 
with the survival of neurons following the ischemic insults. 
Krupinski et al (25) first reported that capillary density was 
increased in infarcted brain tissue of patients who had survived 
acute ischemic stroke for up to several weeks, indicating that 
increased angiogenesis is beneficial for longer survival of 
patients. Previous animal studies have revealed that inhibi-
tion of vascular endothelial cell proliferation promoted neural 
cell death, and that the application of proangiogenic regulator 
eased the ischemic injuries (26,27). Indeed, for treating limb 
ischemia and myocardial infarction, proangiogenic regulators 
became a new means of therapy. Angiogenesis should be a 
potent therapy for stroke patients through increasing the cere-
bral blood flow. Other studies also demonstrated that vascular 
endothelial growth factor (VEGF), a notable proangiogenic 
factor (28), increases vascular density, reduces brain damage 
and improves neurological deficits (29‑32), suggesting that 
angiogenic therapy may be helpful for ischemic brain injury. 

As a potent angiogenic molecule, HGF mediates 
angiogenesis primarily through direct actions on vascular 
endothelial cells. Studies have demonstrated that HGF and 
c‑Met are expressed and functional in vascular endothelial 
cells of various origins, including neuromicrovascular endo-
thelial cells (33). Shang et al observed that HGF significantly 

amplified the angiogenesis following middle cerebral artery 
occlusion (34). Date et al (35,36) also reported that HGF could 
prevent the learning and memory dysfunction induced by cere-
bral ischemia by protecting the endothelial cells against injury. 

The molecular mechanisms of the angiogenic activity of 
HGF may be strongly associated with the E-twenty-six (ETS) 
pathway, since the ETS family plays a significant role in 
regulating gene expression in response to the multiple develop-
mental and mitogenic signals (37,38). By activating the specific 
receptor, c‑Met, HGF also induces DNA synthesis and prolif-
eration of vascular endothelial cells through MAPK/ERK and 
STAT3 pathway activation (39,40). 

In addition to the proliferative effects, HGF also protects 
endothelial cells against apoptosis or cell death induced by 
various detrimental insults, including hypoxia and serum 
deprivation. However, the signal pathways that mediate the 
protective effects are not fully known. Ma et al (41) revealed 
that the MAPK/ERK and Akt pathway may mediate the 
HGF‑induced survival of endothelial cells. Other experiments 
indicate that HGF protects endothelial cells against hypoxic 
injury associated with inhibition of p38 MAPK and Bid/Bax 
as well as increased expression of Bcl‑2 or Bcl‑xl (42,43). 

It is known that matrix degradation and remodeling are 
indispensable in angiogenesis, and allow endothelial cell 
migration and invasion (44,45). HGF induces or upregulates 
the expression and synthesis of matrix metalloproteinases 
(MMPs) and urokinase‑type plasminogen activator by vascular 
endothelial cells, and accelerates endothelial cell invasion into 
the extracellular matrix during angiogenesis (46,47). HGF also 
stimulates dissociation and migration of vascular endothelial 
cells, which may occur through the modulating action of HGF 
on the vascular endothelial cadherin (48).

In addition, HGF regulates angiogenesis through inter-
acting with other well‑known angiogenic regulators. It has 
been shown that HGF induces VEGF expression at both 
the mRNA and protein levels, which might be regulated 
by MAKP, PI3K, PKC and Sp1, a modulator of the VEGF 
promoter (40,48). Further studies identified that essential tran-
scription factor ets‑1 was upregulated by HGF and contributed 
to HGF‑induced VEGF expression (38,49). HGF and VEGF 
play synergistic effects in promoting vascular endothelial cell 
survival with augmented expression of the anti‑apoptotic genes 
Bcl‑2 and A1 (48). Moreover, HGF is capable of downregu-
lating the expression of thrombospondin 1, which negatively 
regulates angiogenesis (50,51). 

Furthermore, compared with other angiogenic regulators 
including VEGF, HGF has noted advantages in promoting 
angiogenesis, as follows: a) it does not disrupt the blood brain 
barrier (BBB); b) it does not increase cerebral edema; c) it does 
not cause vascular inflammation; and d) it has anti‑thrombosis 
ability (35,36,52,53). VEGF is a major mediator of angiogen-
esis as well as being a strong vascular permeability factor and 
a notable stroke‑related pathogenic factor for the formation 
of brain edema (54‑56), which limits its therapeutic applica-
tions. HGF avoids these disadvantages. It is suggested that 
HGF‑mediated prevention of endothelial cell injury and 
maintenance of the tight junctional proteins in the endothelial 
cells may be a possible mechanism for the protective effect of 
HGF against the disruption of the BBB and the prevention of 
cerebral edema (36). 
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Anti‑apoptosis and neurogenetic effects. Since mature neurons 
cannot duplicate, it is essential to maintain their survival to 
improve the outcome of cerebral ischemia. The roles of excit-
atory amino acid receptor activation, calcium overload, nitric 
oxide and oxidative stress are well established in the pathogen-
esis of ischemic brain damage (57). Studies have reported that 
HGF notably decreases the infarct volume of ischemic brain 
tissue and protects neurons from death caused by N‑methyl-D-
aspartate excitotoxicity (11), and it also prevents neuron death 
by inhibition of apoptosis through the blockade of bax translo-
cation from the cytoplasm to the nucleus (58,59). In addition, 
HGF stimulates ERK1/2, PI3K/Akt and STAT3 activity in 
neurons, and then induces the transcription of neuroprotective 
genes, including bcl‑2 and Bcl‑xl, protecting neurons from 
apoptosis following ischemia (39,60‑62).

