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Abstract Antibiotic resistance is a problem of deep scientific concern both in hospital and commu-

nity settings. Rapid detection in clinical laboratories is essential for the judicious recognition of

antimicrobial resistant organisms. Production of extended-spectrum b-lactamases (ESBLs) is a

significant resistance-mechanism that impedes the antimicrobial treatment of infections caused by

Enterobacteriaceae and is a serious threat to the currently available antibiotic armory. ESBLs are

classified into several groups according to their amino acid sequence homology. Proper infection

control practices and barriers are essential to prevent spread and outbreaks of ESBL producing bac-

teria. As bacteria have developed different strategies to counter the effects of antibiotics, the iden-

tification of the resistance mechanism may help in the discovery and design of new antimicrobial

agents. The carbapenems are widely regarded as the drugs of choice for the treatment of severe

infections caused by ESBL-producing Enterobacteriaceae, although comparative clinical trials are

scarce. Hence, more expeditious diagnostic testing of ESBL-producing bacteria and the feasible

modification of guidelines for community-onset bacteremia associated with different infections

are prescribed.
ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Resistance of pathogenic organisms to countenance antibiotics

has become a worldwide problem with serious consequences
on the treatment of infectious diseases. The heightened use/
misuse of antibiotics in human medicine, agriculture and

veterinary is primarily contributing to the phenomenon. There
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is an alarming increase of antibiotic resistance in bacteria that
cause either community infections or hospital acquired infec-
tions. Of particular interest are the multidrug resistant patho-

gens, e.g. Escherichia coli, Klebsiella pneumoniae, Acinetobacter
baumannii, methicillin-resistant Staphylococcus aureus, penicil-
lin-resistant Streptococcus pneumoniae, vancomycin-resistant

Enterococcus, and extensively drug-resistant Mycobacterium
tuberculosis (Alekshun and Levy, 2007).

Beta-lactam antimicrobial agents exhibit the most common

treatment for bacterial infections and continue to be the prom-
inent cause of resistance to b-lactam antibiotics among Gram-
negative bacteria worldwide. The persistent exposure of bacte-
rial strains to a multitude of b-lactams has induced dynamic

and continuous production and mutation of b-lactamases in
these bacteria, expanding their activity even against the newly
developed b-lactam antibiotics. These enzymes are known as

extended-spectrum b-lactamases (ESBLs) (Pitout and
Laupland, 2008; Paterson and Bonomo, 2005). Treatment of
these multiple drug resistant organisms is a deep scientific

concern. At the level of a wider geographic scale, the incidence
of ESBL-producing organisms is difficult to resolve due to
various reasons, difficulty in detecting ESBL production and

inconsistencies in reporting (Steward et al., 2000). Recently,
a significant increase in the incidents of ESBL-related
infections has been observed throughout the globe (Rupinder
et al., 2013; Abhijit et al., 2013; Majda et al., 2013; Meeta

et al., 2013; Kritu et al., 2013; Fatemeh et al., 2012; Gupta,
2007).
2. How do antibiotics work?

There are five major modes of antibiotic mechanisms of activ-
ity and here are some examples.

2.1. Interference with cell wall synthesis

Beta-lactam antibiotics like penicillin and cephalosporin

impede enzymes that are responsible for the formation of pep-
tidoglycan layer (Benton et al., 2007).

2.2. Inhibition of protein synthesis

Oxazolidinones, the newest class of antibiotics, interact with
the A site of the bacterial ribosome where they should interfere
with the placement of the aminoacyl-tRNA. Tetracyclines

interfere with protein synthesis by binding to 30S subunit of
ribosome, thereby weakening the ribosome-tRNA interaction.
Macrolides bind to the 50S ribosomal subunit and inhibit the

elongation of nascent polypeptide chains. Chloramphenicol
binds to the 50S ribosomal subunit blocking peptidyl
transferase reaction. Aminoglycosides inhibit initiation of

protein synthesis and bind to the 30S ribosomal subunit
(Leach et al., 2007).

2.3. Interference with nucleic acid synthesis

Rifampicin interferes with a DNA-directed RNA polymerase.
Quinolones inhibit DNA synthesis with interference of type II
topoisomerase, DNA gyrase and type IV topoisomerase
during replication cycle causing double strand break (Strohl,
1997).

