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Abstract

Matrix metalloproteinases (MMPs) are proteolytic enzymes belonging to the family of zinc-

dependent endopeptidases that are capable of degrading almost all the proteinaceous components 

of the extracellular matrix (ECM). It is known that MMPs play a role in a number of renal 

diseases, such as, various forms of glomerulonephritis and tubular diseases, including some of the 

inherited kidney diseases. In this regard, ECM accumulation is considered to be a hallmark 

morphologic finding of diabetic nephropathy, which not only is related to the excessive synthesis 

of matrix proteins, but also to their decreased degradation by the MMPs. In recent years, 

increasing evidence suggest that there is a good correlation between the activity or expression of 

MMPs and progression of renal disease in patients with diabetic nephropathy in humans and in 

various experimental animal models. In such a diabetic milieu, the expression of MMPs is 

modulated by high glucose, advanced glycation end products (AGEs), TGF-β, reactive oxygen 

species (ROS), transcription factors and some of the microRNAs. In this review, we focused on 

the structure and functions of MMPs, and their role in the pathogenesis of diabetic nephropathy.
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INTRODUCTION

Diabetic nephropathy (DN) is one of the severe forms of microangiopathies in patients with 

diabetes mellitus, and this reno-vascular complication is the most prevalent cause of end-

stage renal failure (ESRD) in the Western world. Only 20% of the diabetic patients with 

ESRD have a survival rate up to five years [1, 2]. A better understanding of the pathogenesis 

of DN is needed to facilitate the development of more effective and early therapeutic 
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strategies to prevent ominous pathologic changes in kidney, which if not dealt with at an 

early stage would have an irreversible outcome. In addition, there are several other risk 

factors which further contribute to the progression of DN with worsening outcome, and they 

include glomerular hypertension, hyperglycemia, proteinuria, hyperlipidemia and heredity 

[3–8]. Although, abundant research has been carried out over a period of three decades to 

delineate the pathogenesis of DN a well-defined underlying unifying mechanism has yet to 

be emerged.

Morphological changes in the kidney seen in patients with type 1 and 2 diabetes are quite 

similar and they are confined to all the three compartments of the kidney, i.e., glomerulus, 

tubulo-interstitium and intrarenal vasculature [9–11]. The classical changes are seen in the 

glomerular compartment, and they include glomerular hypertrophy, thickening of 

glomerular basement membrane (GBM) and mesangial expansion with the formation of 

Kimmelstiel-Wilson nodules [12–14]. The changes usually accompanied with glomerular 

lesions include tubulo-interstitium undergoing fibrosis while there is also arteriolar 

thickening and hyalinization in the vascular compartment of the kidney. Basically, there is 

an imbalance of extracellular matrix (ECM) synthesis and degradation, which most likely is 

responsible for accumulation for excessive matrices in various compartments of the kidney 

[13, 15]. Thus, the genesis of Kimmelstiel-Wilson lesion, a diagnostic feature of DN, is not 

only due to the excessive synthesis of ECM glycoproteins but also to a decreased 

degradation by matrix metallo-proteinases (MMP) [16]. In this regard, numerous studies 

have been carried out since the discovery of MMPs to address their intra-renal 

dysregulation, i.e., perturbation in their expression and activity, in the progression of DN. In 

this article, we review the structure and function of MMPs and their relevance in the 

pathogenesis of DN, while also focusing on the role of their interactive partners, i.e., Tissue 

Inhibitor of Metallo-Proteinases (TIMPs) in the progression of DN.

MATRIX METALLOPROTEINASES

Structure, Classification and Functions

In general, Matrix Metallo-proteinases (MMPs) include a Zn++ ion binding site that is 

essential for their zinc-dependent proteolytic activities. These proteinases constitute a much 

larger superfamily of zinc peptidases having topological similarities among its members or 

groups and they are globally known as “metzincins” [17]. Within the superfamily, there is a 

category of MMPs with more than 28 members and 6 subgroups. Overall their domain 

structure is comprised of a propeptide, Zn++ binding catalytic domain, four hemopexin-like 

domains, transmembrane domain and a cytoplasmic domain. Tridimensional structural 

analyses of the MMPs indicate that topologically they share the catalytic domain consisting 

of an orderly sequential arrangement of twisted five-stranded β-sheets and three α-helices. 

Among these include certain metzincins, such as, MMP-8, adamlysin II, astacin and 

bacterial alkaline protease [18]. Another characteristic of the metzincins include a highly 

conserved motif containing three histidines (HEXXHXXGXXH) that bind zinc at the 

catalytic site and a methionine turn following the active catalytic site [10]. This catalytic site 

motif has essential histidine (H), glutamic acid (E) and glycine (G) residues, while X is a 

variable amino acid residue [19, 20]. Based on this amino acid sequence of the catalytic 
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motifs, the family of metzincins has been further extended to include certain other proteases, 

such as, astacins, reprolysins (ADAMs) and serralysins, besides the MMPs, thus making the 

classification and functionalities of metzincins highly complex and at times confusing [21–

23]. Certainly, under the broad category of metzincins, the MMPs, a multigene family with 

shared domain structure, are believed to play an essential role in the breakdown of 

extracellular matrix (ECM) in order to maintain a proper balance in its synthesis and 

degradation [24]. This process of turnover is essential for morphogenesis, embryonic 

development, reproduction, remodeling of tissues under normal and pathologic states, the 

prototype of latter being neoplastic and inflammatory diseases [24, 25]. As indicated above 

that for the large part MMPs share a core structure made up of a prodomain, a catalytic 

domain, a hinge region and a hemopexin-like domain (Hpx); however, a few variations do 

exist. For instance, MMP2 (gelatinases A) and MMP9 (gelatinases B) have three repeats of a 

fibronectin type II-like motif in the metalloproteinase domain [26–28]. MMP7, MMP26 and 

MMP23 lack the linker peptide and the Hpx domain [29]. MMP-23 has a distinct cysteine-

rich domain and an IL-1 receptor-like domain following the metalloproteinase domain 

instead of the Hpx domain [30]. MT4-MMP (membrane-Type 4 matrix metalloproteinases) 

is endowed with unique hydrophobicity properties at its C-terminus that are akin to some of 

the GPIanchored proteins, such as human uPAR, NCAM120 and Thy-1 [31].

