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Abstract

Tumorigenesis, a complex and multifactorial progressive process of transformation of normal cells 

into malignant cells, is characterized by the accumulation of multiple cancer-specific heritable 

phenotypes triggered by the mutational and/or non-mutational (i.e., epigenetic) events. 

Accumulating evidence suggests that environmental and occupational exposures to natural 

substances, as well as man-made chemical and physical agents, play a causative role in human 

cancer. In a broad sense, carcinogenesis may be induced through either genotoxic or non-

genotoxic mechanisms; however, both genotoxic and non-genotoxic carcinogens also cause 

prominent epigenetic changes. This review presents current evidence of the epigenetic alterations 

induced by various chemical carcinogens, including arsenic, 1,3-butadine, and pharmaceutical and 

biological agents, and highlights the potential for epigenetic changes to serve as markers for 

carcinogen exposure and cancer risk assessment.

1. INTRODUCTION

Tumorigenesis is a complex and multifactorial progressive process of transformation of 

normal cells into malignant ones. It is characterized by the accumulation of multiple cancer-

specific heritable phenotypes, including persistent proliferative signaling, resistance to cell 

death, evasion of growth suppression, replicative immortality, inflammatory response, 

deregulation of energy metabolism, genomic instability, induction of angiogenesis, and 

activation of invasion ultimately resulting in metastases [1]. The acquisition of these cancer-

specific alterations may be triggered by the mutational and/or non-mutational (i.e., 

epigenetic) events in the genome which, in turn, affect gene expression and the downstream 

phenotypes listed above [1,2]. Furthermore, it has been suggested that epigenetic alterations 

may play as important or even more prominent role in tumor development [3].

“Epigenetic events”, most prominently manifested by stable and heritable changes in gene 

expression that are not due to any alteration in the primary DNA sequence [4], signify the 
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fundamental molecular principles in which genetic information is organized and read [5]. 

Epigenetic modifications include change in methylation patterns of cytosines in DNA [6,7], 

modifications of the proteins that bind to DNA [8,9], and the nucleosome positioning along 

DNA [4]. These epigenetic marks are tightly and interdependently connected and are 

essential for the normal development and the maintenance of cellular homeostasis and 

functions in adult organisms, particularly for X-chromosome inactivation in females, 

genomic imprinting, silencing of repetitive DNA elements, regulation of chromatin 

structure, and proper expression of genetic information [10]. The epigenetic status is well-

balanced in normal cells, but may be altered in many ways in cancer cells. Additionally, 

growing evidence indicates that a number of lifestyle and environmental factors may disrupt 

this epigenetic balance and compromise the stability of the epigenome in normal cells 

leading to the development of a wide range of pathologies, including cancer.

2. EPIGENETIC ALTERATIONS IN CANCER CELLS

The unifying molecular feature of neoplastic cells is a profoundly reshaped genome 

characterized by global genomic hypo-methylation, gene-specific hyper- or hypo-

methylation, and altered histone modification patterns [2,11].

DNA demethylation signifies one of the two major DNA methylation states and refers to a 

state in which there is a decrease in the number of methylated cytosine bases from the 

“normal” methylation level. Demethylation of DNA can be achieved either passively or 

actively. Passive loss of methylated marks in the genome may be a consequence of limited 

availability of the universal methyl donor S-adenosyl-L-methionine (SAM), compromised 

integrity of DNA, and altered expression and/or activity of DNA methyltransferases [12]. 

Until recently, evidence for existence of an active replication-independent DNA 

demethylation process was controversial and inconclusive [7,13]. However, recent studies 

provide compelling experimental evidence that active loss of DNA methylation is associated 

with the function of DNA repair machinery [14-17].

Global hypomethylation of DNA was the first epigenetic abnormality identified in cancer 

more than a quarter of century ago [18,19]. It continues to be one of the most common 

molecular alterations found in all human cancers [20,21]; however, the molecular 

mechanisms behind cancer-linked global demethylation of the genome remain largely 

unknown. The loss of DNA methylation in cancer primarily affects stable, methylated areas 

of the genome composed predominantly of repetitive elements, genes and intergenic regions 

[22].