2.4. Inhibition of a metabolic pathway

Sulfonamides (e.g. sulfamethoxazole) and trimethoprim each
block the key steps in the folate synthesis, which is a cofactor

in the biosynthesis of nucleotides, the building blocks of DNA
and RNA (Strohl, 1997).

2.5. Disorganizing of the cell membrane

The primary site of action is the cytoplasmic membrane of
Gram-positive bacteria, or the inner membrane of Gram-neg-

ative bacteria. It is hypothesized that polymyxins exert their
inhibitory effects by increasing bacterial membrane permeabil-
ity, causing leakage of bacterial content. The cyclic lipopeptide
daptomycin displays rapid bactericidal activity by binding to

the cytoplasmic membrane in a calcium-dependent manner
and oligomerizing in the membrane, leading to an efflux of
potassium from the bacterial cell and cell death (Straus and

Hancock, 2006). Antibiotic resistant versus antimicrobial
activity mechanism is shown in Fig. 1.

3. Antibiotic resistance mechanism

Antibiotic resistance is the reduction in effectiveness of a drug
such as an antimicrobial or an antineoplastic in curing a dis-

ease or condition. When the antibiotic is not intended to kill
or inhibit a pathogen, then the term is equivalent to dosage
failure or drug tolerance. More commonly, the term is used

in the context of resistance that pathogens have ‘‘acquired’’,
that is, resistance has evolved. When an organism is resistant
to more than one drug, it is said to be multidrug-resistant
(Fisher and Mobashery, 2010). Bacterial strains may possess

different types of resistant mechanisms which are shown in
Fig. 2 and are explained as follows.

3.1. Antibiotic inactivation

3.1.1. By hydrolysis

Many antibiotics have chemical bonds such as amides and
esters which are hydrolytically susceptible. Several enzymes
are known to ruin antibiotic activity by targeting and cleaving
these bonds. These enzymes can often be excreted. Extended-

spectrum b-lactamases (ESBLs) mediate resistance to all
penicillins, third generation cephalosporins (e.g. ceftazidime,
cefotaxime, and ceftriaxone) and aztreonam, but not to

cephamycins (cefoxitin and cefotetan) and carbapenems
(Bonnet, 2004).

3.1.2. By redox process

The pathogenic bacteria infrequently exploited oxidation or
reduction of antibiotics. However, there are a few examples
of this strategy (Yang et al., 2004). One is the oxidation of

tetracycline antibiotics by the TetX enzyme. Streptomyces
virginiae, a producer of the type A streptogramin antibiotic
virginiamycin M1, protects itself from its own antibiotic by

reducing a critical ketone group to an alcohol at position 16.
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Figure 1 Antibiotic resistance vs. antimicrobial activity mechanism.

Figure 2 Biochemical and genetic aspects of antibiotic resistance mechanisms.
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3.2. Antibiotic inactivation by group transfer

The most diverse family of resistant enzymes is the group of

transferases. These enzymes inactivate antibiotics (aminogly-
cosides, chloramphenicol, streptogramin, macrolides or rifam-
picin) by chemical substitution (adenylyl, phosphoryl or acetyl
groups are added to the periphery of the antibiotic molecule).

The modified antibiotics are impaired in their binding to a
target. Chemical strategies include O-acetylation and N-acetyla-
tion (Blanchard, 2004; Schwarz et al., 2004), O-phosphorylation

(Matsuoka and Sasaki, 2004), O-nucleotidylation (Brisson-Noel
et al., 1988), O-ribosylation, O-glycosylation, and thiol
transfer. These covalent modification strategies all require a

co-substrate such as ATP, acetyl-CoA, NAD+, UDP-glucose,
or glutathione for their activity and consequently these
processes are restricted to the cytoplasm.

3.3. Antibiotic resistance via target modification

The second major resistance mechanism is the modification of

the antibiotic target site so that the antibiotic is impotent to
bind properly. However, it is possible for mutational changes
to occur in the target that reduce susceptibility to inhibition
while retaining cellular function (Spratt, 1994).
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4. Genetics of antibiotic resistance

4.1. Antibiotic resistance via mutations

There is a substantial number of biochemical mechanisms of
antibiotic resistance that are based on mutational events, like

the mutations of the sequences of genes encoding the target
of certain antibiotics (e.g. resistance to rifampicin and fluoro-
quinolones is caused by mutations in the genes encoding the

targets of these molecules, RpoB and DNA-topoisomerases,
respectively) (Ruiz, 2003). The variation in the expression
of antibiotic uptake or of the efflux systems may also be
modified by mutation (e.g. the reduced expression or absence

of the OprD porin of Pseudomonas aeruginosa reduces the
permeability of the cell wall to carbapenems) (Wolter et al.,
2004).

