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Transcriptome analysis of human brain provides fundamental insight about development and 

disease, but largely relies on existing annotation. We sequenced transcriptomes of 72 prefrontal 

cortex samples across six life stages, and identified 50,650 differentially expression regions 

(DERs) associated with developmental and aging, agnostic of annotation. While many DERs 

annotated to non-exonic sequence (41.1%), most were similarly regulated in cytosolic mRNA 

extracted from independent samples. The DERs were developmentally conserved across 16 brain 

regions and within the developing mouse cortex, and were expressed in diverse cell and tissue 

types. The DERs were further enriched for active chromatin marks and clinical risk for 

neurodevelopmental disorders like schizophrenia. Lastly, we demonstrate quantitatively that these 

DERs associate with a changing neuronal phenotype related to differentiation and maturation. 

These data highlight conserved molecular signatures of transcriptional dynamics across brain 

development, some potential clinical relevance and the incomplete annotation of the human brain 

transcriptome.
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Introduction

The transcriptome of the human brain changes dramatically across development and aging, 

with the largest gene expression changes occurring during fetal life, tapering into infancy1,2. 

Developmental brain disorders often involve genes that are differentially expressed in fetal 

compared with postnatal life3,4. While exploration of the brain transcriptome has been an 

important approach to understanding brain development and brain disease, previous 

transcriptome characterizations have used primarily microarray technologies based on probe 

sequences that capture only a limited proportion of transcriptome diversity. The 

technological advances of RNA sequencing (RNA-seq) now permit a flexible and 

potentially unbiased characterization of the transcriptome at high resolution and coverage5. 

Yet, existing published RNA-seq-based characterizations of brain development have utilized 

gene- and/or exon-level count-based summarizations4,6,7, which require an accurate and 

complete gene annotation. Such feature-based read counts lack the ability to reliably identify 

novel transcriptional activity, but generally limit the inherent difficulty in transcript 

assembly and characterization based on short read sequencing technologies 8.

We have implemented a method for RNA-seq analysis at single base resolution to more 

fully characterize transcription dynamics, which leverages the benefits of both count- and 

transcript-based methods. We describe herein the results of deep coverage sequencing of the 

polyA+ transcriptomes of human dorsolateral prefrontal cortex (DLPFC) samples across 6 

important life stages – fetal (2nd trimester), infant, child, teen, adult and elderly (Table S1) – 

and implemented an annotation-agnostic differential expression analysis to leverage the 

power of RNA-seq without the difficulties of transcript assembly 9. This method, called 

derfinder, identifies differential expression at base-pair resolution, and forms differentially 

expressed regions (DERs) by joining adjacent differentially expressed bases. We tested for 

differences in average expression levels across the six age groups and used statistical 
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permutation to calculate a measure of genome-wide significance for each DER 10. A DER 

represents a differentially expressed unspliced segment of RNA (here, across age) that can 

originate from a full-length, or potentially spliced, transcript. The derfinder approach 

therefore interrogates transcript-level changes in gene expression via differentially expressed 

segments using only coverage-level RNA-seq data. This approach allows an unconstrained 

and unbiased search of the transcriptome to identify fragments of interest for more detailed 

molecular characterization of corresponding full length transcripts.

After application of this approach to a discovery dataset of 36 brain samples, we carried 

forward DERs that had significant differential expression in a replication dataset of an 

additional 36 DLPFC samples. Significant and replicated DERs were mapped onto existing 

reference transcriptomes in databases such as Ensembl 11, UCSC 12, and Gencode 13 to 

characterize their locations in the genome. We further explored the expression levels within 

DERs to a wide range of publicly available resources, including RNA-seq data from 16 

human brain regions 14, the developing mouse cortex 15, and a variety of other cell 16 and 

tissue 17 types to understand these patterns in a broader context (summarized in Figure 1). 

Lastly, we identify significant enrichment for functional epigenomic marks associated with 

gene expression and for disease-associated genetic loci from recent GWAS. The results 

highlight conserved signatures of gene expression across development and aging in the 

human brain, including many non-exonic sequences that appear to be mature mRNAs, and 

identify biological fingerprints of age-associated changes in neuronal phenotypes and CNS 

disorder associated genes.

Results

Extensive transcriptional changes across brain development

We identified 50,650 DERs associated with development and aging that were both genome-

wide significant in our discovery dataset (at FWER ≤ 5%) and were also differentially 

expressed in a second independent sample of 36 human brains distributed across the same 

age ranges (at p < 0.05, see Methods, Table S1). These DERs represent 8.63 megabases 

(Mb) of expressed sequence (Table S2), annotated to 5,985 unique RefSeq (and overlapped 

6,549 unique Ensembl) genes. There were, on average, 7.51 DERs annotated to each RefSeq 

gene (median = 4, IQR: 2–10) – only 1,454 genes contained a single DER (24.3%).

The RefSeq genes containing DERs were strongly enriched for many general developmental 

and metabolic processes including organelle organization (GO:0006996, 976/2368 genes, 

p=7.13×10−29), regulation of gene expression (GO:0010468, 1314/3442 genes, 

p=8.62×10−23) and regulation of transcription, DNA-dependent (GO:0006355, 1127/2916 

genes, p=3.78×10−21) (Table S3A). A more focused gene ontology analysis using the 1000 

most significant DERs revealed more specific enrichment for neuron projection 

morphogenesis (GO:0048812, 49/575 genes, p=4.98×10−11), neuron development (GO:

0048666, 61/838 genes, p=1.29×10−10), axonogenesis (GO:0007409, 43/509 genes, 

p=1.08×10−9) and nervous system development (GO:0007399, 100/1784 genes, 

p=3.84×10−10, Table S3B).
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The majority of the DERs have highest expression levels (adjusted for sequencing depth) in 

the fetal developmental period (N=41,405; 81.7%), followed by adolescent (N=3,104; 6.1%) 

and adult expression levels (N=2,621; 5.2%). The genes containing DERs most highly 

expressed from infancy through adulthood are consistently enriched for synaptic 

transmission (GO:0007268; p-value range: 5.0×10−12-5.5×10−24), cell-cell signaling (GO:

0007267; p-value range: 4.0×10−7-1.7×10−17), and other related signaling processes 

(Supplementary Tables 3D–G). Interestingly, genes containing DERs most expressed in 

later life (50+) were not enriched for these signaling processes, and instead were enriched 

for processes related to cellular respiration and energy-related processes (Table S3H).

Principal component analysis (PCA) of the normalized coverage estimates across the 50,650 

DERs revealed that the first principal component (PC) represents a linear scaling (either 

positive or negative) of expression across the lifespan (72% of variance explained, Figure 

S1A). The second and third PCs explain lesser variance (combined 15.1%), and represent 

dynamic expression from infanthood to adolescence with relatively similar levels of 

expression in fetal life and adulthood (Figure S1B,C). However, almost all DERs had much 

higher correlation to the first PC (49,698; 98.1%) than the second or third PCs (605 and 346, 

representing 1.2% and 0.7%, respectively), suggesting that most DERs represent “scaling” 

of gene expression, i.e. one-directional change, across the lifespan.