There are several molecular consequences of global demethylation of DNA that may 

contribute to tumorigenesis. First, genomic hypomethylation causes significant elevation in 

mutation rates [23], activation of normally silenced tumor-promoting genes [24], and loss of 

imprinting [25]. Second, demethylation of the repetitive DNA sequences, such as long 

interspersed nucleotide elements (LINE)-1 and short interspersed nucleotide elements 

(SINE), retroviral intracesternal A particle (IAP), and Alu elements located at centromeric, 

pericentromeric, and subtelomeric chromosomal regions induces their activation and 

transposition leading to chromosomal instability [26-29]. For example, recent findings have 
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demonstrated that DNA hypomethylation causes permissive transcriptional activity at the 

centromere [28]. Subsequently, the accumulation of small minor satellite transcripts that 

impair centromeric architecture and function is observed. Likewise, hypomethylation of the 

repetitive elements at the subtelomeric regions is associated with enhanced transcription of 

the telomeres [29].

Gene-specific loss of DNA methylation is also a finding for oncogenes and imprinted genes. 

In addition, many genes that are normally well-methylated, particularly cancer-germline 

genes, including B melanoma antigen family (BAGE), cancer testis antigen (CAGE), 

melanoma antigen family A (MAGE-A), X antigen family (XAGE), and other single-copy 

genes, including S100 calcium binding protein A4 (S100A4), flap endonuclease 1 (FEN1), 

and synuclein-gamma (SNCG), undergo progressive hypomethylation, which is 

accompanied by their increased expression, in human cancers [12,21].

Despite the large body of evidence indicating that cancer-associated DNA demethylation is 

an important early event in tumor development, it is still less clear if the loss of DNA 

methylation is a cause, or a consequence of the malignant transformation [30]. The notion 

that DNA hypomethylation is playing a role in causation and/or promotion of cancer is 

based on the results of studies with nutritional “lipogenic methyl-deficient diet” [31-33], 

genetically-engineered Dnmt- and Lsh-deficient mice [34,35], and several models of 

chemical carcinogenesis [36]. In contrast, there is also evidence that cancer-linked DNA 

hypomethylation may be a passive inconsequential side effect of carcinogenesis [30,37]. The 

latter is evidenced by facts that not all tumors exhibit DNA hypomethylation and not all 

carcinogenic processes are accompanied by the loss of DNA methylation [38]. Indeed, it is 

highly unlikely to expect that development and progression of diverse types of tumors are all 

associated with DNA hypomethylation. Furthermore, there is growing evidence that DNA 

hypomethylation suppresses development of certain tumor types, especially intestinal, 

gastric, and prostate carcinomas [39-41].

DNA hypermethylation is the state where the methylation of normally undermethylated 

DNA domains, those that predominantly consist of CpG islands [22], increases. CpG islands 

are defined as the genomic regions that contain the high G + C content, have high frequency 

of CpG dinucleotides, are at least 400-500 bp long, and can be located either at intragenic 

and intergenic, or at the 5’ ends of genes [42-44]. However, only CpG islands that span 5’ 

promoters are mainly unmethylated. For instance, less than 3% of CpG islands in gene 

promoters are methylated [44].

It is well established that hypermethylation of promoter-located CpG islands causes 

permanent and stable transcriptional silencing of a range of protein-coding genes [45], 

which, along with DNA hypomethylation, plays a critical role in cancer development [2,11]. 

One of the most compelling examples of the link between DNA hypermethylation and 

carcinogenesis is epigenetic silencing of critical tumor-suppressor genes, including cyclin-

dependent kinase inhibitor 2A (CDKN2A; p16INK4A), secreted frizzled-related protein genes 

(SFRPs), adenomatous polyposis coli (APC), and GATA binding protein 4 (GATA4). The 

aberrant silencing of these genes allows for survival and clonal expansion of the initiated 

cells. Additionally, hypermethylation of several DNA repair genes, including O6-
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methylguanine-DNA methyltransferase (MGMT), xeroderma pigmentosum group C (XPC), 

MutL homolog 1 (MLH1), and breast cancer 1 and 2 (BRCA1 and BRCA2) genes results in 

insufficient DNA repair leading to reduction in genomic stability and various genetic 

aberrations, particularly, the elevation of mutation rates in critical cancer-related genes 

[46,47]. For example, the epigenetic silencing of MGMT leads to a greater mutation rate in 

K-RAS and p53 genes during human colorectal carcinogenesis [48,49]. Likewise, 

transcriptional inactivation of the BRCA1 and MLH1 genes caused by promoter 

hypermethylation results in elevated p53 gene mutation frequency in human sporadic breast 

cancer [50] and microsatellite instability in sporadic colorectal cancer [51], respectively.