On the basis of substrate specificity and sequence homology, MMPs have been subclassified 

into six groups (see Table 1): Collagenases (MMP1, MMP8, MMP13 and MMP18) [32–35], 

Gelatinases (MMP2 and MMP9) [36, 37], Stromelysins (MMP3, MMP10 and MMP11) 

[38–40], Matrilysins (MMP7 and MMP26) [39, 41, 42], Membrane-type matrix 

metalloproteinases (MT-MMP14, -MMP15, -MMP16, -MMP17, -MMP24 and –MMP25) 

[43–49] and other MMPs (MMP12, MMP19, MMP20, MMP21, MMP23, MMP27 and 

MMP28) [25, 50–58]. Except for the MT-MMPs most of the MMPs are secreted out and 

have extracellular distribution; however, recent evidence suggest that MMP1, MMP2 and 

MMP11 also have intracellular expression where they may interact with cytosolic proteins 

to modulate various biological processes [59–61]. Whether cellular or extracellular or 

transmembrane localization it is now well accepted that MMPs regulate a variety of 

physiological and pathological processes, including embryonic development, tissue 

homeostasis, inflammatory, vascular and autoimmune disorders, carcinogenesis and 

fibrogenesis in various organ systems [26, 62–85].

Regulation of MMPs

Under physiological conditions, in order for MMPs to exert their full effect following 

transcriptional induction and translation and biochemical activation, they need to be 

expressed in a coordinated manner with a highly restricted spatiotemporal distribution, 

suggesting they do not target their cellular or extracellular substrates indiscriminately, 

although they can act synergistically to degrade a broad spectrum of ECM glycoproteins. 

Besides, cell and time specific transcriptional, translation and post-translation modulation of 

MMPs followed by secretion at specific target sites their enzymatic activities are also 

regulated by some of the known endogenous metalloproteinase inhibitors known as TIMPs 

while they may be other additional MMP inhibitors that are yet to be discovered. Normally, 

the activities of most of the matrixins are negligible or they have very low expression in 
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healthy intact tissues, and this general biologic characteristic may be related to the sharing of 

common cis-elements in the promoters regions of MMPs, meaning thereby that their 

expression is tightly controlled at the transcriptional level depending upon the biologic state 

of a given cell type. Furthermore the literature information indicate that a multitude of 

signaling intermediates are involved in the activation of transcription factors, such as, NF-

ΚB, Ap-1, AP-2, MAPK, STAT, SMAD and PEA3 in order for MMPs to exert their effects 

[29, 63, 86, 87]. In this regard, Wnt/β-catenin signaling controlling MMP7 and MMP9 

expression has been described in rodent animal models, and this regulatory mechanism 

among many others may be relevant to the pathobiology of kidney injury [88, 89]. 

Interestingly, among humans there are also genetic variations which influence the level of 

MMP gene expression that ultimately may dictate the progression of a given disease 

process. In fact, the relationship between some of the diseases and single nucleotide 

polymorphisms (SNPs) of MMPs’ promoters has been described. For instance, recently it 

has been shown that rs3025058 at position-1612 in MMP3 and rs2276109 at position −82 in 

MMP12 are associated with an increased susceptibility to cardiovascular disease [90]. In 

addition, Kure et al. demonstrated that the variants at the MMP3/MMP12 locus are 

associated with a reduced risk of diabetic nephropathy in patients with type 1 diabetes [91].

Although MMPs expression seems to be heavily modulated at the transcriptional level, a 

series of post-translation regulation mechanisms have also been identified in recent years. 

Miriam et al. reported that there are transcripts that harbor specific sequences in their 5′- or 

3′-untranslated regions (UTRs) of MMPs to which UTR-binding proteins can associate to 

regulate their corresponding mRNAs levels [92]. For instance, AU-rich elements present in 

3’-UTR of MMP1 and MMP9 heavily determine their mRNA stability and ultimately the 

biological effects [93, 94]. Rydziel et al. reported that cortisol modulates mRNA stability 

via AU-rich sequences of 3’-UTR region in MMP13 in osteoblasts [95].

An additional gene regulation of MMPs’ expression and subsequent activation of various 

signaling pathways and targeting other genes and organ system by microRNAs (miRNAs) 

has recently attracted the attention of many investigators. Zhihong Yang et al. found that the 

miR-127 inhibits the expression of MMP13 protein both by repressing the 3'-UTR activity 

and inhibiting MMP13/TGF-β signaling in human hepatocellular carcinoma [96]. Similarly, 

miR-133a was found to down-regulate MMP14 protein expression with decreased frequency 

of lung cancer metastasis. Likewise, Lin SY et al. [97] demonstrated that over-expression of 

miR-92a could repress the expression of RECK, a MMP inhibitor, by post-transcriptional 

regulation in H1299 cells.

Since the discovery of MMPs, the investigators over the last 2–3 decades have been 

exploring to develop inhibitors that could directly neutralize the activities of MMPs at the 

intra- or extra-cellular target sites, although several endogenous inhibitors of MMP, known 

as TIMPs, that are capable of modulating cellular homeostasis have been identified [98, 99]. 

The TIMPs family includes at least four 20 – 29 kDa secreted proteins (TIMP1 - 4) that 

exhibit specificities for different MMPs [26, 29]. Allison et al. found that TIMP1 mRNA 

expression is quite low in mouse kidney, while TIMP2 and TIMP3 mRNA are expressed at 

high levels, while TIMP4 is undetectable [100]. Interestingly, almost all the known MMPs 

can be inhibited by TIMP1, 2 and 3 [101]. However, recent studies show that although 
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TIMP1 is a poor inhibitor of MT1-MMP, MMP19 and ADAM17, it can be transformed to 

an active inhibitor of ADAM17 when substitution of threonine is made at residue 98 with 

leucine (T98L) [99, 102]. Additionally, TIMP4 is involved in suppressing the activity of 

MMP1, MMP2, MMP3, MMP7 and MMP9 [103]. Furthermore, besides having inhibitory 

effect on MMPs, the TIMPs are endowed with other biological activities, including cell 

growth, migration, invasion, antiangiogenesis, anti- and pro-apoptosis and synaptic plasticity 