4.2. Antibiotic resistance via horizontal gene transfer

A principal mechanism for the spread of antibiotic resistance

is by horizontal transfer of genetic material. Antibiotic resis-
tance genes may be transferred by different mechanisms of
conjugation, transformation or transduction. Over the last

15 years, b-lactamase enzymes that have an extended spec-
trum of activity (ESBL) against the majority of b-lactams,
including cephalosporins but not carbapenemases, have
evolved. One of these, CTX-M-15, initially found in E. coli

but now found in other members of Enterobacteriaceae and
frequently associated with a specific lineage, uropathogenic
clone ST131 (Bush and Fisher, 2011; Woodford et al.,

2011), has spread worldwide. It is often located on highly
mobile IncFII plasmids and associated with mobile genetic
element IS26. The risk of infection is particularly high in

individuals in association with prolonged hospitalization,
catheterization, nursing home residency, previous antibiotic
treatment, underlying renal or liver pathology, and travel to
high-risk areas (Nordmann et al., 2011).

5. ESBL definition and classification

There is no consensus of the precise definition of ESBLs.

ESBLs are a group of enzymes that break down antibiotics
belonging to the penicillin and cephalosporin groups and ren-
der them ineffective. ESBL has generally been defined as trans-

missible b-lactamases that can be inhibited by clavulanic acid,
tazobactam or sulbactam, and which are encoded by genes
that can be exchanged between bacteria. The currently most

common genetic variant of ESBL is CTX-M (Paterson and
Bonomo 2005; Walsh, 2003).

Beta-lactamases are commonly classified according to two

general schemes: the Ambler molecular classification and the
Bush–Jacoby–Medeiros functional classification (Bush et al.,
1995; Ambler, 1980). The Ambler scheme classifies b-lactamas-
es into four classes according to the protein homology of

enzymes. Beta-lactamases of class A, C, and D are serine b-lac-
tamase and class B enzymes are metallo-b-lactamases. The
Bush–Jacoby–Medeiros functional scheme is based on func-

tional properties of enzymes, i.e. the substrate and inhibitor
profiles.
5.1. SHV type

The SHV family of b-lactamases appears to be derived from
Klebsiella spp. The progenitor of the SHV class of enzymes,
SHV-1, is universally found in K. pneumoniae. In many strains

of K. pneumoniae, the gene encoding SHV-1, or its apparent
precursor, LEN-1, resides within the bacterial chromosome
too; it may be that the gene for SHV-1 b-lactamase evolved
as a chromosomal gene in Klebsiella and was later incorpo-

rated into a plasmid which has spread to other enterobacteria
species. SHV-1 confers resistance to broad-spectrum penicillins
such as ampicillin, tigecycline and piperacillin but not to the

oxyimino substituted cephalosporins (Livermore, 1995). The
SHV-1 b-lactamase is responsible for up to 20% of the plas-
mid-mediated ampicillin resistance in K. pneumoniae species

(Tzouvelekis and Bonomo, 1999).

5.2. TEM type

TEM-1, first reported from an E. coli isolate in 1965, has sub-
strate and inhibition profiles similar to those of SHV-1 (Datta
and Kontomichalou, 1965). TEM-1 is capable of hydrolyzing
penicillins and first generation cephalosporins but is unable

to attack the oxyimino cephalosporin. The first TEM variant
with increased activity against extended spectrum cephalospo-
rins was TEM-3 (Soughakoff et al., 1988; Sirot et al., 1987).