Several of the genes containing the most significant DERs showed patterns consistent with 

the canonical biology of brain development (see Figure S2). These include the high 

expression of previously identified developmentally significant genes during fetal life, such 

as SOX11 (also shown in Figure 1) which encodes a transcription factor involved in the 

regulation of embryonic development 18 and DCX, which is involved in the migration and 

organization of neuroblasts 19. Expression of SLC6A1 (GAT1), a sodium/chloride dependent 

GABA transporter that removes GABA from the synaptic cleft, follows the well-studied 

early developmental expression of the Gabaergic system 20. DERs overlapping NRGN and 

CAMK2A, two calcium binding proteins important for learning and memory and 

neuropsychiatric disorders 21,22, become most highly expressed in infant and teenage life 

periods, respectively. Interestingly, several DERs that have the highest expression during 

postnatal life have been implicated in brain disorders thought to be developmental, including 

RGS4, a G-protein signaling regulator associated with schizophrenia 23 that has highest 

expression during adolescence, and CNTNAP1, a contactin-associated protein associated 

with autism 24 with highest expression during adulthood.

Many of the genes associated with DERs also showed developmental regulation across the 

lifespan using previously published microarray data on 269 non-psychiatric individuals 1 

(obtained from GSE30272, see Methods), which highlights both confirmation of the 

developmentally-regulated genes identified with the DERs and the gains made from using 

sequencing-based approaches over microarrays. Notably, many of individuals in the present 

RNA-seq study discovery dataset (N=28/36) were interrogated in this array-based dataset. 

Most (4,955/5,985 (82.8%)) of the DER-associated genes were present in the processed 

microarray data and almost all of these genes were differentially expressed across the 

lifespan: 4,920 (99.3%), 4,684 (94.5%), and 4,304 (86.9%) were significant at p < 0.05, p < 

10–6, and p < 10–11, respectively. Of the 1,030 genes showing significant differential 
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expression only in the RNA-seq data, 432 genes were removed during QC steps performed 

in Colantuoni et al 1 (suggesting they may be more difficult to measure using 

oligonucleotide probes), and the remaining 598 genes were not included on the microarray 

design. These genes did not differ in functionality from those included on the microarray (all 

GO enrichment p-values > 10–6).

Widespread differential expression of unannotated sequence

Surprisingly, many of the age-associated DERs, while contained within genes, contained 

expressed sequence annotated as intronic – i.e. 21,033 significant regions (41.5%) 

overlapped at least one Ensembl-annotated intron (minimum overlap = 20 base pairs, see 

Methods). Additionally, 4,214 regions (8.3%) do not map to any Ensembl annotated genes 

(i.e. exonic or intronic regions), which we term “intergenic”; 29,813 regions (58.9%) cross 

at least one annotated exon (Figure S3). Not surprisingly, the exonic DERs had, on average, 

much higher expression across all samples than DERs annotating to non-exonic sequence 

(140.8 normalized reads compared to 14.0 and 8.2 normalized reads for intergenic and 

intronic DERs, respectively, p <10−100) and were longer (190.3 bp versus 150.4 and 139.4 

bps respectively, p<10−20). Nevertheless, of the 3,056 Ensembl genes containing intron-

annotated DERs, 1,765 (57.7%) genes contained both intronic and exonic DERs. We note 

these intronic changes are not likely due to technical artifacts and we observe significant 

enrichment of lncRNAs in the intergenic DERs (see Supplemental Note). There were similar 

percentages of overlapping annotated features using the UCSC hg19 knownGene (based on 

RefSeq) database (19,575 / 6,676 / 26,886 for introns/intergenic/exons, respectively) and 

Gencode v19 (21,107 / 3,994 / 30,016), further suggesting that the transcriptome contained 

in commonly accessed databases is quite incomplete, at least across human brain 

development.

The widespread differential expression across development and age of previously-annotated 

intronic sequence may be due to an abundance of nuclear pre-mRNA present in the total 

RNA. We therefore sought to better distinguish pre-mRNA from spliced exonic mRNA by 

sequencing nuclear and cytosolic preparations from six additional independent brain 

samples (three fetal and three adult, Table S4). Quantifying the relative concentration of 

mRNA in the cytosolic and nuclear mRNA fractions provided initial evidence that our 

differentially expressed regions were present in the cytosol – the mean concentrations of 

cytosolic to nuclear RNA were 204.0:17.6 (ng/ul; 11.6x) in the fetal samples and 137.0:17.6 

(7.7x) in the adult samples, showing that the majority of polyadenylated RNA in total 

polyadenylated RNA originates from the cytosol. We sequenced each mRNA fraction from 

each sample to characterize the significant and widespread differential expression observed 

in the total RNA. The relative log2 fold changes of expression, comparing fetal to adult 

levels were highly correlated across total and cytosolic polyA+ mRNA DERs (ρ=0.914), 

including expression of annotated intronic (ρ=0.664) and intergenic (ρ=0.820) regions 

(Figure S4). There was especially high concordance in the directionality of the non-exonic 

fetal versus adult fold changes − 96.4% were directionally consistent overall between 

cytosolic and total polyA+ mRNA. These results implicate the developmental regulation of a 

potentially large subset of intron-containing mRNA in the cytosolic fraction of the human 

frontal cortex.
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Age-associated DERs lack regional specificity

We next explored the representation of our age-associated DERs in other brain regions, 

including other cortical and subcortical nuclei, and cerebellum using publicly available 

BrainSpan data 14, which included RNA-seq data across prenatal and postnatal 

developmental periods in 16 brain regions. Our DLPFC-identified DERs show consistent 

age-related changes across each brain region with little inter-regional variability. The first 

principal component (PC) of only the BrainSpan normalized mean coverage data across the 

50,650 DERs (explaining 59% of the variability) strongly correlates with age, particularly 

fetal versus post-natal, and not brain region (Figure 2). The second principal component 

(explaining 8.7% of the variability) strongly correlates with RNA quality (Figure S5), 

subsequent lesser principal components differentiate the neocortical regions from the 

subcortical region and cerebellum (Figure S6). Within a secondary PCA on only non-exonic 

DERs, the first principal component remains age (here explaining 40.6% of the variance, 

Figure S7). There was also significant correlation between log2 fold changes comparing fetal 

samples to adults in our DLPFC dataset and the same fetal versus post-natal comparison 

within each brain region, including within previously annotated intronic and intergenic 

sequences (Table 1). We note the high correlations between fetal versus adult comparisons 

in our DLPFC samples and the BrainSpan DLPFC samples constitute an additional 

independent validation of our identified DERs, including the non-exonic sequences.

Age-associated DERs are conserved in the mouse cortex

We further examined our DERs, particularly the preponderance of non-exonic expression, 

by leveraging genetic synteny in mice to validate differential expression using a cross-

species approach. We downloaded and renormalized publicly available data from mouse 

cerebral cortex, comparing E17 (N=4) to adult (N=3) C57BL/6 mice 15 which had 

previously been interrogated for differences in gene-level expression across development. 

We lifted over the DERs 12 to the mouse genome (mm10), of which 37,428 mapped (73.9%, 

average synteny = 88.7%) and 25,372 had an average coverage > 5 reads in at least one 

sample (22,195, 423, and 2,764 in human-annotated exonic, intergenic, and intronic 

sequence, respectively), suggesting a subset of these DERs are expressed in the developing 

mouse cortex. We identified significant correlation between the relative differences in fetal 

and adult human expression compared to E17 versus adult mouse expression within these 

syntenic regions (Figure 3, ρ = 0.771, p<10−100). The magnitude and directionality of the 

expression fold changes were consistent for many human sequences (directionality 

concordance = 84.1% overall), including those annotated as intronic and intergenic, 

suggesting these age-associated DERs represent conserved expression signatures in the 

mammalian developing brain.

