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Abstract

Any structural or functional impairment of the mitral valve (MV) apparatus that exhausts MV 

tissue redundancy available for leaflet coaptation will result in mitral regurgitation (MR). The 

mechanism responsible for MV malcoaptation and MR can be dysfunction or structural change of 

the left ventricle, the papillary muscles, the chordae tendineae, the mitral annulus and the MV 

leaflets. The rationale for MV treatment depends on the MR mechanism and therefore it is 

essential to identify and understand normal and abnormal MV and MV apparatus function.
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Introduction

Normal mitral valve (MV) function is dependent on the integrity of the MV apparatus and 

the harmonious interplay of its main components - the mitral annulus (MA), the MV leaflets, 

the chordae tendineae, and the LV wall with its attached papillary muscles (PMs) (Figure 1 

A, B). This spatially and temporally finely tuned system maintains the MV leaflets within 

the LV preventing prolapse, and maintains them beneath LV outflow tract (LVOT) flow and 

taut, preventing systolic anterior motion (SAM). Adequate MV leaflet closure and 
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coaptation depend on the balance of systolic leaflet tethering vs LV closing forces and 

leaflet size [1]. Tethering forces are dependent on and transmitted via the LV wall - PM - 

chordae system, and closing forces reflect the pressure generated by the contracting LV [2–

4] (Figure 1A). MV dysfunction is relatively uncommon in patients younger than 65 years 

[5], but structural and / or functional impairment of any MV apparatus components can 

unsettle the tethering force - closing force balance and result in mitral regurgitation (MR) 

[2–4].

Mitral Valve Apparatus

The MV has anterior and posterior leaflets and variable commissural scallops. The leaflet 

bases circumferentially insert into the mitral annulus, and the ventricular leaflet body and 

edges are connected to the PMs and LV wall via chordae (Figure 1B, C). The leaflet cross 

sectional structure is trilaminar and each layer’s extracellular matrix (ECM) has unique 

characteristics and biomechanical properties important to the normal function of the MV. On 

the atrial side, the atrialis layer is rich in subendothelial elastic proteins that buffer leaflet 

stretch during systole. The atrialis is covered by endotheliumin continuum with the LA. 

Towards the leaflet core, the spongiosa layer contains hydrophilic proteins that act as 

cushion-like coaptation zone shock absorbers and therefore promote a tight MV seal. Facing 

the ventricular side, the fibrosa / ventricularis layer is characterized by a sub-endothelial 

collagen fiber network aligned to transmit and spread the LV closure / chordal force 

optimally towards the mitral annulus. Valve interstitial cells can be found in all layers and 

have an important role in maintaining leaflet homeostasis. Mostly quiescent in the normal 

adult leaflets, these interstitial cells can become activated in response to mechanical stress or 

injury to promote ECM remodeling [6]. The anterior leaflet is larger (4–7 vs 2–3 cm2), 

longer (18–24 vs 11–14 mm) and usually thicker than the posterior leaflet and is trapezoid / 

dome-shaped [7–12]. It shares a rigid fibrous tissue continuity with the noncoronary cusp of 

the aortic valve (Figure 1 B, C). The posterior leaflet is crescentic-shaped with short radial 

length [12] and a long circumferential base that is attached to the posterior MA (Figure 1 B, 

C). The MA is a non-planar saddle shaped tissue structure that interconnects the LA, the LV 

and the mitral leaflets [13, 14] (Figure 1 B, C; Figure 2 A). The MA is innervated and 

supplies blood vessels and nerve fibers to the attached leaflet bases [15, 16]. The anterior 

portion of the MA is continuous with the rigid aortic annulus and is the elevated (most 

atrial) “horn” of the saddle shape [13, 17] (Figure 2 A). The posterior MA includes the low 

points of the saddle (most ventricular), close to the lateral and medial commissures and the 

posterior saddle horn (Figure 2 A). The average MA area in healthy subjects is ~10 cm2 [10, 

18–21]. The flexible posterior MA allows for systolic apical bending along a commissural 

axis [17, 22]. This mechanism, in combination with the planar kidney-bean and horizontal 

saddle-shape configuration allows the MA to sphincter-like shrink in area by ~ 20 – 42% 

from diastole to systole [19–21, 23, 24], which reduces leaflet tissue stress and is important 

to maintain coaptation (Figure 2 B, C) [25–30]. The chordae tendineae originate from the 