[104–109]. TIMPs as a major MMPs inhibitor was considered increasing ECM 

accumulation and renal fibrosis as it can reduce the degradation of matrix proteins [110–

112]. However, Allison A et al. found that the degree of renal interstitial fibrosis did not 

diminish in TIMP1 deficiency mice [100]. Furthermore, TIMP3 prevented glomerular and 

tubulointerstitial from age-depended renal injury [113]. Recent study has also shown that 

aggravated renal damage in response to lack of TIMP3 but not TIMP2 in UUO model, 

which accompanyed by the increase expression of collagen type I/III and activites of 

capase-3 [114]. Microarray analysis suggested that significant difference gene expression in 

TIMP3−/− mice compared to TIMP2−/− mice after UUO. Moreover, TIMP3 is a pivotal 

negative modulator of renal TNFα which induced renal fibrosis and injury in UUO [113]. 

Conceivably, several other proteins also have inhibitory activity targeting the MMPs, such 

as, RECK, TFPI-2, PCPE and α2-Macroglobulin, however, still much more research is 

needed to characterize their biological properties and functions [115].

MMPs AND DIABETIC NEPHROPATHY

The spatial-temporal localization and delineation of functions of MMPs in the kidney is 

quite complex, and that to some extent may be related to a given MMP involved in a 

particular disease process and animal specie. Certainly, the balance of ECM synthesis and 

degradation/turnover is one of the most significant processes for maintaining the glomerular 

structural and functional integrity [116, 117]. The MMPs may affect ECM turnover via 

several different mechanisms. Abnormal MMP expression or activity will directly render 

into an altered ECM turnover, and such an abnormal matrix is likely to influence heavily the 

behavior of glomerular cells [118]. Besides the ECM degradation or turnover, MMP2 can 

modulate the biology of the glomerular mesangial cells upon exogenous reconstitution of 

active MMP2 to antisense MMP RNA-induced quiescent cells, and in doing so they rapidly 

reverted to a pro-inflammatory phenotype [119]. MMPs also can activate or release some of 

the growth factors, such as insulin like growth factors, tumor necrosis factor (TNF-α) and 

heparin-binding-epidermal growth factor, and such a modulation is associated with profound 

pathologic changes that adversely affect cellular homeostasis in various diseases [120–123]. 

During the past few years, extensive investigatory efforts have delineated the role of MMPs 

in a variety of kidney diseases, including acute kidney injury, diabetic nephropathy, tubulo-

interstitial fibrosis and various forms of glomerulonephritis [26]. The MMPs have long been 

identified as critical mediators of ECM degradation and turnover, but increasing evidence 

support that they in conjunction with TIMPs play an important role in the progression of 

diabetic nephropathy.

Xu et al. Page 5

Curr Med Chem. Author manuscript; available in PMC 2014 December 31.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The Expression of MMPs in Patients with Diabetic Nephropathy

Traditional thinking is that hyperglycemia down-regulates the expression and activity of 

MMPs in patients with diabetic nephropathy (DN), as a result there is a decreased ECM 

degradation and accumulation in the matrices leading to mesangial expansion with the 

evolution of Kimmelstiel-Wilson lesions. It is well established that high glucose ambience 

adversely affects ECM degradation or turnover and enzymatic activities of MMPs and 

TIMPs in patients with DN. Surprisingly, circulating TIMP1, TIMP2 and MMP2 have also 

been found to be decreased in patients with DN [124]. However, there are conflicting reports 

suggesting that MMP2, MMP9, MMP7, MMP8, MMP14 as well as TIMP1 are increased in 

the serum or urine from diabetic patients [125–128]. Similarly, there are variations in the 

renal tissue expression of MMP2 in the biopsy specimen of patients with DN. Sekiuchi et al. 

reported that MMP2 is weakly expressed in the glomerular capillary loops and Bowman's 

capsules along with TIMP2 in the mesangial area, suggesting that MMP-2 most likely is 

involved in the turnover of glomerular basement membrane [129]. Del Prete et al. 

demonstrated a dramatic decrease in MMP2 gene expression in glomeruli of patients with 

type 2 diabetes [130]. However, another study showed that MMP2 protein and related 

enzyme activity were up-regulated in kidneys of patients with diabetes, as assessed by 

Western blot analysis and ELISA methods [126]. Similarly, MMP7 mRNA expression was 

reduced in renal tissues from patients with DN compared with control [131], while by 

immuno- histochemical staining methods they were found to be up-regulated [89]. In 

addition, these unique changes in the MMP7 expression in renal tubular epithelia may be in 

some ways related to Wnt/β-catenin signaling in the kidney [89]. Furthermore, by in situ 

hybridization, a significantly down-regulated expression of MMP3 and TIMP1 mRNA in 

intrinsic glomerular cells and tubular epithelia was observed in patients with DN. Tubular 

expression was found to correlate with the extent of interstitial injury, while it was inversely 

proportional to the glomerular mesangial expansion [132]. MT5-MMP expression was 

detected only in the kidney by Western blot analyses and it was noted to be significantly 

increased in patients with DN [126]. Romanic et al. reported that MT5-MMP was highly 

expressed in epithelia of proximal and distal convoluted tubules in diabetic patients. 

Furthermore, the expression of MT5-MMP was associated with tubular atrophy, which 

incidentally worsens the progression of DN [126]. In another study MMP10 levels were 

reported to be high in diabetic patients and positively correlated with the degree of damage 

related to nephropathy in diabetic patients [133]. Taken together, MMPs and TIMPs 

expression in DN patients is somewhat variable, and their role in kidney pathology seems to 

be still very much confounding. But one can safely assume that the imbalance in MMP-

TIMP expression or activation could lead to abnormal ECM deposition which decidedly 

remains as one of the hallmark of DN.