TEM-2 the first derivative of TEM-1, had a single amino acid
substitution from the original b-lactamase (Barthelemy et al.,
1985). This caused a shift in the isoelectric point from a pI

of 5.4–5.6, but it did not change the substrate profile. TEM-
3, originally reported in 1989, was the first TEM-type b-lacta-
mase that displayed the ESBL phenotype (Soughakoff et al.,
1988). In retrospect, TEM-3 may not have been the first

TEM-type ESBL. Klebsiella oxytoca, harboring a plasmid car-
rying a gene encoding ceftazidime resistance, was first isolated
in Liverpool, England, in 1982 (Du Bois et al., 1995). The

responsible b-lactamase was what is now called TEM-12.
Interestingly, the strain came from a neonatal unit which
had been stricken by an outbreak of K. oxytoca producing

TEM-1 (Du Bois et al., 1995). This is a good example of the
emergence of ESBLs as a response to the selective pressure
induced by extended-spectrum cephalosporins.

5.3. CTX type

A new family of b-lactamases that preferentially hydrolyzes
cefotaxime has arisen. It has been found in isolates of Salmo-

nella enterica serovar, Typhimurium, E. coli mainly and some
other species of Enterobacteriaceae (Gazouli et al., 1998;
Knothe et al., 1983). These are not very closely related to

TEM or SHV b-lactamases (Tzouvelekis et al., 2000). In
addition to the rapid hydrolysis of cefotaxime, another unique
feature of these enzymes is that they are better inhibited by the

b-lactamase inhibitor tazobactam than by sulbactam and cla-
vulanate (Bradford et al., 1998; Ma et al., 1998).

CTX-M b-lactamases are found exclusively in the

functional group 2 (Bush and Jacoby, 2010) and thought to
originate from chromosomal ESBL genes found in Kluyvera
spp. (Bush and Jacoby, 2012), an opportunistic pathogen of
the Enterobacteriaceae found in the environment. The first
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CTX-M proteins were discovered in the late 1980s and today
more than 100 variants have been sequenced (Bonnet, 2004).
Based on their amino acid sequences, they can be divided into

five groups (CTX-M group 1, 2, 8, 9, and 25) (Bonnet, 2004).
The origin of the CTX-M enzymes is different from that of

TEM and SHV ESBLs. While SHV-ESBLs and TEM-ESBLs

were generated by amino acid substitutions of their parent
enzymes, CTX-M ESBLs were acquired by the horizontal gene
transfer from other bacteria using genetic apparatuses such as

conjugative plasmid or transposon. The gene sequences encod-
ing CTX-M enzymes show a high similarity to those of b-lac-
tamases of Kluyvera species. In addition, the gene sequences
adjacent to the CTX-M genes of Enterobacteriaceae are also

similar to those surrounding the b-lactamase genes on the
chromosomes of Kluyvera species (Olson et al., 2005;
Humeniuk et al., 2002; Poirel et al., 2002).

Kinetic studies have shown that the CTX-M-type b-lacta-
mases hydrolyze cephalothin or cephaloridine better than ben-
zyl penicillin and they preferentially hydrolyze cefotaxime over

ceftazidime (Tzouvelekis et al., 2000; Bradford et al., 1998).
Although there is some hydrolysis of ceftazidime by these
enzymes, it is usually not enough to provide clinical resistance

to organisms in which they reside. It has been suggested that
the serine residue at position 237, which is present in all of
the CTX-M enzymes, plays an important role in the
extended-spectrum activity of the CTX-M-type b-lactamases

(Tzouvelekis et al., 2000). Although it has been shown not to
be essential, the Arg-276 residue lies in a position equivalent
to Arg-244 in TEM- or SHV-type ESBLs, as suggested by

molecular modeling, and may also play a role in the hydrolysis
of oxyimino cephalosporins (Gazouli et al., 1998). Recent crys-
tallographic data for the Toho-1 enzyme suggested that there

was increased flexibility of the interacting b 3 strands and x
loop of this enzyme in comparison to other class A b-lactamas-
es. Furthermore, the lack of hydrogen bonds in the vicinity of

the x loop could account for the extended-spectrum phenotype
(Ibuka et al., 1999).