Age-associated DERs expressed in other cells and tissues

We also explored the cell-type specificity of these DERs, and respective intronic and 

intergenic expression, using publicly available RNA-seq data from human stem cells 16 and 

somatic adult tissues 17. After re-aligning and processing these public datasets, we observed 

that the majority of the DERs had on average > 5 reads in at least one stem cell (86.4%) or 

tissue (84.0%) type, including non-exonic brain-expressed sequences (75.3% and 67.1% of 
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non-exonic DER expression in at least one stem cell or tissue group, respectively). 

Furthermore, 53.3% of all DERs, and 26.5% of non-exonic DERs were expressed in all five 

stem cell conditions in the dataset with coverage > 5 reads (ES, BMP4-treated ES, then 

differentiation to mesenchymal, mesendodermal and neural progenitor cells), while only 

0.4% of the DERs were expressed in all 16 tissue types (see legend of Figure 4).

We identified global expression similarities of these age-associated DERs (via PCA) 

between the fetal brain samples, and the stem cell and somatic tissue data (PC1) – notably, it 

was the postnatal brain samples that appear qualitatively different than the diverse cell and 

tissue types with respect to these DERs (Figure 4A). While the DERs overlapping intronic 

and intergenic Ensembl-annotated sequence align with the stem cells in its first PC (Figure 

4B), these non-exonic DERs appear most unique to the fetal human brain. We then 

contrasted these patterns to the clustering of the global transcriptome (based on read counts 

for all Ensembl-annotated genes, available in Data S1) – here PC1 distinguishes the brain 

(fetal and post-natal) from non-brain (stem cells and somatic tissues) samples, and PC2 

distinguishes developmentally active tissues (fetal brains and stem cells) from somatic 

postnatal tissues (including postnatal brains, Figure 4C). Gene-level expression patterns 

across the entire transcriptome highlight tissue specific features, while the DERs target more 

general developmental transitions. Thus, while the overall transcriptomes of cells at different 

stages of early differentiation are clearly distinct, the DERs reflect common features of these 

differentiating cells.

Age-associated DERs overlap open chromatin

We next sought to better characterize the DERs with regard to functionality, using publicly-

available histone data on human fetal brain 25. We downloaded and performed peak calling 

on ChIP-seq data on six histone tail marks (H3K27me3, H3K36me3, H3K4me1, H3K4me3, 

H3K9ac and H3K9me3) and DNase-seq data in fetal brain 25,26 (see Methods), and 

calculated the overlap with the DERs (see Methods). There was highly significant overlap 

(at empirical p < 10−100, see Methods for permutation procedure) between the DERs and 

histone marks associated with active chromatin, including H3K36me3 (OR=13.32), 

H3K4me1 (OR= 3.00), H3K4me3 (OR=5.66), and H3K9ac (OR=4.82). Notably, 

approximately half of the exonic (48.9%; 14,582/29,813) and intronic (49.4%; 

8,204/16,616) DERs were within 1kb of a significant H3K36me3 peak; a smaller proportion 

of the intergenic DERs were also within 1kb (22.7%, 960/4,221). There was also significant 

overlap between open chromatin and the DERs (OR=3.13, via the DNase-seq data). 

Conversely there was little enrichment for histone marks associated with repression, 

including H3K27me3 (OR=1.04) and H3K9me3 (OR=1.43). These effects are largely 

consistent between the DERs annotated to exonic and intronic sequence, and weakened 

within the DERs annotated to intergenic sequence (Table S5), demonstrating that the DERs 

largely reside in actively transcribed regions in the human fetal brain.

Age-associated DERs overlap disease-associated loci

We sought to identify potential overlap between the DERs and genetic loci conferring risk 

for 13 neurodevelopmental disorders, starting with schizophrenia, specifically the 108 

genome-wide significant loci from the latest Psychiatric Genomics Consortium genome-
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wide association study (GWAS) of over 150,000 subjects 27. Specifically, 42 loci (of the 

108 loci, 38.9%) overlapped at least 1 DER which was statistically significant via 

permutation analysis (p=0.0013, see Methods, Table 2). Stratifying the list of DERs by 

annotation class yielded more significant overlap for exonic (p=1.2×10−4) and intronic 

(p=2.9×10−4) DERs but non-significant overlap for intergenic DERs (p=0.053). These 

effects represented odds ratios of approximately 2.0 for all, exonic, and intronic DERs, and 

1.8 for intergenic DERs (see Methods).

We also assessed the overlap between the genes containing DERs and a series of pre-defined 

gene sets for other neurodevelopmental disorders, including autism, intellectual disability, 

and syndromal neurodevelopmental disorders 3. There was significant enrichment for genes 

associated with intellectual disability (p<10−4), and marginal association with autism 

(p=0.017, genes in the SFARI database 28) and genes associated with syndromal 

neurodevelopmental disorders (p=0.027) – these associations were in line with a previously 

published report on genes showing differential expression comparing fetal to postnatal life 

using microarray data 3. Overall, these results implicate the genes containing DERs as 

enriched for diverse neurodevelopmental disorders.

Lastly, we conducted several analogous analysis in other disorders not typically associated 

with neurodevelopment including brain- (Alzheimer's disease, AD, and Parkinson's disease, 

PD) and non-brain-related disorders (type 2 diabetes, T2D, see Methods), and identified 

significant overlap with the age-related DERs and PD 29, marginal overlap with AD 30, and 

no overlap with T2D 31. Notably, while only a small fraction of DERs were most highly 

expressed in adult life or later (8.4%), 4/7 AD and 5/11 PD genetic loci overlapped at least 

one of these DERs that was most highly expressed in adult life or later (p = 7.19×10−5 and 

1.01×10−4 respectively), in contrast to schizophrenia and other neurodevelopmental 

syndromes, in which the enrichment was primarily for DERs highly expressed in fetal life.

Fetal brain has the largest fraction of expressed genome

We utilized the coverage-level RNA-seq data in our 36 discovery brain samples to barcode 

regions of expression within each age group (essentially a one-group generalization of the 

derfinder procedure) regardless of differential expression signal. After normalizing each 

sample to an 80 million read library size, we identified contiguous regions where the 

average within-group expression levels were ≥ 5 reads. While we identified a similar 

number of expressed sequences across the six age groups, the fetal samples had a larger 

fraction of the genome expressed (approximately 4%) and had the fewest proportion of 

expressed sequences overlapping Ensembl-annotated exons (Table 3). Surprisingly, each age 

group had a very similar proportion of all annotated Ensembl exons and introns covered 

(55–58%). Lastly, we observe that the majority of PGC risk loci associated with 

schizophrenia 27 contain expressed sequence in the DLPFC, one of the brain regions most 

consistently implicated in schizophrenia 32. We observed similar metrics and inference using 

a threshold of ≥ 10 reads as a sensitivity analysis. Based on these results, we have created a 

custom UCSC “Track Hub” 33 called “LIBD Human DLPFC Development” which 

illustrates the coverage-level sequencing data within each age group, (Figure S8). These data 

Jaffe et al. Page 8

Nat Neurosci. Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can allow easy visualization of our data integrated with the diverse functionality of the 

UCSC Genome Browser.