Albuminuria or microalbuminuria as a clinical biomarker of DN is matter that has been a 

critical issue for several years [134, 135]. Numerous studies demonstrated a strong 

correlation between the MMPs expression and the degree of albuminuria or the severity of 

clinical symptoms. It has also been reported that urinary TIMP1 levels remarkably increase 

in diabetic patients, and they are associated with the severity of diffuse glomerulosclerosis 

and urinary N-acetyl-β-glucoaminidase (NAG) excretion [136]. Another study demonstrated 

that circulating MMP7 levels were up-regulated in the micro- as well as macro-albuminuric 
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groups and had negative correlation with glomerular filtration rate in patients with diabetes 

[137]. Interestingly, Sekiuchi et al. reported that MMP9 expression was concentrated in the 

stalk mesangial of the glomerulus in patients with DN, as delineated by the immuno-

histochemical studies, suggesting that MMP9 may play a critical role in the turnover of the 

mesangial matrix in DN [129]. In another recent study, Szu-Yuan Li et al. observed that 

MMP-9 was dramatically increased in the glomeruli of diabetic mice, and MMP-9 

deficiency attenuates diabetic nephropathy by modulation of podocyte functions and 

dedifferentiation. Moreover, they found, in diabetic patients, the upregulation of urinary 

MMP-9 concentrations occurred earlier than the onset of microalbuminuria. Collectively, 

these results suggest MMP-9 play a role in the development of diabetic nephropathy [138]. 

In addition, the presence of MMP9 in urine of DN patients was detected where they were 

seen as high molecular weight complexes that were significantly higher than healthy adults 

[125]. Moreover, a positive correlation has been well documented between the urinary 

excretion of MMP9 and the magnitude of albuminuria and renal lesions in patients with type 

2 diabetes mellitus [139, 140]. Ebihara et al. [139] discovered that the plasma MMP9 levels 

were elevated before the onset of albuminuria, and they were dramatically decreased 

following treatment with angiotensin-converting enzyme inhibitor in patients with type 2 

diabetes patients with high risk for development of diabetic nephropathy. In addition, a 

recent study has shown that elevated MMP9 levels in T2DM patients had strongest 

association with age, BMI, hyperglycaemia, blood pressure, HbA1c and progression of 

diabetes [127]. Furthermore, plasma concentration of MMP9 in diabetic patients has been 

significantly correlated with the aberrant shedding of podocytes in the urine, which is 

reduced by treating with Trandolapril [141]. These findings are in accord with other studies 

[125, 139, 140"], and the literature data suggest that urinary MMP9 may be a useful marker 

for diagnosing the degree of renal damage in early phases of DN. On the other hand, Toni et 

al. demonstrated that serum MMP-9 concentration correlates with the incidence of DN 

[141], and they hypothesized that the patients with A21 allele of the MMP9 gene may be 

protective with respect to the occurrence and progression of DN [142]. Importantly, findings 

of another recent study suggested that MMPs could serve as a potential target for the 

therapeutic intervention in DN. Aggarwal et al. demonstrated that compared with 

angiotensin-converting enzyme inhibitors (ACEIs) and or angiotensin receptor blockers 

(ARBs), doxycycline (an inhibitor of MMP) can effectively reduce proteinuria in adult 

patients with DN, but unfortunately it is effective only for a short duration, i.e., less than 12 

weeks [143].

The Expression of MMPs in Animal Model of Diabetes

Rodent studies have provided further insights into the potential contribution of MMPs and 

TIMPs in animal models of diabetic nephropathy (DN). Interestingly, an altered expression 

and enzyme activity of MMPs and TIMPs have been reported in DN models. But the 

quandary is that both up- and down-regulation has been described for MMP-2 expression or 

enzyme activity in renal tissues in rodent models of diabetes [111, 144, 145"]. Fornoni et al. 

investigated the MMP2 mRNA expression and activity in mesangial cells derived from 

kidneys of ROP mouse (reduced nephron number) that rapidly develop glomerulosclerosis 

and from parental B6 mouse strain that are resistant to develop glomerulosclerosis [144]. 

Exposure of cells to high glucose (HG) ambience led to a comparable increase in the MMP2 
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mRNA expression and activity in both the ROP and B6 mice mesangial cells, but this 

altered expression was reversible when glucose concentration was reduced from 25 mmol/L 

to 6 mmol/L in B6 mice cells only. These intriguing observations suggested that there is a 

potential role of MMP2 in the progression of DN in the model of sclerosing phenotype ROP 

mice under HG ambience [144]. Similarly, renal MMP2 expression and activity have been 

observed to be increased mainly after 16 weeks STZ induced mice when the sclerosing 

process is overtly seen. In addition, transgenic studies by Takamiya et al. indicate that 

MMP2-KO mice have relatively high serum levels of BUN and Creatinine and increased 

urinary excretion of albumin and NAG compared to their wild-type littermates [146]. Their 

studies also highlighted that changes in MMP-2 in diabetic mice may be time dependent, 

and the increased renal expression and activity of MMP2 may be a protective compensatory 

mechanism during the early phases of DN, while it may be operationally ineffective in later 

sclerosing phases. MMP9 is another protease which has been investigated with respect to its 

role in the DN with mixed variable results and contradictions. It is of interest to note that 

non-specific pharmacological inhibition of MMP9 with doxycycline were found to be 

associated with amelioration of renal injury [143]. In addition, it is also reported that 

Simvastatin protects kidney damage of diabetic rat through the suppression of MMP9 

expression [147]. Along these lines, the expression of MMP9 mRNA and protein were 

found to be up-regulated compared with the control group in 16 weeks of Kkay mice with 

glomerular sclerosing lesions [148]. Similarly, Szu li et al. reported reduced glomerular 

hyperfiltration and glomerular basement membrane thickening in diabetic MMP9−/− mice 

than diabetic WT mice [138]. In vitro, overexpression of MMP9 upregulated the expression 

of mesenchymal markers protein and induced podocyte dedifferentiation and increased the 

ECM synthesis [138]. Conflicting results were reported in another study with 24 weeks of 

STZ rat where increased collagens IV in the glomerulus and tubulo-interstitium was noted to 

be associated with decreased matrix degradation activity and reduced MMP9 mRNA 

expression in the kidney. Furthermore, the changes in MMPs and type IV collagen 

accumulation were attenuated by ACE inhibitor, Perindopril [149]. Taken together, these 

observations suggest that the MMPs expression level were inconformity at different phases 

of DN. It was reported that MMP-9 directly processed TGF-β into an active ligand [150] and 

it also regulated the release of growth factors like VEGF [151]. Furthermore, MMP9 may 

act on pro-inflammatory pathway through induction of TNF-α [152, 153] and IL-1β [72, 