In addition to the vital role that DNA methylation state may play in the etiology and 

pathogenesis of cancer, it has been shown that disruption of normal patterns of covalent 

histone modifications is an epigenetic change frequently found in tumor cells. Histones are 

evolutionary conserved proteins that have globular carboxy-terminal domains critical to 

nucleosome formation, and flexible amino-terminal tails that protrude from the nucleosome 

core and contact adjacent nucleosomes to form higher order chromatin structures. At least 

eight different classes of post-translational modifications, including methylation, acetylation, 

phosphorylation, ubiquitynation, sumoylation, biotinylation, and ADP-ribosylation have 

been identified on the core histones H2A, H2B, H3, H4, and the H1 family of linker histones 

[8,9]. These histone marks are essential for organizing chromatin, maintaining genome 

stability, silencing repetitive DNA elements, regulating cell cycle progression, recognizing 

DNA damage sites and repair, and maintenance of proper expression of genetic information.

Accumulating evidence clearly indicates that cancer cells are characterized by a profoundly 

disturbed pattern of global and/or gene-specific histone modifications accompanied by 

alterations in the functioning of enzymes that are associated with those marks. There are 

various combinations of cancer-linked histone modifications that differ according to tumor 

type; however, one of the most characteristic examples of global changes in histone 

modifications is loss of histone H4 lysine 20 trimethylation and H4 lysine 16 acetylation, 

which is a common hallmark of human cancers [52].

Additionally, extensive studies in the past decade have indicated the existence and 

importance of another epigenetic mechanism of regulation of gene function by means of 

small non-coding microRNAs (miRNAs). Currently, miRNAs are recognized as one of the 

major regulatory gatekeepers of protein-coding genes in human genome [53,54]. MiRNAs 

are small 16-29 nucleotide-long non-coding RNAs that primarily function as negative gene 

regulators at the post-transcriptional level [55]. MiRNAs are generated by RNA polymerase 

II or RNA polymerase III as long primary transcripts, primary miRNAs. Following 

transcription, primary miRNAs form a stem-loop structure, which is recognized and 

processed by the RNase III-type enzyme Drosha creating precursor miRNAs. These 

precursor miRNAs are transported from the nucleus to the cytoplasm by Exportin-5. In the 

cytoplasm, the pre-miRNAs are further processed by Dicer, an RNase III enzyme, 

generating miRNA:miRNA hybrids. After unwinding, one strand of the duplex is degraded, 

and another strand becomes a mature miRNA. MiRNAs can induce mRNA cleavage if 

complementary to 3’-untranslated region of targets is perfect or translational repression if 

complementarity is imperfect [53].
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Currently there are more than 700 mammalian miRNAs that can potentially target up to one-

third of protein-coding genes involved in the development, cell differentiation, metabolic 

regulation, signal-transduction, cell proliferation, and apoptosis. As the deregulation of these 

very same biological processes is a hallmark of cancer [1], it has been suggested that 

changes in miRNA expression might have significance in cancer [56-58]. In tumors, 

aberrant expression of miRNAs inhibits tumor suppressor genes or inappropriately activates 

oncogenes have been experimentally associated with most aspects of tumor biology, 

including tumor progression, invasiveness, metastasis, and acquisition of resistance of 

malignant cells to various chemotherapeutic agents [58]. This leads to the suggestion that 

altered expression of miRNAs is an important mechanism of carcinogenesis [57,59].

3. ROLE OF EPIGENETIC ALTERATIONS IN CHEMICAL CARCINOGENESIS

Many environmental and occupational exposures to natural substances, man-made chemical 

and physical agents are considered to be causative of human cancer [60-62]. In a broad 

sense, carcinogenesis may be induced through either genotoxic or non-genotoxic 

mechanisms. Genotoxic carcinogens are agents that interact directly or after metabolic 

activation with DNA, causing mutations and leading to tumor formation. Non-genotoxic 

carcinogens are a diverse group of chemical compounds that are known to cause tumors by 

mechanisms other than direct damage to DNA. The emphasis in carcinogenesis research, 

until recently, has focused mainly on the investigation of various molecular signaling events, 

DNA damage, DNA adduct repair, and genetic aberrations, despite the fact that the 

importance of epigenetic mechanisms in carcinogenic process was first suggested by Miller 

in 1970 [63]. Accumulating evidence suggests that regardless of the mechanism of action, 

both genotoxic and non-genotoxic carcinogens may also lead to prominent epigenetic 

abnormalities in tissues that are susceptible to carcinogenesis as a result of exposure [64-68]. 