PM heads and are fibrous strings composed of an interfacing, tightly linked collagen and 

elastin network. They insert fan5 like into the anterior, posterior and commissural leaflets 

and dampen the PM - leaflet force transmission (Figure 1 B) [31, 32]. Chordae can be 

distinguished by leaflet location insertion as primary and secondary. Primary (marginal) 
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chordae attach to the leaflet free edges, are thinner and have limited extensibility due to 

higher collagen fibril density and reduced crimping [33]. These characteristics ensure a 

stable systolic coaptation location. Secondary (basal) chordae insert into the central anterior 

and posterior leaflet bodies [34] are thicker and have more tightly crimped collagen that 

makes them more extensible [33]. The PMs are labeled by their projected relationship to the 

mitral commissures as lateral and medial [11] (Figure 1 B, C). Their bodies originate from 

the apical 1/3 of the LV and protrude finger-like into the cavity [35] (Figure 1 A, B; Figure 

3). In the majority of cases the lateral PM has a single head and dual blood supply from the 

left circumflex and left anterior descending coronary arteries. The medial PM has commonly 

2 heads and is either supplied by the right or circumflex coronary artery based on dominance 

[8, 11, 36]. PM contraction maintains the spatial relationship between the MA and the PM 

heads during systole and prevents leaflet prolapse [37–39].

Mitral Regurgitation Mechanism

MR develops if the MV leaflets do not sufficiently cover the MA orifice throughout LV 

systole, and is commonly classified as primary MR - indicating leaflet pathology - or 

secondary MR in the setting of LV myocardial pathology. MR can also be functionally 

classified based on MV leaflet pliability and motion (Carpentier Classification) [40, 41]. To 

facilitate medical communication, MV leaflet malcoaptation and MR jet origin are 

commonly indicated by anterior (A) or posterior (P) leaflet and lateral (A1 / P1), central 

(A2 / P2) or medial scallop location (A3 / A3) [31] (Figure 1 C).

It is important to understand that significant MR regardless of etiology can prompt 

independent and ongoing LV and MV apparatus remodeling and start a vicious circle 

whereby reactive remodeling contributes to MR [4, 10, 42]. An example is MA dilatation 

and dysfunction, which is rarely a primary cause for MR, but much more commonly a 

consequence of other MV or LV diseases. Significant MR is uncommon if the MV leaflet - 

MA area ratio is larger than ~1.5 – 2 [8, 10], but this ratio is in jeopardy once the MA dilates 

and loses its saddle shape and sphincter function [10, 19, 21, 24, 43]. MA remodeling 

additionally increases leaflet stress [25–30, 44]. MA flattening has also been described in 

myxomatous MV disease, associated with more severe MR and chordal rupture, potentially 

related to increased out-of-plane stresses [30, 45, 46]. MA remodeling has also been recently 

reported in patients with atrial fibrillation and MR, termed atrial functional MR [47, 48].

Primary Mitral Regurgitation

1) Chordal Rupture / Papillary Muscle Rupture

Elongation or rupture of marginal chordae due to degenerative tissue abnormalities, 

iatrogen, or endocarditis almost always lead to significant MR due to leaflet edge eversion 

(=flail leaflet; Figure 3 A) [49]. Secondary chordae rarely rupture, and due to their leaflet 

body insertion, are not critical to maintain coaptation. To the contrary, cutting secondary 

chordae is a strategy to potentially treat secondary MR when chordal tethering restricts 

coaptation (please see below). Due to its single coronary artery supply, the medial PM is at 

higher risk to necrose and rupture in myocardial ischemia and infarction.
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Treatment strategies—Chordal or PM rupture almost always results in flail leaflets and 

acute severe MR, with intermediate MR degrees with isolated rupture of structurally less 

important chords or an individual PM tip rather than a full head. Acute severe MR is a 

medical catastrophe that in the majority of patients leads to flash pulmonary edema and 

cardiogenic shock. The underlying etiology determines the mortality, which is up to 55% in 

patients presenting with acute MI [50]. Nonischemic chordal rupture in the setting of 

degenerative MV disease or endocarditis has a lower mortality rate, and the clinical 

presentation may be less dramatic if there was antecent MR and the LV and LA have 

adapted to MR hemodynamics. Since the underlying problem of acute severe MR is 

mechanical, surgical MV repair or replacement are the only sustainable treatment options. 