154] in an early phase of diabetic rat or mouse. These data indicates that expression of 

MMP9 was increased in early phase of DN, which directly promoted the degradation of 

basal membrane protein of kidney and stimulated secretion of activate growth factors as 

well, culminating in renal lesion. However, in later phase of DN, the expression of MMP9 

was negatively regulated by feedback mechanism leading to decreased degradation of ECM 

and renal tissue fibrosis under DN condition eventually. On the other hand, Most likely, in 

DN it is the high glucose ambience or hyperglycemic environment that down-regulate 

MMP3, MMP7, MMP14 and TIMP3 in various diabetic animal models [131, 155–157]. The 

direct relevance of MMPs in DN is provided by the studies showing suppression of 

excessive type 1 collagen accumulation and renal fibrosis following MMP1 plasmid DNA 

gene delivery via microspheres implanted in the DN mouse model [158]. Along these lines 

conceivably gene disruption of another protease, i.e., MMP-10, may prevent renal damage in 

diabetic mice since reduced expansion of mesangial matrix and interstitial macrophage 
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accumulation were observed in MMP10−/− mice [133]. Taken all together the above 

observations, it seems that the altered expression and dysfunction of MMPs and TIMPs may 

be related to the development of DN, however, as to how the differential expression of 

various MMPs and TIMPs influence the renal disease progression in diabetic patients 

remains somewhat enigmatic. High glucose, AGEs, ROS, hypoxia, TGF-β and miRNA et al. 

probably be involved in regulating the expression and activity of MMPs. We would depict 

them one by one in the following text.

High Glucose and MMPs

A large body of data focusing on the role of MMPs in the DN is available in the literature, 

however, the specific mechanism(s) in regard to their modulation are not clear rather they 

are somewhat complex. There are several mechanisms by which dysregulation in renal 

MMPs and TIMPs expression or activity in kidney could contribute to the development of 

progressive DN. As previously mentioned, MMPs expression is tightly regulated by various 

mechanisms that include transcription and post-transcription. Evidence indicates that HG 

may regulate MMP gene expression via various transcription factors, such as, AP-1 and NF-

κB [159, 160] or depending upon the tissue levels of growth factor cytokines, such as, TGF-

β and CTGF [161, 162]. Since AP-1 is made up of Fos and Jun families of transcription 

factors its role may be dependent upon the dimeric composition that most likely would 

influence the downstream signaling pathways [163]. There are two AP-1 sites in the 

promoters of MMP1 and MMP3 and the consensus AP-1 sequences at the second site is 

variable, which may explain why the differential effects by these MMPs following the 

induction by HG are observed [164]. Differential regulation was also observed following 

HG induced increased levels of PDGF which exclusively and negatively regulate the MMP3 

expression while sparing the MMP1 [164]. Similarly, although MMPs expression is 

increased in human mesangial cells under prolonged HG ambience associated high MMP2 

activity while that of MMP9 decrease under such an environment. These opposite catalytic 

effects are interesting and may be related to the compositional differences in the promoter 

sequences of these two gelatinases [165]. In addition, MMP2 does not have a TGF-β 

inhibitor element (TIE) and AP-1 sites, whereas they are included in the MMP9 promoter 

[166]. In this regard, Alison K et al. study suggested that the increased MMP9 mRNA level 

induced by hyperglycemia might mediated by AP-1 and NF-κB transcription factors [164]. 

Recently, Bai Y et al. investigated the ERK1/2 MAPK signaling pathway and its role in 

MMPs expression in murine podocytes exposed to HG ambience [167]. HG-induced 

increase in MMP9 activity in earlier phases of culture required activation of ERK1/2 MAPK 

signaling and that is associated with downstream decreased collagen IV collagen expression, 

suggesting blocking of the ERK pathway is critical in the modulation of MMP9 expression 

and thereby the ECM turnover.

AGEs and MMPs

Advanced glycation or glycol-oxidation end products, known as AGEs, are aberrantly 

synthesized molecules that can be one of the major factors influencing the progression of 

DN. Hyperglycemia leads to the generation of AGEs which is basically as a result of 

condensation of sugar and free amino group with the formation of a labile Schiff base which 

undergoes further complex intra-molecular modification to generate complex toxic AGEs. 
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Such derivatization can occur between sugar and lipids as well, and their formation can be 

initiated in both intra- and extracellular compartments [168–170]. Several forms of AGEs 

derivatives have been described in renal injury related to diabetes, and morphologic changes 

that are often associated with it include glomerular and tubular basement membrane 

thickening, capillary aneurysmal dilatation, mesangial expansion with formation of 

Kimmelstiel-Wilson nodules and arteriolar thickening and hyalinosis [171–173]. 

Biologically active AGEs can be highly reactive in the intra- and extra-celluar compartments 

and their downstream injurious effects include increased oxidative stress, alterations in the 

molecular conformations of the molecules and aberrant expression of cytokines and growth 

factors [171, 174, 175]. As a result the AGE formation can alter the functionalities of several 

important extracellular matrix molecules, such as, type I collagen, type III collagen, type IV 

collagen and fibronectin and laminin [176–179]. Furthermore, AGEs can modulate the 

intracellular signaling pathways and gene and protein expression by interacting with their 

receptors, i.e., RAGE [180]. In this regard, a significant reduction in the gene and protein 

expression of MMP7 was observed in patients with DN and STZ-animal model system and 

in mesangial cells in vitro subjected to HG ambience, and these effects were blocked by 

neutralizing TGF-β antibodies and Aminoguanidine, an inhibitor AGEs formation [131]. 