5.4. OXA type

The OXA-type b-lactamases are so named because of their
oxacillin-hydrolyzing abilities. These b-lactamases are char-
acterized by hydrolysis rates for cloxacillin and oxacillin

greater than 50% as that for benzyl penicillin (Bush et al.,
1995). They predominantly occur in P. aeruginosa
(Weldhagen et al., 2003) but have been detected in many

other Gram-negative bacteria. In fact, the most common
OXA-type b-lactamase, OXA-1 has been found in 1–10%
of E. coli isolates (Livermore, 1995). The OXA-type ESBLs
were originally discovered in P. aeruginosa isolates from a

single hospital in Ankara, Turkey. In France, a novel
derivative of OXA-10 (numbered OXA-28) was found in a
P. aeruginosa isolate (Poirel et al., 2001). A novel ESBL

(OXA-18) and an extended-spectrum derivative of the
narrow spectrum OXA-13 b-lactamase (numbered OXA-19)
have also been discovered in France in P. aeruginosa isolates

(Philippon et al., 1997). The evolution of ESBL OXA-type
b-lactamases from parent enzymes with narrower spectra
has many parallels with the evolution of SHV- and TEM-

type ESBLs. Unfortunately there are very few epidemiologic
data on the geographical spread of OXA-type ESBLs
(Philippon et al., 1997).

5.5. PER type

The PER-type ESBLs share only around 25–27% homology
with known TEM- and SHV-type ESBLs (Bauernfeind et al.,

1996). PER-1 b-lactamase efficiently hydrolyzes penicillins
and cephalosporins and is susceptible to clavulanic acid inhibi-
tion. PER-1 was first detected in P. aeruginosa (Neuhauser

et al., 2003), and later in S. enterica serovar Typhimurium
and Acinetobacter isolates as well (Vahaboglu et al., 2001).
In Turkey, as many as 46% of nosocomial isolates of Acineto-

bacter spp. and 11% of P. aeruginosa were found to produce
PER-1 (Vahaboglu et al., 1997). PER-2, which shares 86%
homology to PER-1, has been detected in S. enterica serovar
Typhimurium, E. coli, K. pneumoniae, Proteus mirabilis, and

Vibrio cholerae O1 El Tor (Petroni et al., 2002).

5.6. GES type

GES-1 was initially described in a K. pneumoniae isolate from a
neonatal patient just transferred to France from French
Guiana (Poirel et al., 2000). GES-1 has hydrolytic activity

against penicillins and extended-spectrum cephalosporins,
but not against cephamycins or carbapenems, and is inhibited
by b-lactamase inhibitors. These enzymatic properties resem-
ble those of other class A ESBLs; thus, GES-1 was recognized

as a member of ESBLs.

5.7. VEB-1, BES-1, and other ESBL type

Other unusual enzymes having ESBL have also been described
(e.g. BES-1, CME-1, VE-B-1, PER, SFO-1, and GES-1)
(Bradford, 2001). These novel enzymes are found infrequently,

details of these enzymes are reviewed elsewhere (Naas et al.,
2008).

6. Detection

Observation of organisms harboring ESBLs provides clinicians
with helpful information. Treatment of infections caused by

ESBL-producing organisms with extended-spectrum cephalo-
sporins or aztreonam may result in treatment failure even
when the causative organisms appear to be susceptible to these

antimicrobial agents by routine susceptibility testing (Paterson
and Bonomo, 2005; Paterson et al., 2001). Additionally,
patients colonized or infected with ESBL-producing organism
should be placed under contact precautions to avoid hospital

transmission (Siegel et al., 2006). These benefits summon the
detection of ESBL-producing organisms in clinical laborato-
ries. Further, revision of cephalosporin breakpoints has been

achieved by the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) and is under way by the
Clinical and Laboratory Standards Institute (CLSI) for better

prediction of clinical outcome by MIC values (Kahlmeter,
2008). It is still controversial whether this revision might allow
clinical laboratories to dispense with ESBL detection (Paterson
and Bonomo, 2005; Kahlmeter, 2008).



Antibiotic resistance and extended spectrum beta-lactamases 95
6.1. Phenotypic detection

The US Clinical and Laboratory Standards Institute (CLSI)
and the UK Health Protection Agency (HPA) have published
guidelines for ESBL detection in Enterobacteriaceae specifi-

cally for E. coli, Klebsiella spp., and Proteus spp. (CLSI,
2002; HPA, 2008). The HPA guidelines also include other
species, such as Salmonella spp. These guidelines are based
on the principle that most ESBLs hydrolyze third-generation

cephalosporins although they are inhibited by clavulanate,
and recommend initial screening with either 8 mg/L (CLSI)
or 1 mg/L (HPA) of cefpodoxime, 1 mg/L each of cefotaxime,

ceftazidime, ceftriaxone, or aztreonam, followed by confirma-
tory tests (including the E-test ESBL strips) with both
cefotaxime and ceftazidime in combination with clavulanate

at a concentration of 4 lg/mL. Automated systems that use
similar detection principles have proved to be popular in clin-
ical laboratories, especially those in North America and cer-

tain European countries (Spanu et al., 2006). If clinical
laboratories adhere to the published guidelines for detecting
ESBLs, the CLSI and HPA published methods show high
sensitivity of up to 94% and specificity of 98% for detecting