Pre- and afterload-reducing medical and interventional therapies (e.g. percutaneous LV 

assist device, Intra-aortic balloon pump) can be used as a bridge to potential surgical MV 

leaflet coaptation restoration. Transcatheter MV repair with a MitraClip (Abbott 

Laboratories, Abbott Park, Illinois) may become an alternative to openheart surgery if leaflet 

anatomy and underlying MR etiology are suitable and the risks for open-heart surgery 

prohibitive [51].

2) Mitral Valve Prolapse

Mitral valve prolapse (MVP) is defined as anterior, posterior or bileaflet MV billowing 

toward the left atrium by more than 2mm above the anterior and posterior MA horns during 

LV systole, and affects about 2.5% of the general population [52, 53]. MV coaptation 

geometry is altered due to a combination of leaflet and chordal extensibility, redundancy and 

elongation, potentially combined with MA flattening and enlargement [30, 45, 46]; whether 

superior PM displacement or traction is cause or effect of prolapse is unclear [54, 55]. MR 

severity depends on the degree of leaflet malcoaptation; it can range from trace to severe and 

increases over time [56]. MVP is usually a manifestation of degenerative MV disease, and 

as such resulting MR is often termed degenerative MR (DMR). MVP is characterized by 

mainly two leaflet pathologies that have been described in the literature, although it is not 

known whether they are discrete etiologies or parts of a continuum: In the first, termed 

“Barlow’s disease”, the billowing leaflets are diffusely thickened, redundant and discolored. 

Bi-leaflet prolapse is common and patients tend to need MV intervention by age 50. Barlow 

leaflets are characterized by an altered trilaminar architecture, abnormal accumulation of 

myxomatous ECM, disordered collagen and elastin fibers and activated interstitial cells that 

express excessive levels of catabolic enzymes [57]. The other reported MVP phenotype is 

called “Fibroelastic deficiency” (FED) [12], in which the MV is in general thin to lucid 

except in flail leaflet portions, which may be due to secondary changes triggered by 

turbulent MR flow [58]. Patients with FED commonly present with ruptured chords and a 

variably flail posterior leaflet in their 6th decade. FED leaflets are deficient in collagen, 

elastin and proteoglycans. MVP is associated with connective tissue syndromes, in particular 

collagen mutations (e.g. Ehlers-Danlos, Osteogenesis imperfecta) and Marfan syndrome, in 

which current knowledge suggests that abnormal fibrillin-1 leads to overexpression of 

transforming growth factor beta (TGF-β), an important regulator of MV leaflet ECM 

formation and remodeling [59, 60]. Similar valve abnormalities can be seen in patients with 

mutation of TGF-β receptors (Loeys-Dietz syndrome) [61]. Nonsyndromic MVP can be 

sporadic or familial, and appears to be transmitted via various genetic pathways and 
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penetrance. Family MVP studies have suggested an autosomal dominant transmission and 

identified specific chromosomes [62–64]. Studies of X-linked forms of myxomatous valve 

disorders have revealed FLNA gene mutations [65, 66] that result in impaired filamin A, a 

protein vital to normal actin cytoskeleton structure and function that protects cells from 

mechanical stress [67].

Treatment strategies—Hemodynamically significant DMR is commonly considered to 

be at least moderate to severe, and lesser MR - unless in patients in need for open-heart 

surgery for other reasons – is usually clinically monitored and followed. Significant DMR is 

a mechanical problem of leaflet malcoaptation, and unless as a bridge to surgery or in 

inoperable patients, medical therapy has a rather limited role with poor long-term outcome 

(up to 8% yearly mortality; up to 10% yearly morbidity; up to 90% chance of need for 

surgery / death over 10 years) [68–70]. Surgical or transcatheter MV interventions on the 

other hand aim to restore effective MV leaflet coaptation by reducing leaflet redundancy, 

MA dimensions, and if needed, implanting artificial neo-chordae to restrain leaflet 

excursion. Suitable leaflet characteristics may allow leaflet free edge approximation at the 

MR site (edge-to-edge technique) by a stich (Alfieri stitch) [71] or a clip (MitraClip) [51]. 