Expression changes across development associate with a changing neuronal phenotype

Changes in gene expression across the lifespan may reflect a combination of changes within 

individual cellular populations and composition changes of varying cell types in the 

underlying brain tissue. In particular, a comparison of fetal frontal cortex, which contains 

predominantly neurons and neuronal precursors, and adult prefrontal cortex, which contains 

a mixture of neurons and glia, may reflect primarily these changing cell constituents. We, 

therefore, performed an in silico estimation 34 of neuronal, non-neuronal, and progenitor cell 

composition using DNA methylation (DNAm) data from our brain samples projected onto 

publicly-available DNAm data derived from cell lines (Table S6), including ES-derived 

NPCs 35, and adult cortex tissue flow-sorted into neuronal and non-neuronal components 

using the NeuN antibody 34,36. These composition estimates (i.e. the relative proportion of 

each cell type in each brain sample, Figure S9A–C) quantitatively confirm the proliferation 

of non-neuronal cells across the lifespan (p=5.56×10−5) and the loss of remaining NPCs at 

birth (p=6.01×10−17).

We then correlated these cell type proportions with the expression levels across individuals 

within each DER. The majority of DERs were significantly associated with only the NPC 

relative composition estimate (92.2% of DERS, pbonf < 0.05, Figure S9D) and not the 

NeuN- estimate (1.6% of DERs, pbonf < 0.05). Multivariate statistical modeling 

incorporating both NPC and NeuN- proportions (which are negatively correlated at ρ=

−0.53) illustrate that the vast majority of DERs associate only with the loss of NPCs 

(N=43,917), and very few DERs associate only with NeuN- (N=6). These results suggest 

that the widespread expression changes in human brain 1,2 at birth are more about a 

changing neuronal phenotype than a rise in non-neuronal cell types, specifically the 

differentiation of neural precursor and progenitor cells into mature neurons.

Discussion

We have identified widespread changes in the transcriptomes of the developing human 

prefrontal cortex, typically involving many genes previously implicated in brain 

development. However, unlike previous characterizations that rely on existing annotation, 

we observed extensive age-dependent expression of sequences previously annotated as 

intronic and intergenic in commonly accessed genomic databases (Ensembl, Gencode, and 

UCSC). The majority of these differentially expressed regions (DERs) are most highly 

expressed in the fetal brain, and decrease in expression across the lifespan. These 

developmental expression changes were largely present in cytosolic RNA from independent 

brain samples, present in 15 additional brain regions across development, conserved across 

mouse development using synteny, and showed considerable overlap with differentiating 

neural progenitor cells. We additionally identified significant enrichment for active 

chromatin marks and genetic risk for schizophrenia and other neurodevelopmental disorders. 

Our in silico data suggest that the majority of these DERs, regardless of annotation (i.e. 
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exonic, intronic or intergenic), reflect a changing neuronal phenotype, depicting 

differentiation and maturation across human brain development.

These developmental expression changes at single base resolution complement recent 

approaches characterizing the entire brain transcriptome within particular age groups, like 

fetal 7,37 or postnatal 38, for example, comparing expression changes across brain regions 39. 

Based on our integration with BrainSpan data, we identified regions that do not appear to be 

regionally regulated, and rather appear to be generic developmental switches in brain – this 

is in contrast to those genes recently reported by Pletikos et al 39 as possibly related to 

regional parcellation. For example, while the majority of the regionally-associated genes in 

Pletikos et al 39 were expressed in our data based on gene level measures (i.e. RPKM > 1) – 

87.0% of adult, 81.3% of fetal, and 88.2% of infant genes – only a smaller subset were 

present in the DER-overlapping 5,985 RefSeq genes – 44.4% of adult, 38.2% of fetal, and 

29.4% of infant regionally-associated genes. In contrast, those genes overlapped by DERs 

were not likely to be differentially expressed by region – of the 5,985 genes that overlapped 

DERs, only 5.1% were present in the adult regional association gene list, 16.3% of fetal, and 

0.09% of infant. We therefore hypothesize that genes associated with regional specificity are 

a separate subset from those associated with overall developmental processes, perhaps 

reflecting developmental changes arising from shifting cellular phenotypes in the latter case 

and regional changes representing different underlying cellular connectivities in the former.

The significant enrichment between the age-associated DERs and genetic loci associated 

with schizophrenia offers support for the neurodevelopmental hypothesis of the disorder 40. 

The current state of the art GWAS study of schizophrenia, involving over 150,000 subjects, 

identified 108 independent loci associated with risk for illness, and these loci contain 

approximately 340 potential gene candidates. Because many of the candidates that map to 

these loci are likely not participating in the population level association, a more finely 

grained analysis of the DERs that map to these loci may help eliminate some of the genes in 

these loci from the candidate list. Still, the mechanisms by which genes associated with 

schizophrenia lead to the emergence of the clinical syndrome in early adult life have been 

increasingly linked to early developmental processes involving both prenatal and postnatal 

factors40. Our evidence from the DER analysis supports this assumption. Similar enrichment 

of DERs was found for gene sets associated with risk for autism, intellectual disability, and 

various neurodevelopmental encephalopathy syndromes, all of which involve obvious early 

developmental clinical phenomena, thus supporting further clinical relevance of the DERs 

we have identified. Interestingly, while there was enrichment between DERs and loci 

implicated in neurodegenerative disorders, these genomic loci showed greater enrichment 

for DERs that reflect increased gene expression in adult life rather than fetal life.

While the age-associated DERs identified using a conservative statistical threshold occupy a 

relatively small proportion of the genome (8.63 Mb, 0.3% of the genome), we observed a 

much larger proportion of the genome being expressed across all age groups, particularly 

among fetal samples (121.8 Mb, 4.0%). As there were extensive differences among these 

proportions (e.g. 4.0% in fetal brain versus 3.1% in adult brain), our derfinder approach 

applied here depended on differential expression across six age groups, rather than focusing 

on fetal versus non-fetal expression differences, which are widespread 1,2. We note these 
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differences in the proportion of genome expressed could result from the more diverse 

cellular phenotypes in the fetal brain samples, particularly the residual ES and NPC 

signatures. We ran derfinder with especially conservative parameters (e.g. the single base 

threshold), sacrificing statistical power in exchange for reducing the number false positive 

DERs, an important distinction given the extent of identified novel transcriptional activity 

outside of previously defined exonic sequence. The public availability of our data allow for 

re-analyses with varying statistical thresholds and post hoc tests, particularly within 

individual genes of interest. We note that our DERs are, by definition, elements of 

transcripts, and not full mRNAs. The limitations of relatively short sequence read length 

makes full transcript assembly challenging, but the DERs provide entry points to explore 

targeted transcript assembly with other methods. We also note that our RNA capture 

approach using PolyA pulldown has limitations, particularly with respect to uncovering 

noncoding RNAs, many of which are not polyadenylated, and observable 3' biases.

Future biological experiments may better characterize the functional roles of these DERs, 

particularly the intronic and intergenic regions. Earlier RNA-seq characterization in 

commercially-available fetal and adult brain mRNA also identified widespread intronic 

expression, which was hypothesized to play a role in co-transcriptional splicing 41. The 

generation of additional ChIP-seq based functional histone tail marks in fetal brain can 

potentially generate more specific activity classes 42. Additionally, translating ribosome 

affinity purification (TRAP)-based assays may elucidate potential translation of DERs in 

particular cellular systems. For example, we find preliminary evidence in the mouse genome 

that at least 15% of the intronic and intergenic DERs (and almost all exonic DERs) are 

likely incorporated into translated protein products based on one small dataset consisting of 

exclusively E14.5 mouse forebrain 43. The “translatomes” from more diverse cell types in 

human tissue at various stages of development and cell lines may identify additional 

functional roles of our DLPFC-identified DERs. Similarly, we find little overlap between 

the DERs and reported lncRNAs from mouse neural stem cells from the subventricular 

zone 44 (only 2–3% of DERs, regardless of annotation) suggesting that lncRNA databases 

may be incomplete for human brain and that specialized subpopulations of cells may have 

unique transcriptomic signatures difficult to ascertain in homogenate tissue.