ESBLs in E. coli, Klebsiella spp. and Proteus spp. (Wiegand
et al., 2007).

6.2. Genotypic detection

The determination of whether a specific ESBL present in a
clinical isolate is related to TEM and SHV enzymes is a com-

plicated process because point mutations around the active
sites of the TEM and SHV sequences have led to amino acid
changes that increase the spectrum of activity of the parent
enzymes, such as in TEM1, TEM2, and SHV1 (Bradford,

2001). The molecular method commonly used is the PCR
amplification of the blaTEM and blaSHV genes with oligonu-
cleotide primers, followed by sequencing. Sequencing is

essential to discriminate between the non-ESBL parent
enzymes (e.g. TEM1, TEM2, or SHV1) and different variants
of TEM or SHV ESBLs (e.g. TEM3, SHV2, etc.) (Bradford,

2001).
The PCR amplification of CTX-M-specific products with-

out sequencing, in an isolate that produces an ESBL, usually

provides sufficient evidence that a blaCTX-M gene is responsible
for this phenotype. This is unlike TEM and SHV types of
ESBLs. Several recent studies have described various
molecular approaches for the rapid screening of ESBL-positive

organisms for the presence of different blaCTX-M genes. This
involved a PCR assay that used four sets of primers to amplify
group specific CTX-M b-lactamase genes (Pitout et al., 2004),

amplification of a universal DNA fragment specific for most of
the different groups of CTX-M b lactamases (Batchelor et al.,
2005), duplex PCR (Pitout et al., 2007), multiplex PCR

(Woodford et al., 2006), real-time PCR (Birkett et al., 2007),
pyrosequencing (Naas et al., 2007), and reverse-line hybridiza-
tion (Ensor et al., 2007). Molecular techniques undoubtedly

have the potential to play an essential part in the laboratory
setting for the screening, tracking, and monitoring of the
spread of large number of organisms producing CTX-M
enzymes from the community and hospital settings in real

time.
7. Epidemiology

The epidemiology of ESBLs is quite complicated. Initially,
there are certain levels to consider: the wider geographical

area, the country, the hospital, the community, and the host
(in most cases a single patient or a healthy carrier). Moreover,
these are bacteria (E. coli is more endemic, and K. pneumoniae

is more epidemic) and their mobile genetic elements, usually
plasmids. Additionally, there are various reservoirs, including
the environment (e.g. soil and water), wild animals, farm ani-
mals, and pets. The final component entails transmission from

food and water, and via direct or indirect contact (person to
person) (Carattoli, 2008). The first ESBL to be identified was
found in Germany in 1983, but it was in France in 1985 and

in the United States at the end of the 1980s and the beginning
of the 1990s that the initial nosocomial outbreaks occurred
(Rice et al., 1990). Soon thereafter, it was discovered that

many of the K. pneumoniae strains that caused nosocomial
infections in France in the early 1990s were ESBL producers
(Sirot et al., 1987).

From an international aspect, the use of antibiotics, espe-
cially broad-spectrum agents, is narrow in Sweden (Cars
et al., 2001). Since February 2007, clinical laboratories are
required to report all cases involving ESBL-producing Entero-

bacteriaceae strains to the Swedish Institute for Infectious Dis-
ease Control, and the number of such cases increased by 100%
from 2008 to 2011 (SIIDC, 2012). In recent years, there have

also been larger nosocomial outbreaks of clonally ESBL
strains: one at a neonatal care unit with ESBL-related mortal-
ities, a large outbreak in Uppsala involving K. pneumoniae

with CTX-M-15, and in Kristiansand caused by a multi resis-
tant CTX-M-15-producing E. coli strain (Alsterlund et al.,
2009). According to data from the European Antimicrobial

Resistance Surveillance System (EARSS), 2.6% of E. coli
and 1.7% of K. pneumoniae strains in Sweden were resistant
to third-generation cephalosporins in 2010 (EARSS, 2011).