Repair techniques aim to restore leaflet function while preserving the native valve and 

mechanical or tissue MV replacement is rarely needed in patients with MVP and a skilled 

surgeon [40]. Improving the natural history of chronic degenerative significant MR hinges 

on intervening at a time point that maximizes patient survival and minimizes disease and 

intervention morbidity. The evidence base supporting such an optimal intervention time-

point in chronic significant DMR is unfortunately, however, imperfect due to a lack of 

randomized and prospective studies. Currently, the AHA / ACC Valvular Heart Disease 

guidelines recommend that patients with symptomatic severe DMR (with a LV ejection 

fraction (LVEF) > 30%) as well as asymptomatic patients who have an LVEF ≤ 60% or an 

LV end-systolic LV chamber dilatated ≥40mm should have MV surgery with emphasis on 

MV repair of either the anterior or posterior leaflet when possible and durable as opposed to 

MV replacement (Class I Level B) [72]. This approach has been criticized for intervening 

too late, as patients with significant symptoms and LV dysfunction have worse postoperative 

outcome in terms of mortality and durability of MV repair [73]. Class IIa Level B MV 

surgery recommendations are for asymptomatic patients with severe DMR with 1) new 

onset of atrial fibrillation or 2) resting pulmonary hypertension >50 mmHg as long as there 

is a high likelihood of a successful and durable MV repair. An important and Class IIa Level 

B recommendation is to consider MV surgery in asymptomatic patients with severe DMR 

with preserved LV function and dimensions in whom the likelihood of a successful and 

durable repair without residual MR is >95% with an expected mortality rate of <1% when 

performed at a Heart Valve Center of Excellence [72]. This approach is supported by the 

progressive and dire natural history of chronic severe DMR when treated medically and 

decreased postoperative survival once significant symptoms or LV dysfunction develop [70, 

73]. The long-term success of this strategy that ultimately restores life expectancy to normal 

is, however, absolutely dependent on a predictable, successful and durable MV repair [74, 

75]; it is also worthwhile to point out that mainly patients over the age of 50 seem to benefit 

[75]. A recent guideline addition was the consideration of transcatheter MV repair in 
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severely symptomatic patients with chronic severe DMR but prohibitive surgical risks and a 

reasonable life expectancy (the only FDA approved approach is the MitraClip) [72].

Besides surgical techniques, the routine intra-op MV surgical use of transesophageal 

echocardiography (TEE) has contributed significantly to predicting, guiding and assessing 

successful MV repair: TEE imaging can determine MV annuloplasty ring size by measuring 

the anterior leaflet length and required neo-chord lengths, which is especially helpful in less 

invasive MV repair [76]. TEE can predict post MV repair development of systolic anterior 

motion (SAM, see below) based on LV cavity size <45mm in end-diastole, aorto-mitral 

angle <120 degrees, MV leaflet coaptation-septum distance <25 mm, posterior leaflet height 

>15 mm and basal septal diameter ≥ 15 mm [77, 78]. Transcatheter MV repair with a 

MitraClip would be close to impossible without TEE guidance.

3) Leaflet Perforation

Anterior or posterior MV leaflet perforation can be the result of trauma, but is most 

commonly due to localized tissue destruction from endocarditis. Besides primary MV 

endocarditis, AV endocarditis can directly extend towards the anterior MV leaflet via the 

anatomically shared fibrous trigone (Figure 1C) or be transmitted via the AV regurgitation 

blood jet.

Treatment strategies—Depending on the size and location of the MV leaflet perforation, 

potential endocarditis extent, and overall clinical presentation, such tissue defects can be 

closed with a pericardial patch.