The following sections present an overview of the epigenetic alterations induced by several 

carcinogens.

3.1. Arsenic

Arsenic is a naturally occurring element and a ubiquitous environmental contaminant which 

is a public health issue world-wide [69]. The major source of human exposure to arsenic is 

contaminated food and drinking water. Inorganic arsenic was one of the earliest identified 

human carcinogens [69,70]. It is widely accepted that exposure to arsenic is associated with 

skin, lung, and bladder cancers [71]. Additionally, accumulating evidence indicates that 

long-term exposure to arsenic causes development of liver tumors [72].

Arsenic was classified as a known human carcinogen by the International Agency for 

Research on Cancer (IARC) in 2004, when sufficient evidence for human carcinogenicity 

became available [71]; even though limited evidence for animal carcinogenicity of arsenic 

existed. This may be explained mainly by the absence of adequate relevant animal models to 

study arsenic carcinogenesis. However, the experiments in transgenic mice, e.g., v-Ha-ras 

(Tg.AC), keratin VI/ornitine decarboxylase (K6/ODC), and p53+/−, or inbred mouse strains 

that are prone to spontaneous cancer development provided evidence for the carcinogenicity 

of arsenic in animal studies. For instance, administration of arsenic to A/J mice, a strain that 

exhibits a susceptibility to different pulmonary pathological states including lung cancer, 
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enhances lung tumor multiplicity and size [70,73]. Similarly, in utero arsenic exposure of 

C3H/HeJ mice, which are prone to hepatocarcinogenesis, resulted in increased incidence and 

multiplicity of hepatocellular carcinomas in adults [74]. The most convincing evidence for 

the carcinogenicity of arsenic in animals has been presented in a recent report by Tokar et al. 

[75] that demonstrated that “whole-life” exposure of CD1 mice to arsenic causes induction 

of various tumors, including lung and liver.

The molecular mechanisms behind the cancer-inducing property of arsenic are not fully 

elucidated and remain a subject of debate. Several potential mechanisms have been proposed 

to explain arsenic-induced carcinogenesis, including induction of oxidative stress, DNA-

protein crosslinking, chromosomal aberrations [70], disruption of signaling pathways, and 

epigenetic dysregulation, particularly DNA demethylation [76]. The first evidence 

demonstrating an association between arsenic tumorigenicity and global DNA 

hypomethylation was reported by Zhao et al. [77] who showed that exposure of rat liver 

epithelial TRL-1215 cells to arsenic in vitro led to their malignant transformation and was 

paralleled by global DNA demethylation. Importantly, the extent of DNA hypomethylation 

in the transformed cells was positively correlated with the tumorigenicity of the cells upon 

inoculation into nude mice, suggesting that loss of DNA methylation may be a causative 

factor in arsenic-induced carcinogenesis [77]. Since then, a large amount of data has 

documented a substantial target organ-specific loss of global DNA methylation and 

repetitive element and gene-specific methylation in various in vitro and in vivo models of 

arsenic-induced tumorigenesis [78-80].

Several possible explanations exist for the mechanism of DNA demethylation after exposure 

to arsenic. First, arsenic-induced DNA hypomethylation can be explained by the absolute 

requirement of SAM for the biomethylation of inorganic arsenic and DNA methylation 

reactions [76,81]. Therefore, the biomethylation of inorganic arsenic reduces availability of 

SAM for DNA and histone methylation. Second, arsenic exposure increases generation of 

reactive oxygen species that may cause direct damage to DNA [82,83]. The presence of 

oxidative lesions in DNA (e.g., 8-oxodeoxyguanosine and 5-hydroxymethylcytosine) 

severely compromises the ability of DNA methyltransferases to methylate the target 

cytosine and leads to passive demethylation of DNA [84]. In addition, activation of DNA 

repair pathway promotes active demethylation of DNA [14-17]. Third, arsenic-induced 

oxidative stress causes depletion of the level of intracellular reduced glutathione. This 

consequently leads to the enhanced glutathione biosynthesis in a transsulfuration pathway, 

which impairs SAM biosynthesis and perturbs DNA and histone methylation reactions [85].