This study is the first to our knowledge to quantitatively estimate the influence of cellular 

composition changes on transcriptome dynamics across brain development, particularly 

when comparing prenatal and postnatal samples. Our results suggest that many reported 

differences in expression occurring across birth, and their subsequent association/enrichment 

in brain disorders 4,6 may be driven principally by changing neuronal phenotypes, rather 

than by the commonly considered rise of non-neuronal cell types. Importantly, the 

observation that many DERs result from a shifting cellular landscape cannot fully explain 

the widespread expression of non-exonic sequences, as a subset of these regions are more 

highly expressed in non-fetal samples. However, further research will better refine the 

composition profiles in bulk tissue, particularly in the uniform generation of more numerous 

replicates (e.g. NPCs) and cell types, for example via the Epigenomics Roadmap Project 25.

We anticipate these data, both processed and raw, will be a useful resource for interrogating 

expression change across the lifespan. Our custom UCSC track hub can be used to visually 
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identify novel transcriptional activity in candidate genes, and can be integrated with the 

other functional genomics tracks. The approach taken here explored one specific question of 

this rich dataset, and our results underscore the complexity of gene expression and cellular 

differentiation that occurs during brain development and the incomplete nature of current 

transcriptome annotation.

Online Methods

Postmortem brain samples

Post-mortem human brain tissue was obtained by autopsy primarily from the Offices of the 

Chief Medical Examiner of the District of Columbia, and of the Commonwealth of Virginia, 

Northern District, all with informed consent from the legal next of kin (protocol 90-M-0142 

approved by the NIMH/NIH Institutional Review Board). Additional postmortem fetal, 

infant, child and adolescent brain tissue samples were provided by the National Institute of 

Child Health and Human Development Brain and Tissue Bank for Developmental Disorders 

(http://www.BTBank.org) under contracts NO1-HD-4-3368 and NO1-HD-4-3383. The 

Institutional Review Board of the University of Maryland at Baltimore and the State of 

Maryland approved the protocol, and the tissue was donated to the Lieber Institute for Brain 

Development under the terms of a Material Transfer Agreement. Clinical characterization, 

diagnoses, and macro- and microscopic neuropathological examinations were performed on 

all samples using a standardized paradigm. Details of tissue acquisition, handling, 

processing, dissection, clinical characterization, diagnoses, neuropathological examinations, 

RNA extraction and quality control measures were described previously in Lipska, et al. 45. 

The Brain and Tissue Bank cases were handled in a similar fashion (http://

medschool.umaryland.edu/BTBank/ProtocolMethods.html). Toxicological analysis was 

performed on every case and subjects with evidence of macro- or microscopic 

neuropathology, drug use, alcohol abuse, or psychiatric illness were excluded.

We selected six samples per age group for our discovery dataset, balancing for sex (4 male, 

2 female) and RNA integrity number (RIN, mean = 8 per group), as our larger collection of 

fetal samples typically have higher RNA quality (eg. in Colantuoni, et al. 46). Additional 

demographic information for our discovery dataset is available in Table S1. We then 

selected an additional 36 samples, also consisting of 6 samples across the 6 age groups as 

above (fetal, infant, child, teen, adult, and >50) to serve as a replication cohort (Table S8).

RNA extraction and sequencing

Post-mortem tissue homogenates of dorsolateral prefrontal cortex grey matter (DLPFC) 

approximating BA46/9 in postnatal samples and the corresponding region of PFC in fetal 

samples were obtained from all subjects. Total RNA was extracted from ~100 mg of tissue 

using the RNeasy kit (Qiagen) according to the manufacturer's protocol. The poly-A 

containing RNA molecules were purified from 1 μg DNAse treated total RNA and following 

purification, fragmented into small pieces using divalent cations under elevated temperature. 

Reverse transcriptase and random primers were used to copy the cleaved RNA fragments 

into first strand cDNA, and the second strand cDNA was synthesized using DNA 

Polymerase I and RNaseH. We performed the sequencing library construction using the 
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TruSeq© RNA Sample Preparation v2 kit by Illumina. Briefly, cDNA fragments undergo an 

end repair process using T4 DNA polymerase, T4 PNK and Klenow DNA polymerase with 

the addition of a single `A' base using Klenow exo (3' to 5' exo minus), and then ligated of 

the Illumina Paired-end (PE) adapters using T4 DNA Ligase. An index/barcode was inserted 

into Illumina adapters allowing samples to be multiplexed in one lane of a flow cell. These 

products were then purified and enriched with PCR to create the final cDNA library for high 

throughput DNA sequencing using an Illumina HiSeq 2000.

RNA sequencing data processing

The Illumina Real Time Analysis (RTA) module performed image analysis, base calling, 

and the BCL Converter (CASAVA v1.8.2), generating FASTQ files containing the 

sequencing reads. These reads were aligned to the human genome (UCSC hg19 build) using 

the spliced-read mapper TopHat (v2.0.4) using the reference transcriptome to initially guide 

alignment, based on known transcripts of Ensembl Build GRCh37.67 (the “−G” argument in 

the software) 47. The total number of aligned reads across the autosomal and sex 

chromosomes (dropping reads mapping to the mitochondria chromosome) per sample are 

provided in Table S1.

derfinder analysis

We implemented the derfinder pipeline available from http://bioconductor.org/packages/

release/bioc/html/derfinder.html on the 36 discovery samples (Table S1) base-level coverage 

data (the number of reads crossing each base in the genome) was created from the aligned 

reads (BAM files). The statistical model was fit at every base (after performing coarse 

filtering to remove bases without at least 5 reads in at least 1 sample):

(1)

for coverage yij at base i for sample j, where Groupj is a categorical indicator variable for 

the six age groups, and Mj is the scaled and log-transformed total number of mapped reads 

per sample and adjusts for differences in library size between samples. This model is 

compared to the null model:

(2)

by constructing an F-statistic Fi which are then thresholded across the genome, and 

contiguous regions above the threshold form candidate differentially expressed regions 

(DERs), ranked by their area statistic (average F-statistic times region width), described in 

Jaffe, et al. 48. We used the per-base cutoff of F=20.509, which corresponded to a per-base 

p-value < 10−8 for our given statistical model and sample size. Empirical p-values were 

calculated by permuting the age group variable, keeping the coverage and library size fixed, 

1000 times, and rerunning the full procedure within each permuted dataset, and recording 

the null area statistics. R code is available at: https://github.com/lcolladotor/libd_n36. The 

family-wise error rate (FWER) for each candidate DER was calculated based on the null 

distribution of the maximum area statistic within each permutation 49. We note that our 

initial F-statistic cutoff was quite conservative: 246/1000 permutations did not result in a 
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single genome-wide F-statistic greater than the threshold. We retained the 63,135 significant 

DERs at a FWER ≤ 5%.

We then assessed the DERs in an independent but analogous dataset of 36 samples. Average 

coverage per DER was calculated within each of these replication samples, and then we 

calculated one F-statistic per DER using Equations 1 and 2 above (where yij is now the 

sample-specific average coverage within the DER). We retained DERs that were at least 

marginally significant (p < 0.05) in this replication dataset, yielding 50,560 (80.1%) 

genome-wide significant DERs that were also differentially expressed in this independent 

DLPFC dataset, which were used for the analyses described below. Non-replicated DERs, 

compared to replicated DERs, were narrower (83.0 bp versus 170.3 bp, p < 10−100), had 

smaller areas (mean 2633.9 versus 7034.9, p<10−100) (and therefore lower ranks), and also 

lower coverage (mean 6.6 reads versus 108.7 reads, p<10−100).