Secondary Mitral Regurgitation

Functional or ischemic MR is the result of systolic leaflet restriction and tethering to 

displaced PMs in the setting of a distorted, remodeled LV (Figure 3 B). LV remodeling can 

be global, with LV dilatation and increased sphericity [3, 79–82], or localized, affecting 

mainly the PM - bearing LV walls [83]. LV remodeling that leads to outward apical / 

posterior / posterolateral PM displacement (Figure 3 B) [83–88] will increase the systolic 

PM heads - MA distance [89–92], which restricts MV leaflet closure motion and increases 

tethering forces. Leaflet coaptation is impaired and MR results [93]. In secondary MR, the 

MV leaflets are classically considered normal and to be innocent bystanders. Recent 

investigations, however, show significant MV leaflet tissue changes and adaptation [4, 10, 

94–98]. Indeed, active leaflet growth and enlargement can occur in reaction to mechanical 

stretch, sometimes matching even severe LV dilatation to prevent secondary MR [4, 10, 42, 

98, 99]. Reactivation of embryonic growth processes such as endothelial-to-mesenchymal 

transformation and mild TGF-β expression in response to mechanical stretch have been 

shown in-vitro [100] and in-vivo in tethered leaflets [42]. Insufficient leaflet growth in the 

setting of heart failure is however frequent and secondary MR remains common. 

Preliminary data recently showed that excessive leaflet thickening can occur after 

myocardial infarction and is associated with subsequent MR [101], which is in accordance 

with previous work suggesting the presence of adverse fibrotic leaflet changes in secondary 

MR. These changes include abnormal matrix composition, increased collagen concentration 

and turnover and activation of valvular interstitial cells leading to stiffer valves, potentially 
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impairing coaptation and contributing to MR [96, 97, 102]. These observations are currently 

challenging leaflet “normality” in secondary MR.

Treatment strategies

The aim of significant secondary MR therapy is to reduce apical and mitral annular leaflet 

tethering to restore MV leaflet tissue redundancy for effective MV coaptation. Every effort 

should be made to improve LV function by optimally treating coronary artery disease 

(medically / revascularization) [103–105], and cardiomyopathy and heart failure medically, 

if indicated by cardiac resynchronization therapy [106, 107] and potentially by gene / cell 

therapy [108–111]. Acknowledging the limited evidence, the current AHA / ACC Valvular 

Heart Disease guidelines recommend that MV surgery is reasonable in patients with chronic 

severe secondary MR who are undergoing coronary artery bypass grafting or aortic valve 

replacement (Class IIa Level C); MV surgery may be considered for severely symptomatic 

patients with chronic severe secondary MR (Class IIa Level B); MV repair may be 

considered for patients with chronic moderate secondary MR who are undergoing other 

cardiac surgery (Class IIa Level C) [72]. Surgical techniques besides current mitral annulus 

area reduction and / or MV repair / replacement [112] may target PM repositioning by 

addressing the LV shape [113–115], isolated PM approximation [116], chordal cutting [117–

120] and MV leaflet edge-to-edge approximation technique [71]. Therapy strategies that 

deal with the MV annulus alone but not apical leaflet tethering are often limited and result in 

recurrent MR [112, 121–124]; leaflet tethering can additionally be reduced, for example by 

cutting selected secondary chordae without deleterious effects on LV function [118–120, 

125]. Transcatheter MV repair in symptomatic, at least moderate to severe secondary MR 

patients is currently studied in the Cardiovascular Outcomes Assessment of the MitraClip 

Percutaneous Therapy for Heart Failure Patients with Functional Mitral Regurgitation 

(COAPT) Trial. Although therapeutic strategies promoting compensatory MV leaflet growth 

with minimal fibrosis would be of interest, factors underlying valve tissue adaptation and 

remodeling are still poorly understood at this time.

Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM) is morphologically characterized by significant LV 

hypertrophy in the absence of chronically elevated afterload or infiltrative diseases (e.g. 

cardiac amyloidosis) (Figure 3 C double-arrow) [126]. In HCM, total PM muscle mass is 

doubled and the number of heads increased [127]. The PMs are anteriorly displaced (Figure 

3 C arrow) and the heads closer to each other [128, 129], which increases MV leaflet slack 

and positions the leaflets closer towards the LVOT. Larger and elongated MV leaflets 

additionally contribute to leaflet slack [9, 130]. This PM – MV constellation favors a MV 

coaptation location more anteriorly and closer to the LVOT, which predisposes the anterior 

leaflet to being pushed into the LVOT by blood-flow drag forces (=systolic anterior motion 

(SAM)) [129, 131–135]. Subsequent LVOT narrowing increases the blood flow velocity 

above the leaflet and propagates SAM through airplane-like lift forces [136, 137]. MR will 

develop once anterior leaflet displacement interferes with MV leaflet coaptation (Figure 3 C 

red lines) [138]. Frequent MV and PM anomalies predispose to SAM [139]. Mechanisms 

leading to leaflet growth in HCM are still poorly understood; paracrine effects coming from 
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the abnormal myocardium, or mechanically induced growth secondary to turbulent or 

increased shear flow have been suggested; direct effects of gene defects / mutation on 

sarcomeric proteins are less likely as they do not appear to be expressed in the bulk of leaflet 

tissue [140].

Treatment Strategies

Since PM position is a major culprit, surgical or interventional septal reduction therapy does 

not always eliminate SAM [141, 142]. Additional effective repair strategies can include 

partial LV wall detachment of atypical anteriorly displaced PM insertions and trimming PM 

muscle mass [143], along with leaflet redundancy reduction, such as by an Alfieri stitch 

[144] or MitraClip [145].

Rheumatic Heart Disease

Rheumatic heart disease (RHD) can develop when T- & B- cell guided autoimmune 

response triggered by an untreated streptococcus pharyngitis mistargets heart tissue 

(molecular mimicry) [146]. Streptococcal carbohydrate-directed antibodies recognize 

cardiac myosin and also target heart valve endothelium via the protein laminin. This 

prompts a local inflammatory response and exposure of collagen with development of 

autoantibodies against exposed collagen. Endothelial expression of vascular cell adhesion 

molecule-1 (VCAM-1) drives further immune cell leaflet infiltration. The accumulating 

cocktail of inflammatory cells and cytokines promotes a vicious cycle of valvular interstitial 

cell activation, fibrotic leaflet remodeling and interstitial neovascularization [146]. 

Significant MR is the predominant valvular pathology during the initial phase of rheumatic 

fever and carditis. The MR mechanism is anterior leaflet prolapse due chordal elongation 

and MA annular dilatation [147, 148]. In the initial disease phase the MV leaflets appear 

normal, which is in stark contrast to advanced rheumatic heart disease, in which leaflet 

fibrosis, thickening and commissural fusion predominate. These MV changes restrict 

systolic and diastolic leaflet mobility and result in mitral stenosis (MS) and / or MR [148].

Treatment Strategies

Acute rheumatic MR treatment is similar to MVP patients and MV repair the goal whenever 

possible. Treatment of later rheumatic heart disease stages and combined MS and MR 

oftentimes requires MV replacement [149].

Future Directions

Cardiovascular imaging advancements in MR quantification and LV function and structure 

assessment will be critical to refine the optimal time point of therapeutic MV intervention, 

which will no doubt further develop towards less invasive and transcatheter MV repair 

options. Ongoing genetic studies will lead to improved understanding of the mechanisms 

underlying and promoting primary MV disease. Such knowledge could allow to identify 

patients at risk without yet established MV disease and may open a therapeutic time window 

to medically prevent or limit degenerative / myxomatous leaflet remodeling. Mechanistic 

studies in secondary MV disease will likewise explore associated leaflet changes on a 

cellular and tissue level to identify therapies that maintain and promote leaflet function and 
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thereby reduce adverse outcomes. Significant MR related to LV dysfunction might also 

conceivably be rescued and its development limited by future directed cell / gene therapies 

targeting the myocardium.