Interestingly, AGEs can modulate the expression of certain growth factors belonging to 

CNN family. Broadly speaking the latter include six members: CYR61 (Cysteine-Rich61, 

CYR61/CCN1), CTGF (Connective Tissue Growth Factor, CTGF/CCN2), NOV 

(Nephroblastoma Over-expressed, NOV/CCN3), WNT1-Inducible Signalling Pathway 

proteins 1, 2 and 3 (WISP1, -2 and -3 or CCN4, -5 and -6) [181]. They have been shown to 

regulate various biological processes, such as, cellular activity, fibrosis, inflammation and 

angiogenesis. Hughes et al. reported that AGEs increase the CCNs mRNA and protein levels 

in retina of rats with STZ induced rat and that were reduced following the treatment with 

Aminoguanidine [181]. Recently, Wang X et al. described that CCN-2 mRNA and protein 

expression were increased by glycated ECM, which in turn can up-regulate the expression of 

fibronectin and TIMP-1 in human renal mesangial cells, and this circuitous cycle may play a 

role in evolution of phenotypic changes seen in the glomerulus in DN [182]. Additionally, 

the AGEs via AGE:RAGE interaction can activate PKC, MAPK and NF-κB, which can in 

turn modulate the expression of TGF-β and subsequently of MMPs. Such ligand: receptor 

interactions can also generate reactive oxygen species (ROS), which then can regulate the 

MMPs’ expression via modulation of various transcription factors [16]. Interestingly, 

Mclennan SV et al. demonstrated that glycation of ECM certainly increases the gene 

expression of MMP-2, but decreases TGF-β mRNA and activity in human fetal mesangial 

cells, suggesting that glycation of matrix affects MMP2 is independent of TGF-β initiated 

signaling pathway [183].

ROS, Hypoxia and MMPs

The excessive generation of ROS and the development of oxidative stress (OS) are regarded 

as the key events influencing the pathogenesis of DN [184, 185]. The ROS are known to 

modulate various biological processes, such as, cell proliferation and cell adhesion, as well 

as certain pathobiologic processes, such as, atherosclerosis and immunologically-mediated 

inflammatory disorders [186–188]. The activation of AGEs and ROS are intricately 

interwoven and thus may amplify the signaling cellular events in a hyperglycemic 
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environment. It is known that over-production of ROS by HG in renal cells though 

AGE:RAGE interaction or glucose auto-oxidation or metabolism modulate the activation of 

PKC, NF-κB and AP-1, as well as increase the TGF-β activity, thereby promoting a further 

increase in the expression of ECM proteins [189]. Moreover, this increase in the activity of 

these signaling molecules and expression of cytokines and ECM can be effectively reduced 

with the treatment by antioxidants [189–192]. Uemura S et al. suggested that MMPs activity 

is tightly correlated with the cellular redox balance. They indicated that the expression of 

MMP9 in the vasculature is redox-sensitive since it can be reduced by various antioxidants, 

such as, N-acetyl-L-cysteine (NAC) [193]. On one hand, excessive generation of ROS could 

increase the expression of some of the key transcription factors, such as, AP-1 or NF-κB, 

that are important for the gene activation of MMPs in a vast number of disease processes 

[194], while on the other hand, oxidant stress also may regulate MMPs by direct oxidation 

of crucial cysteine residues within the DNA-binding domain [194, 195]. Masash et al. 

demonstrated that MT1-MMP plays a vital role in NADPH oxidase-dependent signaling 

pathways that are initiated following AGE:RAGE interaction [196]. They demonstrated that 

the gene disruption of MT1-MMP remarkably blocks the NADPH oxidase activity and ROS 

generation in smooth muscle cells [196]. Furthermore, mitochondrial-derived ROS may also 

regulate MMP-9 activation or expression via activation of ERK-1/2 signal cascade in 

vascular endothelial cells in hyper- homocysteinemic (HHCY) state [197]. Although HHCY 

state induces MMP-9 in myocytes it negatively regulates their contractile functions, 

apparently related to the perturbation in the mitochondrial homeostasis [198]. In line with 

this contention, other MMPs, i.e., MMP2, has been shown to negatively regulate 

mitochnodrial functions in states of oxidant stress [199]. Similarly, gene disruption of 

MMP-9 in mice led to the amelioration of mitochondrial dysfunctions and development of 

retinopathy in diabetic milieu [200]. Like the evidence that increased MMP-9 activity in 

vitro in bovine carotid artery endothelial cells (BAECs) induced by HG can be inhibited by 

antioxidants there is also evidence that insulin infusion in vivo has an inhibitory effect on the 

increased expression of MMP9 in patients with hyperglycemia, which in part may be related 

to the insulin capacity to exert antioxidant and anti-inflammatory effects besides lowering 

the blood sugar levels [201].

In recent years the notion that in DN increases oxidative stress is commonly associated with 

hypoxia has attracted the attention of many investigators [16, 202]. The hypoxic injury 

seems to be an overwhelming feature of several other renal diseases beside DN [203–206]. 

Kidneys from diabetic animals have increased renal oxygen consumption [207]. 

Conceivably, it is related to the increased metabolic rate and oxygen demand in various 

target tissues which will inevitably lead to kidney tissue hypoxia and potentially contribute 

to the progression of diabetic nephropathy [208]. The tubule-interstitial hypoxia is a most 

significant early event in diabetes [206]. Recent studies have delineated that the tubule-

interstitial damage, including tubular cells apoptosis in patients with DN, is related to 

hypoxia-induced injury or at least it would certainly contribute to the onset of the 

development of DN [16, 206, 209]. There are literature reports which suggest that hypoxic 

stimuli boost the ECM synthesis and deceleration of its turnover with up-regulation of α1 

chain of type 1 collagen as well as that of the tissue inhibitor of TIMP-1, and down-

regulation of collagenase in human renal cortical fibroblasts when subjected to relative 
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anoxic ambience [210]. Furthermore, they found that the increased expression of TIMP1 

induced by hypoxia was associated with activation of transcription factor known as hypoxia-

inducible factor 1(HIF-1)[210]]. Moreover, HIF-1-mediated hypoxic injury in tubular 

epithelial cells involves CTGF since the promoter of this growth factor includes hypoxia 

response elements [211]. Hypoxia also decreases the expression of MMP-9 and MMP-2 

activity in human cortical fibroblasts under normal as well as HG ambience [212]. However, 

the cells derived from 2/3 of patients only had increased MMP9 and MMP2 expression 

under HG ambience, suggesting that effects of hypoxia and HG may be independent from 

each other with respect to MMP activities, and hypoxia may be a better predictable 

parameter with respect to kidney injury [212].