Gene annotations

We constructed “genomic state” objects for Ensembl version p12, UCSC build hg19 

knownGene, and Gencode v19 for rapid annotation of DERs, which, briefly, assigns a single 

state (exonic, intronic, or intergenic) to each base in the genome based on the gene 

annotation. For a given base, we prioritize exon > intron > intergenic, such that any exonic 

sequence in any transcript, even if other transcripts are annotated as intronic, are assigned 

the “exon” state. Any intronic sequence not overlapping annotated exons are assigned the 

“intron” state, and the remaining genome is assigned the “intergenic” state. We required 20 

base pairs (bp) of overlap between significant DERs and Ensembl annotation to be 

considered overlapping. The 100 bp mappability/alignability and Encode-excluded tracks 

were obtained from the UCSC Track Browser (http://genome.ucsc.edu/cgibin/hgTrackUi?

hgsid=141011952&g=wgEncodeMapability). LincRNA and miRNA tracks were obtained 

from the respective UCSC hg19 tracks as implemented in 

TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts 50 and 

TxDb.Hsapiens.UCSC.hg19.knownGene 51 R/Bioconductor packages. Pseudogenes were 

identified from the latest PseudoPipe Human Database, version 61 52.

Technical exploration of widespread differential expression of novel transcriptional 
activity

RNA-seq data processing and analysis involves a number of well-documented technical 

biases 53–56, but we found little evidence for the significant DERs originating from technical 

or computational artifacts. For example, 93.7% of DERs had average alignability/

mappability measurements of 100 bp reads greater than 99%, only 61 and 7 regions were in 

tracks excluded by the Duke site and Data Analysis Center of the Encode project consisting 

mainly of “BSR/Beta” satellite repeats, respectively, and only 1.9% of regions mapped to 

known pseudogenes. We did observe evidence of 3' bias in the entire set of DERs mapping 

within genes (the average proportion of nearest exon number to the total number of exons 

was 0.65; 1 means the DER was in the last exon, and 0.5 means the DER was in the middle 

exon), a well-described aspect of polyA RNA-seq 57. However, there was substantial 

variability in this exonic location proportion when stratified by gene – 43.8% of genes had a 

DER before its middle exon (i.e. the minimum exonic proportion was less than 0.5, by gene) 
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while 52.3% of genes had a DER at the last exon (i.e. the maximum exonic proportion was 

1.0, by gene). Analyzing the sequence composition, the introns containing a DER had only 

an average 1.4-fold enrichment for polyA (p=1.58×10−3) and polyT (p=8.61×10−5) repeats 

for almost all run lengths beyond 6 bases compared to sequences of introns that do not 

contain a differentially expressed region, adjusting for intron length. The average GC 

content of the exonic DERs was significantly higher than the intronic and intergenic DERs 

(0.492 in exonic compared to 0.454 and 0.449 in intergenic and intronic respectively, p < 

10−100), although there was a wide range of values (IQR spanned ~0.15 for each annotation 

category) and the GC content for all three annotation class was higher than the background 

genome (~0.42, based on the hg19 build). Only 23 regions cross an annotated micro-RNA 

(miRNA) but each also overlapped an annotated intron or exon, which is an important 

negative control given our polyA+ RNA library preparation should not capture these short 

RNAs. Lastly, of the DERs annotated as intergenic by Ensembl, 12.4% cross a known long 

non-coding RNA (lincRNA, via the TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts 

database 50), compared to 3.7% of all DERs (p<10−100).

Purification of Cytosolic and Nuclear RNA

We separated total RNA into nuclear and cytosolic fractions using the Cytoplasmic and 

Nuclear RNA Purification Kit by Norgen (Cat# 21000, 37400) following the manufacturer's 

protocol with an extra step of DNase I treatment in the cytosolic fraction in three 

independent adult and three independent fetal samples. Sequencing libraries were 

constructed as above, using the PolyA protocol, which were then sequenced on one lane of 

an Illumina HiSeq 2000, generating approximately 25M reads per sample. One sample 

overclustered in the sequencer, generating ~100M reads, but its expression was highly 

correlated with the expression of other samples of the same type (after adjusting for library 

size), and was therefore included in downstream analyses; see Figure 4 and Supplementary 

Figures 8–9. Additional demographic material for these independent validation samples are 

provided in Table S9.

BrainSpan RNA-seq analysis

Normalized sample-level RNA seq coverage data was obtained in the bigwig file format 

(http://download.alleninstitute.org/brainspan/MRF_BigWig_Gencode_v10/) and matched to 

phenotype data indicating the brain region and age of each sample. Mean coverage levels for 

each sample within each DER were computed, and log2 fold changes comparing fetal (age < 

0) to postnatal (age > 0) samples were calculated within each of the 16 brain regions that had 

at least 10 individuals (see Table 1). Principal component analysis (PCA) on the 

log2(normalized coverage + 1) matrix was visualized in Figure 2 and Supplementary Figures 

6 and 7. Spearman correlation was used to compare fetal versus adult coverage in our 

DLPFC samples to the fetal versus non-fetal coverage within each brain region.

Mouse RNA-seq analysis

We downloaded raw single end 80 bp sequencing reads in the FASTQ file format from 

Dillman, et al. 58 available from the Sequence Read Archive (SRA) 59 at accession number 

SRX172890. Reads were aligned to the mouse genome (build mm10) using TopHat (version 

2.0.9) 47, first aligning to the reference transcriptome (“-G” option described above). 
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Significant differentially expressed regions (DERs) identified in the developing human brain 

(UCSC hg19) were mapped to the mouse genome (UCSC GRCm38/mm10) using the 

liftOver tool 60 implemented in the “rtracklayer” R/Bioconductor package 61. Note that 

single human regions could result in multiple smaller sub-regions during the liftOver 

process, which were used to extract coverage-level data from the aligned mouse data, rather 

than the absolute range of the lifted over region. Log2 fold changes were calculated as 

log2(Mean Adjusted Fetal Coverage + 1) − log2(Mean Adjusted Adult Coverage + 1), where 

each sample was normalized by the total number of mapped reads (in millions) and then 

averaged within each age group. Spearman correlations and directionality concordances 

were calculated for each human-annotated Ensembl feature comparing the fold changes in 

mouse and human.

Public RNA-seq data processing

We downloaded raw sequencing reads from the Illumina BodyMap project 62 from SRA at 

accession ERP000546 in the FASTQ file format. Note that each tissue/sample had one 

replicate sequenced in a paired end configuration (50 bp reads) and another replicate 

sequenced using single end reads. Paired end reads were therefore treated as single end reads 

for alignment with TopHat (using the “–G” option as described above) to obtain base-level 

coverage estimates (which does not use paired end information), resulting in three 

measurements per tissue replicate. We note that single and paired end replicates clustered 

together at the DER and gene count level (Figure 4). Additionally, all samples labeled as “16 

tissue mixture” had very low alignment rates (range: 16.4%–40.6 %) which were much 

higher in the single tissue samples (range: 86.5%–96.0%).