Summary

Normal anatomy and function of the LV, papillary muscles, chordae, mitral annulus and 

leaflets ensures effective leaflet coaptation and prevents leaflet tethering, prolapse and 

LVOT obstruction. Any temporal and spatial impairment of leaflet coaptation that exhausts 

leaflet redundancy may result in mitral regurgitation. Apical – annular leaflet tethering with 

restricted leaflet motion is characteristic for functional / ischemic MR; excessive leaflet and 

chordal motion and extensibility are characteristic for MVP (posterior leaflet), flail leaflets 

and rheumatic MR (anterior leaflet); SAM and elongated MV leaflets are typical for MR in 

HCM [77, 150]. A comprehensive understanding of MR and its mechanisms is essential for 

correct diagnosis and explains the rationale for optimal treatment [40].
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Figure 1. 
A. Schematic apical long-axis view of the heart in systole (apex on top). There is normal 

function and spatial relationship of the left ventricular myocardium, the papillary muscles 

(PM), chordae, leaflets and mitral annulus. The tethering force - closing force relationship is 

balanced, both leaflets normally configured and concave toward the LV, and leaflet tissue 

coaptation sufficient preventing mitral regurgitation. B. Surgical view of the open mitral 
valve in diastole. C. Surgical view of the closed mitral valve is systole. (Ao, aorta; LA, 

left atrium; LV, left ventricle; PM, papillary muscle; Panel A adapted from Dal-Bianco et al. 

Anatomy of the mitral valve apparatus: role of 2D and 3D echocardiography. Cardiology 

Clinics. 2013 Elsevier; Panels B and C are adapted from Carpentier A et al. Carpentier’s 

Reconstructive Valve Surgery. From Valve Analysis to Valve Reconstruction. 2010 

Saunders Elsevier).
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Figure 2. 
A. Normal 3–dimensional mitral annulus shape: This schematic shows the complex 

saddle horn shape of the mitral annulus (MA). The anterior and posterior MA horns are most 

atrial. The commissures are close to the most ventricular nadirs of the MA. B and C. 
Dynamic normal mitral annulus function. (B) Profile view of a normal MA in late 

diastole while maximally expanded. (C). MA sphincter-like contraction in systole promotes 

it’s saddle shape, which minimizes leaflet stresses and reduces the MA opening area in need 

to be covered by the leaflets. Normal dynamic MA function therefore allows brisk LV filling 

in diastole and promotes optimal MV closure and coaptation in systole. (A, anterior; P, 

posterior; AL, anterolateral; PM, posteromedial; Adapted from Grewal et al. Mitral Annular 

Dynamics in Myxomatous Valve Disease, Circulation 2010, Wolters Kluwer Health).
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Figure 3. 
A. Mitral valve prolapse with a flail posterior leaflet: The schematic shows bileaflet 

mitral valve prolapse with anterior directed mitral regurgitation (red lines) due to a flail 

posterior leaflet (arrow: ruptured chord) and loss of leaflet coaptation. Mitral valve prolapse 

with intact chordae is otherwise characterized by 1) leaflet coaptation that is displaced into 

the left atrium superior to the annular plane (dashed line), 2) superior displacement of the 

papillary muscle tip and 3) excessive leaflet and chordal tissue and mobility. B. Functional / 
ischemic mitral regurgitation: The papillary muscle is displaced posteriorly, laterally and, 

to the extent allowed by the chords, apically (arrow) due to left ventricular local dilatation & 

remodeling (arrows) caused by ischemic / myocardial infarction (shaded area). The LV wall-

PM displacement tethers the mitral leaflets apically and limits coaptation. If there is not 

enough leaflet tissue available for coaptation to compensate for leaflet tenting (area apical to 

the dashed line) mitral regurgitation will develop (red lines). C. Hypertrophic 
cardiomyopathy: The geometry of the left ventricle and papillary muscles is altered by 

myocardial hypertrophy (double arrow). The papillary muscles are enlarged and displaced 

anteriorly (arrow) and closer to each other (not shown). This decreases intercommissural 

leaflet tension and moves the coaptation point and distal leaflets closer into the left 

ventricular outflow tract and at risk of being displaced into the LV outflow tract by blood-

flow drag. If anterior leaflet displacement is severe enough and posterior leaflet apposition 

restricted, mitral regurgitation will occur (red lines). (Ao, aorta; LA, left atrium; LV, left 

ventricle; PM, papillary muscle; Adapted from Dal-Bianco et al. Anatomy of the mitral 

valve apparatus: role of 2D and 3D echocardiography. Cardiology Clinics. 2013 Elsevier;).
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