In addition to global and gene-specific DNA hypomethylation, arsenic exposure causes 

concurrent methylation-induced transcriptional silencing of a number of tumor suppressor 

genes, including p53, CDKN2A (p16INK4A), Ras association domain family member 1 

(RASSF1A), and death-associated protein kinase (DAPK) [73,86,87], various histone 

modification changes [88], and alterations in miRNA expression [89].

It is of note that growing evidence suggests that carcinogenesis induced by an environmental 

chronic exposure to other metals, such as nickel, chromium, cadmium, and mercury may 

also involve molecular epigenetic alterations caused by the ability of these metals to induce 
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damage to DNA and strongly influence intracellular molecular and metabolic alterations 

[90,91].

3.2. 1,3-Butadiene

The gaseous olefin 1,3-butadiene is a major industrial chemical monomer widely used in 

production of synthetic rubber, resins and plastic. Additionally, this highly volatile agent is 

present in industrial and automobile exhaust, cigarette smoke, and ambient air in urban 

locations and industrial complexes [92]. Based on the results of numerous comprehensive 

epidemiological studies, the IARC has classified 1,3-butadiene as a known human 

carcinogen [92-94]. In rodents, it causes tumor formation at several target sites, including 

the hematopoietic system, lungs, heart, and liver [93]. Importantly, the hematopoietic 

system, lungs and liver are the most common sites of 1,3-butadiene-induced tumor 

formation in both humans and mice [93].

It is well-established that the mechanism of tumor induction caused by 1,3-butadiene 

exposure is due to genotoxic reactivity of its metabolic epoxides: 1,2-epoxy-3-butene, 

1,2:3,4-diepoxybutane, and 3,4-epoxy-1,2-butanediol that interact directly with DNA to 

form mutagenic DNA adducts [94]. However, recent evidence demonstrates that short-term 

inhalational exposure of C57BL/6J mice to 1,3-butadiene, in addition to DNA adduct 

formation, also causes extensive concurrent epigenetic changes. These include a marked 

reduction of global DNA and repetitive element methylation and a profound loss of histone 

H3K9, H3K27 andH4K20 trimethylation in the livers of C57BL/6J mice [95].

It is well-established that methylation of lysine residues 9, and 27 at histone H3 and lysine 

20 at histone H4 plays a fundamental role in the formation of a condensed heterochromatin 

structure and transcriptional repression [96-98]. Hence, loss of H3K9 and H4K20 

trimethylation induced by 1,3-butadiene-exposure may compromise genomic stability via 

chromatin relaxation and activation of mobile repetitive elements. Indeed, a recent report 

showing decondensation of chromatin and activation of main repetitive elements in the 

livers of 1,3-butadiene-exposed C57BL/6J mice support this suggestion [99]. Additionally, 

an open chromatin structure may increase further vulnerability of DNA to the genotoxicity 

of reactive 1,3-butadiene metabolites.

The elucidation of the mechanisms of carcinogenicity is usually carried out in genetically-

homogeneous in vivo models in order to fix as many variables as possible. This provides 

information in a single strain, yet the extrapolation of such data to the population effects is 

constrained by the inference from a single genome to model complex human phenotypes. To 

overcome this important limitation, panels of genetically defined animals may be used to 

determine genetic causes of inter-individual variability in cancer susceptibility [100]. In a 

recent study, Koturbash et al [99] has demonstrated substantial differences in hepatic genetic 

and epigenetic response among mouse strains to short-term inhalational exposure to 1,3-

butadiene. More importantly, the strain differences were associated with alterations in 

chromatin structure, mainly in the variability in histone H3K9, H3K27, and H4K20 

methylation
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3.3. Pharmaceuticals

Diethylstilbestrol is a synthetic nonsteroidal estrogen that was widely used to prevent 

potential miscarriages and as emergency contraceptive (“morning-after pill”) [101]. 

Currently, diethylstilbestrol is classified by the IARC as a known human carcinogen [101]. 

Breast is the main target organ for diethylstilbestrol-induced carcinogenesis in women who 

were exposed during pregnancy. Additionally, diethylstilbestrol also causes development of 

adenocarcinoma in the uterus and cervix of women who were exposed in utero.