We also downloaded 101 bp paired end raw sequencing reads from the UCSC Epigenome 

Project on differentiating stem cells 63 from SRA at accession SRP000941, which were 

aligned to the hg19 genome using TopHat as described above.

Cross-tissue analysis

Gene counts for the Lieber Institute post-mortem brain data and publicly available samples 

data were computed using the featureCounts program 64 using the Ensembl 

Homo_sapiens.GRCh37.73 gtf file, which were converted into the reads per kilobase per 

million mapped (RPKM) normalized count. Both raw and normalized coverage estimates 

(by total mapped reads) were extracted at the significant replicated brain DERs (N=50,560) 

and the subset of DERs that did not overlap an Ensembl-annotated exon (N= 20,837). Raw 

coverage counts were used to confirm coverage of > 5 reads across tissue and cell line group 

means.

Principal component analysis (PCA) was performed on the normalized coverage levels 

(scaled with log2 and an offset of 32) of the total set of DERs (Figure 4A) and the subset of 

DERs that were non-exonic (Figure 4B). PCA was performed on the gene RPKMs (Data 

S1), scaled with log2 with an offset of 1 (Figure 4C). Log2 fold changes were calculated as 

above for all samples (our brain data and the publicly available data), relative to our adult 

(ages 20–50) adjusted coverage levels.
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We further performed co-expression analyses within the three expression summarizations 

(individual DERs, the subset of non-exonic DERs, and the overall gene counts) within the 

combined cell and tissue type data. To better understand the global patterns described in the 

main text, we computed fold changes for mean adjusted expression levels for each tissue and 

cell type relative to the mean of the adult (total RNA) brain samples. The pairwise Spearman 

correlations and concordances (both invariant to scaling) were computed for each cell and 

tissue type (Figure S10). Notably, there was high correlation (ρ=0.603) and concordance (κ 

= 0.738) between the fetal brain sample and neural progenitor cell (NPC) fold changes 

within the DERs (Figure S11) – which was the only non-brain sample with concordance > 

70% (other groups with high concordance were infant brain, and then the cytosolic and 

nuclear fractions of fetal brains) – conversely these fetal brain samples were explicitly 

discordant with the other somatic non-brain tissues (all relative to adult brain expression 

levels). These results are consistent with a recent report by Brennand et al (2014), in which 

NPCs had significantly correlated gene expression levels measured on microarrays to first, 

and not second, trimester frontal cortex. The combination of these results suggests that 

cortex-derived DERs may represent a more general early developmentally conserved feature 

of the transcriptome.

Enrichment with chromatin marks and disease-associated loci

We downloaded the aligned reads (BED files) from the Epigenome Roadmap Project from 

the following GEO accession numbers: GSM621393, GSM669625, GSM806937, 

GSM806945, GSM916061, GSM621410, GSM806938, GSM806946, GSM706850, 

GSM806934, GSM806942, GSM621457, GSM669624, GSM806935, GSM806943, 

GSM669623, GSM621427, GSM806936, GSM806944, GSM916054, GSM1027328, 

GSM530651, GSM595913, GSM595920, GSM595922, GSM595923, GSM595926, 

GSM595928, GSM665804, GSM665819, GSM878650, GSM878651, GSM878652, 

GSM669944, GSM706851, GSM806948, GSM817243 which were fetal brain epigenomic 

data from H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9ac, H3K9me3, 

ChromatinAccessibility and input. CisGenome was used to call one set of significant peaks, 

comparing each set of biological replicates per mark to the inputs using the default 

settings 65. We tiled the hg19 genome into 1kb bins, dropping bins in the known gaps 

(centromeres, telomeres, etc), and then counted how many bins overlapped both a DER and 

ChIP-seq peak, only a DER, only a ChIP-seq peak, or neither. Each mark therefore 

generated a 2×2 table that summed to the number of genome-wide bins (N=2,861,069), and 

we computed the odds ratio of each 2×2 table – significance was assessed with a Chi-

squared test.

We performed a similar analysis for the PGC2 schizophrenia GWAS results using the 

chr:start-end of the 108 genomic loci from the Supplementary Table 3 of that manuscript 66. 

First we calculated the observed proportion of 108 genomic loci that overlapped at least one 

DER. Then, we performed permutation analysis to determine if this overlap was statistically 

significant – for a given permutation, we sampled 108 regions of the same widths from the 

genome (after removing the gaps as described above). Performing this permutation 

procedure 100,000 times resulted in 100,000 null overlap proportions. We then calculated an 

empirical p-value defined as the number of null proportions greater than the observed 
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proportion. An R package for this analysis is available from GitHub 67. The observed 

proportions were based on a list of a) all DERs, b) exonic DERs, c) intronic DERs, and d) 

intergenic DERs. The odds ratios for enrichment were calculated as above, using 1kb 

genomic bins, and counting the number of bins that overlapped PGC loci and DERs.

This analogous procedure was performed on genome-wide significant and replicated rs 

numbers available from main or supplementary tables for Alzheimer's disease 68, 

Parkinson's disease 69 and type 2 diabetes 70. For each list of rs numbers, we used the SNAP 

tool 71 to find all SNPs with R2 > 0.6 in Caucasian 1000 Genomes samples (mirroring the 

summary statistics from the schizophrenia associations), and then created a linkage 

disequilibrium-based loci for each index SNP. These loci were lifted over to hg19 and then 

used to assess the overlap with the significant DERs, both together and stratified by 

annotated feature.

Lastly, enrichment for disease-associated genes was calculated by first obtaining gene sets 

for neurodevelopmental gene sets as defined by Birnbaum, et al. 72 directly from its 

Supplementary Table 1. We computed the proportion of genes in each gene set that 

contained at least 1 DER, as assessed the significance of these observed proportions using 

permutation analysis. Specifically, we defined expressed genes using the featureCounts 

RPKM output (as described above) greater than 1.0, and resampled the same number of 

genes per gene set from the expressed genes (by symbol). For each permutated gene set, we 

calculated the proportion of null genes containing at least 1 DER, and we calculated 

empirical p-values based on 1,000 permutations (as above).

Expressed sequence analysis

Base-level coverage counts per sample were normalized to an 80 million read library size 

(by dividing by 80M akin to RPKM) to identify contiguous regions above some coverage 

level that we defined as “expressed”. Average normalized coverage levels were averaged 

within each age group, and these mean age group coverages were smoothed using a running 

mean operation with a window size of 7 bases to improve sensitivity and specificity 48,73 by 

reducing the number of very short “expressed” regions (unlike the multi-group derfinder 

procedure which did not utilize smoothing). These smoothed age group means were 

thresholded at a coverage level of 5 reads, a threshold that we previously validated using 

PCR and corresponds roughly to a one sided p-value < 0.05 for a one sample t-test with a 

sample size of 6, the number of samples per group here. We used a threshold of 10 reads for 

sensitivity the analyses displayed in Table S6, which complements Table 2.

Track Hub description

The track hub covers the entire genome at base-level resolution, and display by default: (A) 

the 50,560 significant DERs in a dense visibility, (B) the F-statistic for group differences, 

with the cutoff used to determine DERs and (C) the mean expression levels across the six 

samples in each of the six age groups, adjusted for library size (to 80M reads for easier 

interpretability, and colored to match Figure 1). Additional tracks are available, but hidden 

by default, consisting of the average adjusted expression within the fetal and infant nuclear 

and cytosolic mRNA fractions.
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Composition analysis using DNA methylation (DNAm) data

We implemented in silico estimation of the relative proportions of three cell types (ES-

derived NPCs from culture 74, and adult cortex neuronal and non-neuronal cells from 

tissue 75) using epigenome-wide DNAm data using a recently published algorithm 76. All 

data was obtained using the Illumina HumanMethylation450 (“450k”) microarray platform. 