TGF-β and MMPs

Numerous studies have demonstrated a vital role of TGF-β in aberrant accumulation of 

ECM in glomerular and tubulo-interstitial compartments in DN [116, 213, 214]. The 

overexpression of TGF-β mRNA and protein in diabetic kidney in both experimental models 

and human has been observed [215]. By in situ hybridization and immunehistochemistry, 

besides TGF-β, an increased mRNA and protein expression of type IV collagen in both 

glomeruli and tubulo-interstitium of diabetic rats has been seen [216]. Furthermore, 

expression of specific matrix proteins induced by TGF-β was seen to be increased in 

glomeruli of diabetic rat as well of patients with DN [215]. TGF-β initiates its fibrogenic 

effects by stimulating matrix synthesis of various integral ECM proteins, such as, 

fibronectin, collagens and proteoglycans [217, 218]. At the same time there is inhibition of 

matrix degradation by dampening the synthesis of proteases and boosting the levels of 

TIMPs [219] while modulating the cellular matrix receptor (integrin) expression to 

strengthen cell-matrix connections [220].

Experimental data support that HG regulates MMP and TIMP expression, possibly through 

TGF-b axis [221]. Singh R et al. found a decrease of MMP2 activity that was conceivably 

regulated by TGF-β1 in rat mesangial cells under HG ambience [161]. They also reported 

that TIMP2 and TGF-β1 levels were increased following HG stimulation, while secreted 

MMP2 protein capable of degrading type IV collagen was decreased, and this effect was 

blocked partially by neutralizing anti-TGF-β1 antibody. Baricos et al. found that these 

effects were conceivably due to the blocking of the conversion of latent MMP-2 to active 

form in human mesangial by cells TGF-β1 [222]. In addition, studies by McLennan et al. 

suggested MMP2 and TIMP1 gene expression were increased, while MMP-9 mRNA was 

decreased in diabetic rat kidney and these events are associated with altered transcriptional 

activities of TGF-β [149]. Furthermore, TGF-β1 stimulates the synthesis of MMP14 and 

MMP2, which is required for epithelial-mesenchymal transformation (EMT) in the rat 

remnant kidney model of progressive renal fibrosis [223]. Cheng and Lovett et al. also 

found that active MMP2 could induce EMT alone in vitro and amplify the transformation 

course by proteolytic generation of TGF-β1 thought paracrine way [223]. In addition, 

transgenic mice highly expressing active MMP2 in renal proximal tubular epithelial cells 

exhibited glomerulosclerosis, extensive mononuclear cell infiltration, tubular interstitial 

fibrosis and developing renal fuction dysregulation compared with control [224]. This 

proteolytic gelatinase cleaves type IV collagen, a major component of basement membranes 
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and maintenance the epithelial phenotype of proximal tubular eptihelial cells [225], leading 

to TBM destruction which is significant to trigger EMT. Nuclear run-off analyses suggest 

that the TGF-β regulates MMP2 expression at both transcriptional and post transcriptional 

levels by early increase in MMP2 transcription while at the same time increasing the half-

life of the MMP2 mRNA in human fibroblasts [226] or through increased stability of the 

MMP2 proenzyme [227]. In addition, TGF-β has also been found to increase MMP-9 

mRNA stability [227]. On the other hand CM et al. reported that the TGF-β decreased the 

synthesis of collagenase in fetal rat calvarial bone cells and human fibroblasts, whereas the 

TIMP mRNA levels were found to be increased [228]. Similarly, TGF-β1 also was found to 

suppress the transcriptional activity of stromelysin [229, 230]. Moreover, TGF-β inhibits 

ECM related gene expression by associating Fos- containing protein complex with the TGF-

β1 inhibitory elements (TIE) localized in the promoter regions of stromelysin [231]. This is 

in accord with other studies which suggest that TGF-β could affect several MMPs that 

contain AP-1 sites in their promoter regions that are intricately involved in the regulation of 

MMPs expression [163].

TGF-β also reduces MMP-7 gene and protein expression and also the activity in mesangial 

cells cultured under high glucose ambience as indicated above, and the effect is abolished 

with TGF-β neutralizing antibody in STZ-induced diabetic rats in vivo as well [131]. A 

recent in vitro study reported that TGF-β induced Wnt1 expression, activated β-catenin and 

up-regulated Wnt target genes, such as, MMP7 and MMP9 [88]. In addition, TGF-β and 

Smad4 signaling pathway down-regulated renal ECM degradation in DN in rats with STZ 

induced diabetes, and this was accompanied by diminished MMP3 mRNA expression but 

increased both TIMP-1 and collagen III mRNA [155]. Another intriguing observation 

reported by MClennan SV and Martell SK indicated that glycation of matrix perturbs the 

balance between MMP2 and its inhibitors and may not be related to TGF-β activity in the 

accumulation of ECM at the target sites [183]. Overall, it seems that the effect of TGF-β on 

the MMPs’ and TIMPs’ expression is differential depending upon their regulation during 

different pathobiological processes.

MiRNA and MMPs

MiRNAs are a family of a small non-protein-encoding RNAs which control gene expression 

by inhibiting target mRNAs [232]. Several miRNAs, such as, miR-216A, miR-217, 

miR-192, miR-377, miR-21 and miR-29c are believed to play a significant role in the 

progression of DN [233]. Almost all of these miRNA are increased by HG or TGF-β in 

mouse or human mesangial cells [234–238]. MiRNA has also been found to take part in 

some of the biological processes, such as, ECM accumulation, resulting in aberrant tissue 

phenotype. Recently, Alvarez et al. demonstrated that an increase in miR-1207-5p, under 

hyperglycemia conditions, contributes to ECM accumulation in the kidney [233]. Under in 

vitro conditions, expression of miRNA1207-5p is markedly up-regulated in kidney cells 

with HG, while TGF-β stimulation enhanced the protein levels of major ECM glycoproteins 

[233]. Recently, Wang et al. elucidated that hyperglycemia-induced over-expression of 

miR-21 conceivably perturbs the balance between MMP and TIMP activities in DN [239]. 