In recent years, there has been a growing interest in the 
therapeutic potential of stem cells. Stem cells are multipotent 
and self‑renewing cells, so it is believed that they may be 
beneficial to the outcome of cerebral stroke. There is evidence 
revealing that transplantation of neural stem cells (NSCs) or 
mesenchymal stem cells (MSCs) decreases the infarcted area 
and improves functional outcomes (63‑66). HGF promotes 
the proliferation, differentiation and migration of NSCs and 
MSCs (67‑69). However, the mechanisms involved are still not 
completely understood. It has been reported that HGF induces 
the activation of its downstream effectors ERK1/2, p38MAPK 
and PI3K/Akt, which contribute to the effects of modulating 
the migration, proliferation and differentiation of NSCs and 
MSCs, while the regulation is abrogated by specific inhibi-
tors (68‑72). 

Antifibrosis. Ischemia induces tissue damage to the CNS 
and activates astrocytes, leading to reactive gliosis, which 
causes glial scar formation (73). A glial scar presents as a 
rubbery, tenacious growth‑blocking membrane, which consists 
predominately of reactive astrocytes and chondroitin sulfate 
proteoglycans, including neurocan and phosphacan (74,75). 
Although studies indicate that glial scarring serves to repair 
the BBB, prevent an excessive inflammatory response and 
limit cellular degeneration following injury, it also has the 
disadvantage of inhibiting neuronal and axonal regeneration, 
causing failure in the structural and functional reconstruction 
of the CNS following injury (75‑79). Therefore, inhibiting glial 
scar formation is a critical issue for nerve regeneration and 
functional reconstruction.

As a multifunctional cytokine, it was suggested by 
Ha et al  (80) that HGF prevents pathological scar forma-
tion in vivo and in vitro. Another study revealed that HGF 
decreases glial scar formation and scar thickness of the brain 
pia mater following transient middle cerebral artery occlu-
sion, indicating that HGF is beneficial for ischemic injury 
due to its antifibrotic ability (34). A possible mechanism is 
that HGF markedly inhibits the proliferation and migration 
of astrocytes in the formation process of glial scarring by the 
sphingosine‑1-phosphate pathway, which is closely related to 
cell proliferation (81). 

Aside from the proliferation and activation of astrocytes, 
several other factors are also associated with the formation 
of glial scarring, including transforming growth factor‑β 
(TGF‑β) and extracellular matrix components. Previous 

studies suggest that HGF plays antifibrotic roles by regulating 
proteoglycan synthesis. When astrocytes are activated, four 
classes of proteoglycans are produced by astrocytes, which 
are closely related to glial scar formation (73,74,82). TGF‑β1 
is a potent fibrogenic protein that has been shown to signifi-
cantly increase the production of proteoglycans by astrocytes 
and cause severe astrogliosis (83,84). However, Jeong et al 
revealed that HGF completely blocked secretion of TGF‑β1 
from activated astrocytes (85). After binding to c‑Met, HGF 
upregulates the activity and protein expression of est‑1 (38). 
est‑1 has a DNA-binding domain and activates transcription 
of genes encoding uPA and various metalloproteases (e.g., 
MMP‑1 and MMP‑9) (86). Via the est‑1 pathway, HGF plays 
its role in decreasing glial scar formation. 

4. Challenges

The clinical use of HGF is quite limited at present for a number 
of reasons, including lack of effective administration methods 
and adverse effects. We will discuss these below. 

Administration methods. A notable breakthrough has been 
made in using HGF in the therapy for limb ischemia, which is 
at the clinical trial stage (87). However, the administration of 
HGF as a recombinant protein for CNS disorders is hindered 
by a number of issues, including the short serum half‑life and 
poor access to the CNS by the systemic route due to the pres-
ence of BBB. 

Gene therapy may solve the issue of degradation, but the 
safety and efficiency of the gene carrier must be ensured. 
Retroviruses are one of the widely used gene carriers, and 
can integrate the gene into the chromosomes of the target 
cells (88‑91). However, clinical use is limited due to the poten-
tial rise of a neoplasm with a retrovirus‑based vector (92).

Considering the safety of gene therapies, certain scientists 
have proposed a new solution: transferring the virus vector into 
the host cells (e.g., MSCs) and then transferring the cells into 
the injured organs (93‑95). As reported, MSCs have protective 
effects in cerebral ischemia (64,93). After being transfected 
with vector encoding HGF gene, increasing the expression 
of HGF, the protective effects are enhanced (85,96,97). This 
method also avoids the possible detriment of virus vector 
and decreases immunity reactions. However, this therapeutic 
method is still tested on animals and needs considerable 
research and effort for clinical practice.

Adverse effects of tumorigenesis. Previous studies have demon-
strated that HGF plays a role in tumorigenesis through its 
capability to promote angiogenesis and mitogenesis (98‑101). 
Therefore, if HGF were used to treat ischemic brain injury, the 
issue of how to decrease or eliminate the risk of tumorigenesis 
must be taken into consideration. This issue could possibly be 
solved by selecting the optimal concentration and time point 
of medication.

5. Conclusion

Overall, as a growth factor, HGF has therapeutic potential 
against cerebral ischemia. Binding to the receptor c‑Met, 
downstream signaling pathways are phosphorylated and 
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activated, including the PI3K/Akt, Ras/MAPK and STAT 
pathways, then HGF is capable of regulating angiogenesis, glial 
scar formation, neurogenesis and anti‑apoptosis, protecting the 
brain from ischemic insults. Although certain obstacles remain 
before clinical application of HGF can be achieved, we are of 
the opinion that through the deepening research these issues 
will be overcome, bringing benefit to patients with cerebral 
ischemia.
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