After normalizing the publicly available data together using the preprocessQuantile function 

in the minfi Bioconductor package 77, we picked the cell type-discriminating probes as 

outlined by Jaffe and Irizarry 78 resulting in 227 unique probes that distinguished the three 

cell types. We then normalized the DNAm data from our 36 discovery samples, and 

estimated the composition of our samples from the methylation profiles of the homogenate 

cell types at the 227 probes using non-linear mixed modeling 76. Composition estimates 

were regressed against the normalized and log2 transformed expression levels within each 

DER across the 36 samples, and we obtained a moderated T-statistic and corresponding p-

value 79 for each cell type and DER. The Bonferroni–adjusted p-value was set at 

0.05/50,560, or p < 9.89×10−7.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic design of the project. We performed RNA sequencing (RNA-seq) on 36 DLPFC 

samples from across the lifespan, and implemented the derfinder method to identify 

“differentially expressed regions” (DERs). These DERs were replicated in an independent 

DLPFC sample, and explored across other brain regions, in the developing mouse cortex, in 

diverse cell and tissue types, and in the context of disease-associated gene sets. An example 

of a DER is shown in the top right corner (see legend of Figure S1 for a detailed 

description). We additionally quantified the cell composition of these DLPFC samples and 

defined regions of expression across the genome by age group.
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Figure 2. 
Age-associated differentially expressed region (DER) expression patterns across multiple 

brain regions. Principal component analysis (PCA) was performed on normalized coverage 

estimates across all DERs using all BrainSpan samples. Each point is a sample colored by 

age (purple: prenatal and green: postnatal), where white corresponds to birth.
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Figure 3. 
Cross-species comparison of differentially expressed regions (DERs). Significant DERs 

were lifted over to the mouse genome mm10 and RNA-seq coverage was extracted from the 

reprocessed Dillman et al 2013 study comparing E17 to adult C57BL/6 mice. Log2 fold 

changes comparing depth-adjusted mean differences between fetal and adult human samples 

are highly correlated with E17 versus adult mouse samples within each DER, stratified by 

human-annotated (A) exonic, (B) intronic, and (C) intergenic sequence, such that any DER 

with both exonic and intronic sequence was classified as exonic. Each point represents a 

single DER, where the size indicates the proportion of the DERs width that was successfully 

lifted over. ρ = Spearman correlation, κ = directionality concordance (e.g. higher or lower 

expression in fetal relative to adult in both species).
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Figure 4. 
Clustering analysis of differentially expressed regions (DERs). Principal component analysis 

(PCA) of (A) all significant DERs, (B) non-exonic sequence within the DERs and (C) gene 

counts from Ensembl annotation. PCA was performed on log2 adjusted coverage estimates 

across multiple datasets including our human brain samples along with publicly available 

differentiating stem cell and somatic tissue data. Colors and shapes for each point represent 

dataset and condition (see legend).
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Table 1

Correlation of fetal versus adult fold changes across brain regions within differentially expressed regions 

(DERs]. Spearman correlation coefficients were calculated between log2 fold changes comparing fetal versus 

postnatal expression levels within the DLPFC discovery dataset and each brain region in the BrainSpan 

database across the DERs [All], and within the DERs annotated to specific Ensembl features.

BrainSpan Region All (N=50,560) Intragenic (N=4,221) Intronic (N=16,616) Exonic (N=29,813)

DFC 0.863 0.702 0.49 0.895

VFC 0.851 0.684 0.429 0.888

MFC 0.858 0.705 0.485 0.891

OFC 0.845 0.674 0.36 0.891

M1C 0.841 0.675 0.388 0.882

S1C 0.83 0.657 0.326 0.878

IPC 0.849 0.681 0.464 0.882

A1C 0.86 0.698 0.517 0.888

STC 0.871 0.72 0.576 0.894

ITC 0.852 0.694 0.473 0.881

V1C 0.867 0.701 0.534 0.894

HIP 0.828 0.66 0.397 0.862

AMY 0.845 0.677 0.444 0.872

STR 0.788 0.607 0.428 0.816

MD 0.699 0.528 0.266 0.731

CBC 0.627 0.434 0.23 0.673

DFC: Dorsolateral prefrontal cortex; VFC: Ventrolateral prefrontal cortex; MFC: Anterior (rostal] cingulate (medial frontal cortex]; OFC: Orbital 
frontal cortex; MIC: Primary motor cortex (area M1, area 4]; S1C: Primary somatosensort cortex (area S1, areas 3,1,2]; IPC: Posteroinferior 
(ventral] parietal cortex; A1C: Primary auditory cortex (core]; STC: Posterior (caudal] superior temportal cortex (area Tac]; ITC: Inferolateral 
temportal cortex (area Tev, area 20]; V1C: Primary visual cortex (striate cortex, area V1/17]; HIP: Hippocampus (hippocampal formation]; AMY: 
Amygaloid complex; STR: Striatum; MD: Mediodorsal nucleus of thalamus; CBC: Cerebellar cortex.
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Table 2

Enrichment of DERs among GWAS-positive regions. Shown are p-values assessing significant overlap 

between DERs and locations of GWAS-positive loci for schizophrenia, Alzheimer's disease, Parkinson's 

disease, and type 2 diabetes.

Trait All Exon Intron Intergenic

Schizophrenia 0.0013 0.0001 0.0003 0.0530

Alzheimer's Disease 0.0385 0.2778 0.0117 0.6016

Parkinson's Disease 0.0039 0.0100 0.0035 0.0882

Type 2 Diabetes 0.2500 0.1029 0.4307 0.1200

Nat Neurosci. Author manuscript; available in PMC 2015 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jaffe et al. Page 30

Table 3

Expressed sequences/regions by age group defined by 5 or more adjusted reads across consecutive bases 

(adjusted for library size]. MB: megabases; exonic/intronic/intergenic: the percentages of the expressed 

regions overlapping annotated features; exons/introns: the converse, being the proportion of all Ensembl 

features (313,836 unique exons and 266,102 unique introns] covered by expressed sequences in– each age 

group. “108 PGC2 for SZ” – the number of PGC2 loci overlapping at least 1 expressed sequence in DLPFC. 

Lastly, we show the percent of expressed regions when defined using 10 or more adjusted reads, as a 

sensitivity analysis.

Age Group

Fetal Infant Child Teen Adult 50+

#of Regions 459,426 481,029 413,202 365,903 437,935 420,294

# in DERs 46,813 37,618 33,958 31,818 32,849 31,563

Coverage (MB) 121.8 107.5 97.1 90.5 92.9 91.4

Genome Covered 4.1% 3.6% 3.2% 3.0% 3.1% 3.0%

Exonic 44.0% 46.8% 54.0% 58.8% 53.1% 54.1%

Intronic 77.1% 72.8% 71.1% 70.2% 69.9% 68.9%

Intergenic 11.9% 13.3% 12.9% 12.5% 12.9% 13.4%

Exons (Ensembl) 55.2% 56.8% 56.9% 55.3% 56.5% 55.8%

Introns (Ensembl) 57.6% 58.1% 57.7% 55.4% 57.2% 56.0%

108 PGC2 for SZ 83 84 83 82 83 88

Intronic ≥10 reads 73.2% 65.6% 64.6% 64.4% 63.7% 62.4%
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