In addition to the established mechanistic genotoxic and estrogen receptor-mediated 

carcinogenic events, epigenetic programming also plays a substantial role. Perinatal 

exposure to diethylstilbestrol causes persistent demethylation and transcriptional activation 

of several critical cancer-related genes in the mouse uterus, including lactoferrin (Lf), 

nucleosomal binding protein 1 (Nsbp1), and c-fos [102-104]. The mechanism of these 

demethylation events is associated with the ability of diethylstilbestrol to inhibit expression 

of the maintenance (Dnmt1) and de novo (Dnmt3a and Dnmt3b) DNA methyltransferases in 

the mouse uterus [105]. Additionally, recent evidence indicates that diethylstilbestrol 

exposure causes epigenetically-induced down-regulation of microRNA-9 in human breast 

epithelial cells [106], one of the frequently down-regulated microRNAs in human breast 

cancer [107].

Tamoxifen, a selective nonsteroidal anti-estrogen, is a widely used drug for chemotherapy 

and for chemoprevention of breast cancer worldwide [108]. However, recently the IARC 

classified tamoxifen as a known human carcinogen based on evidence for endometrial 

cancer [101]. One of the possible mechanisms of carcinogenic effects of tamoxifen in the 

uterus is tamoxifen-induced gene expression changes [109], particularly, hypomethylation-

linked activation of paired box 2 (PAX2) gene [110].

Additionally, a number of studies have demonstrated that tamoxifen is a potent 

hepatocarcinogen in rats with both tumor initiating and promoting properties [111]. The 

mechanism of tamoxifen-induced hepatocarcinogenesis is associated with its genotoxic 

[112,113] and epigenetic effects [114]. These non-genotoxic epigenetic alterations include 

demethylation of the entire genome and the repetitive elements, loss of global histone H4 

lysine 20 trimethylation [114,115], and altered expression of microRNAs [116]. The results 

of these studies further emphasize the importance of non-genotoxic mechanisms in chemical 

carcinogenesis induced by genotoxic carcinogens.

Phenobarbital, the most widely used anticonvulsant worldwide, is a well-established 

mitogenic non-genotoxic rodent liver carcinogen. It is known to increase cell proliferation, 

alter cell cycle checkpoint control, including delaying and attenuating the G1 checkpoint, 

inhibit the induction of p53, thereby resulting in accumulation of DNA damage, and induce 

extensive epigenetic abnormalities. Treatment with phenobarbital leads to rapid and 

progressive accumulation of altered DNA methylation regions in the livers of C57BL/6 and 

B6C3F1 mice [117]. These changes were more pronounced in livers of tumor-prone 

B6C3F1 and CAR (constitutive androstane receptor) wild-type mice [118]. Interestingly, the 

number of hypermethylated regions was noticeably smaller than hypomethylated regions, 

among which cytochrome P450, family 2, subfamily b, polypeptide 10 (Cyp2b10) gene is 
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concomitantly hypomethylated and transcriptionally activated early after phenobarbital 

treatment [119].

Oxazepam is widely used as a sedative-hypnotic and antianxiety drug. Chronic exposure of 

B6C3F1 mice to oxazepam induces development of hepatoblastoma and hepatocellular 

carcinoma in mice [120]. Interestingly, oxazepam, similar to phenobarbital, causes induction 

of Cyp2b10 gene in the livers of B6C3F1 mice [121,122]. Also, oxazepam-induced tumors 

display a decreased expression of Apc and phosphatase and tensin homolog (Pten) tumor 

suppressor genes and genes involved in regulation of DNA methylation and histone 

modification [122].

3.4. Biological agents

Mycotoxins are a structurally diverse class of molecules of fungal origin that are common 

contaminants of the human and animal food products [123]. Three of the most ubiquitous 

mycotoxins, aflatoxin B1, fumonisin B1, and ochratoxin, are classified by the IARC as 

known and possible human carcinogens [124,125]. It is well-established that aflatoxin B1, 

fumonisin B1, and ochratoxin A are genotoxic carcinogens [123,126,127]; however, 

accumulating evidence indicates that their carcinogenicity involves also a complex network 

of epigenetic alterations [128-134].