Interestingly, in their studies they noted that the expression of miR-21 was significantly 

increased in KK-ay mice compared with control mice, which positively correlated with the 
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expression of collagen IV, TIMP1 and FN; however, it negatively correlated with MMP9 

protein levels. Furthermore, the antagmir-21 up-regulated the MMP9 protein levels, which 

suggests that miR-21 directly influence MMP9 expression. There is evidence that 

hyperglycemia induces an increase of TGF-β/Smad 2, which could promote miR-21 

overexpression [240, 241]. Likewise, TIMP3 expression is also regulated by numerous of 

miRNAs including miR-21, miR-181b, miR-182, miR-216 and miR-221/2 [242]. Among 

various miRNAs, the miR-217 has been shown to modulate TIMP3 expression indirectly via 

SirT1 small interference RNA inhibition [242]. In addition, miR-21 was found to be 

increased both in human kidney biopsies from diabetic patients and in mesangial cells under 

HG conditions. Interestingly, miR-21 levels increase and TIMP3 level decrease were 

detected almost at the same time point under HG ambience [242]. Taken together, these data 

indicate that miRNA can directly or indirectly regulate MMP:TIMP balance, the 

perturbations in which would likely contribute to the aberrant ECM synthesis and renal 

fibrosis in DN.

CONCLUSIONS AND PERSPECTIVE

DN reflects a pathological hallmark of overproduction and expansion ECM in the kidney 

[117]. Therefore, the MMP family which can influence the balance between synthesis and 

degradation of ECM proteins may play a significant role in the progression of DN. The 

MMP superfamily includes of various proteases, including collagenases, gelatinases, 

stromelysins, matrilysins and membrane type- collagenases [25]. The research efforts are 

ongoing in discovering a detailed understanding of regulation of the MMPs/TIMP in 

hyperglycemic milieu. Experimental and clinical studies revealed that expression of MMPs/

TIMPs in vitro or in vivo is somewhat discordant and inconsistent; importantly, the 

regulatory mechanism(s) that how hyperglycemia modulates MMPs and TIMPs have not yet 

been completely understood. These contradictions may be explained by the difference in 

samples obtained, cell types and the effect of varying therapies given to humans for the 

treatment of diabetes, as well as the duration of DN that impact MMPs expression [243]. 

Certainly, the influence of hyperglycemia on MMP and TIMP expression effectively 

reinforce the degradation arm of MMP/TIMP system that ultimately lead to increase ECM 

accumulation and pathological disorders, resulting in reno-vascular complications of 

diabetes [243]. As shown in (Fig. 1), under diabetic condition, HG and AGE induce 

hypoxia, cellular ROS level, activation of PKC and TGF-β signaling pathway, leading to 

dysregulation of MMT/TIMPs expression via various transcription factor(s). In addition, HG 

can also regulate MMT/TIMPs expression through ERK1/2 MAPK and miRNA, which 

results in imbalance of ECM synthesis and degradation, leading to the progression of DN. 

However, as discussed in this review, the role of MMPs in DN is intriguingly complex and 

the mechanisms are still elusive. Continued research may be required to fully understand the 

underlying genetic and molecular regulation of MMPs in DN, and undoubtedly it will help 

us further expound the pathogenesis of DN.

Consensus of recent studies suggest that MMPs may serve as sensitive and clinically useful 

biomarkers for predicting pathological changes seen in DN. In future, MMP9 may become a 

new biomarker of renal injury like Neutrophil gelatinase- associated lipocalin (NGAL). A 

research study with Type 1 diabetic patients has indicated that the changes in urine NGAL 
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and MMP9 are concomitant, and both of them were positively correlated with albuminuria 

[244]. Urine MMP2 concentrations of type 1 diabetic subjects were correlated with several 

clinic parameters which predict increased risk for DN (renal hyperfiltration, 

microalbuminuria, duration of disease, and higher hemoglobin A1c levels) [245]. 

Furthermore, another study suggested the use of MMP-inhibitors as preventive therapeutic 

agents for patients with Alport syndrome before the onset of kidney disease could be 

advantageous, but if delayed from this early time frame the inhibition may result in 

detrimental progression of kidney injury [246]. If similar mechanisms are operative in the 

development of DN, then very early intervention with anti-MMP treatment in DN patients 

before the onset of microalbuminuria could prevent or retard the progression of DN [243]. 

Certainly, further studies are needed to define the redundancies and specificities of MMP 

regulators along with robust research efforts to fully comprehend the mechanism(s) involved 

in MMPs’ regulation under hyperglycemia ambience in concert with a major effort to search 

for the drugs that could ultimately lead to potentially effective, and efficient therapeutic 

measures.
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Fig. (1). Regulatory mechanism involving MMPs in the diabetic nephropathy
Schematic drawing depicting the conceivable regulatory mechanism(s) in MMPs/TIMPs 

regulation by high glucose and advanced glycation end products (AGEs). Hyperglycemia 

and AGEs may induce ROS and TGF-β as well kidney tissue hypoxia. The ROS, hypoxia 

and high glucose lead to the activation of NF-κB, AP-1 and HIF-1 and thereby transcription 

of some of the MMPs. Inside the cells, the AGEs and ROS can activate PKC, which in turn 

can modulate the expression of TGF-β. TGF-β stimulates synthesis of matrix glycoproteins 

and modulation of MMPs/TIMPS via transcriptional mechanisms. High glucose also can 

active ERK1/2MAPK signaling and miRNAs, leading to alter MMPs expression. In 

addition, the mechanical stretch, besides dysregulation of MMPs and TIMPs, lead to 

increased extracellular matrix synthesis and its accumulation and decreased degradation, the 

hallmark features of diabetic nephropathy.

Abbreviations: MMP, matrix metalloproteinase; TIMP, tissue inhibitor of 

metalloproteinase; ECM, extracellular matrix; AP-1, activator protein 1; NF-κB, nuclear 

factor kappa B; ROS, reactive oxygen species; TGF-β, transforming growth factor β; 
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ERK1/2, extracellular-signal-regulated kinases1/2; MAPKs, mitogen-activated protein 

kinases.
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