Aflatoxin B1 induces several epigenetic abnormalities that may induce and promote tumor 

development. Specifically, exposure to aflatoxin B1 causes methylation-induced 

transcriptional silencing of MGMT, p16INK4A, and RASSF1A genes, a fundamental 

epigenetic event in liver carcinogenesis [128-130]. Conversely, aflatoxin B1 is a strong 

inducer of epigenetically-regulated SNCG gene [131]. Additionally, a study conducted by 

Hu et al. [134] has demonstrated that cytosine methylation at the CpG site at codon 14 of the 

K-ras gene is the major reason for preferential aflatoxin B1-induced DNA-adduct formation 

at this codon in normal human bronchial epithelial cells.

Fumonisin B1, in addition to various genotoxic and nongenotoxic alterations, increases the 

level of 5-methylcytosine in genomic DNA from 5% to 9% in human intestinal Caco-2 cells 

[132].

Helicobacter pylori (H. pylori) infection is associated with development of gastric cancer, 

one of the most prevalent human cancers worldwide [135]. The results of several 

comprehensive studies indicate that H. pylori infection causes marked DNA methylation 

changes in infected normal or preneoplastic gastric mucosa. H. pylori infection causes 

significant aberrant DNA methylation in a number of the promoter CpG island-containing 

genes, including p16INK4A, lipoxygenase (LOX), heart and neural crest derivatives expressed 

1 (HAND1), thrombomodulin (THBD), and actin related protein 2/3 complex, subunit p41 

(p41ARC) gastric cancer-associated genes in gastric mucosa [136-139]. Importantly, 

hypermethylation of some genes, e.g. THBD persisted in gastric mucosa after H. pylori 

eradication [140].
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4. EPIGENETIC ALTERATIONS AND THE EVALUATION OF CANCER RISK

Recognition of the fundamental role of epigenetic alterations in cancer has resulted in the 

identification of numerous epigenetic abnormalities that may be used as potential 

biomarkers for the molecular diagnosis of cancer and prognosis of survival or treatment 

outcomes. Despite a lack of conclusive information to clarify whether or not epigenetic 

changes are involved directly in neoplastic cell transformation, evidence highlighted above 

suggests that epigenetic alterations may be used as early indicators of carcinogenesis for 

both genotoxic and non-genotoxic carcinogens. Importantly, several research groups have 

argued that epigenetic alterations may be used as biomarkers in the evaluation of the 

carcinogenic potential of the environmental factors [5,67,68,141].

Incorporation of the epigenetic biomarkers into the studies on cancer risk of exposures holds 

a number of advantages over traditionally used methods, such as evaluation of the 

carcinogen-induced DNA damage, DNA adduct formation, or bacterial mutagenicity. 

Specifically, we reason that the following features are in favor of greater integration of 

epigenetic biomarkers in studies of the carcinogenic potential of the environmental 

exposures: (i) early appearance; (ii) stability; (iii) target tissue-specificity; (iv) relatively low 

cost of the assays needed to detect these changes, (v) applicability to both genotoxic and 

non-genotoxic agents, and, more importantly, (vi) a greater number of detectable epigenetic 

changes as compared to the genetic alterations after exposure.

Also, the incorporation of epigenetic technologies into the studies of cancer risk promises to 

enhance substantially the efficiency of carcinogenicity testing. More importantly, the 

reversibility of epigenetic alterations opens novel mechanism-based approaches not only to 

cancer treatment but also to the timely prevention of cancer [142]. However, despite a very 

promising outlook on the benefits of epigenetic biomarkers, additional studies are still 

needed to better define the nature and mechanisms of epigenetic abnormalities in respect to 

carcinogenic processes [60,143,144]. Although extensive studies have identified a number 

of cancer-related epigenetic abnormalities that are associated with carcinogen exposure, 

there is no consensus on the role of changes in tumorigenesis.

Additionally, it is possible that not all these aberrant epigenetic events are equally important 

for the tumorigenic process [145]. It is highly unlikely that all of these epigenetic changes 

play a causative role in tumorigenesis. For example, some epigenetic changes may drive 

other epigenetic events that contribute to the formation of a transformed phenotype, while 

others may be passenger epigenetic events that accompany the transformation process [146]. 

In this respect, the identification of those epigenetic events that drive cell transformation is 

crucially important for understanding mechanisms of tumorigenesis and for cancer 

prevention.
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