New TEM and the SHV enzymes are still emerging in Eur-

ope, and distinct epidemic clones have been found, for example
Salmonella isolates with TEM-52 in Spain (Fernandez et al.,
2006) and E. coli and K. pneumoniae isolates with SHV-12 in

Italy (Perilli et al., 2011). Isolates with the CTX-M-9 group
are common in Spain and strains with the CTX-M-3 enzymes
have been described chiefly in Eastern Europe, although clones

producing the CTX-M group 1 (including the CTX-M-15 type)
are the most widespread throughout Europe (Coque et al.,
2008a,b; Canton et al., 2008). Today, E. coli and the CTX-
M enzymes are not uncommon in outpatients. Moreover, the

resistance exhibited by K. pneumoniae has reached a higher
level with emergence of carbapenemases such as OXA-48,
which was first found in Turkey (Aktas et al., 2008).

Another investigation was conducted at a tertiary hospital
in Nigeria, among the overall ESBL producing isolates, 35%
being community origin and 65% from hospitals. The ESBL

isolates showed high resistance to tetracycline, gentamicin,
pefloxacin, ceftriaxone, cefuroxime, ciprofloxacin and
Augmentin (Amoxicillin and clavulanic acid combination).

Conjugation studies for Resistance plasmid transfer showed
non-transference of resistance determinants between the ESBL
transconjugants and recipient strains. Correspondingly, the
plasmid curing studies revealed that the acridine orange could
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not affect a cure on the isolates as they still retained high resis-
tance to the antibiotics after the treatment (Ruth et al., 2011).

A study conducted at the National Public health laboratory

(NPHL), Kathmandu, Nepal reported that 31.57% of E. coli
were confirmed as Extended Spectrum b-lactamase producers,
these isolates further exhibited co-resistance to several

antibiotics (Thakur et al., 2013).
In another research conducted at a tertiary hospital in

Mwanza, Tanzania, the overall prevalence of ESBLs in all

Gram-negative bacteria (377 clinical isolates) was 29%. The
ESBL prevalence was 64% in K. pneumoniae but 24% in
E. coli (Mshana et al., 2009). Dramatic figures were also
obtained in a small study at an orphanage in Mali, where

63% of the adults and 100% of the children were found to
carry ESBL-producing Enterobacteriaceae that showed
extensive co-resistance to other antibiotics (Tande et al.,

2009). Moreover, in Madagascar, Herindrainy et al. (2011)
observed that 10% of non-hospitalized patients carried
ESBLs, in the majority of the cases CTX-M-15, and these

investigators also found that poverty was a significant risk fac-
tor for carriage. Fatemeh et al. found that 26.5% of E. coli and
43% of K. pneumonia were ESBL positive in their study con-

ducted at the Imam Reza hospital of Mashhad, IR Iran. They
indicated the high prevalence of ESBL producing Enterobacte-
riaceae family especially in inpatients (Fatemeh et al., 2012).

The overall data on ESBL-producing Enterobacteriaceae in

the countries of the Middle East are extremely worrisome, and
this region might indeed be one of the major epicenters of the
global ESBL pandemic. Investigation conducted in that

country showed that 61% of E. coli produced ESBLs of the
CTX-M-14, CTX-M 15, and CTX-M 27 types, and all of
strains harbored the TEM enzyme (Al-Agamy et al., 2006).

In a study of inpatients in Saudi Arabia in 2008, Tawfik and
colleagues found that 26% of K. pneumoniae isolates produced
ESBLs, the majority of which were SHV-12 and TEM-1

enzymes, and 36% were CTX-M-15 (Tawfik et al., 2011).
Another investigation conducted in the same country in
2004–2005 showed that 10% of clinical urinary E. coli isolates
from inpatients and 4% of such isolates from outpatients were

ESBL producers (Khanfar et al., 2009). Moubareck and col-
leagues analyzed fecal samples in Lebanon in 2003 and noted
that ESBL carriage differed somewhat between patients

(16%), healthcare workers (3%), and healthy subjects (2%),
and also that there was a predominance of the CTX-M-15
enzyme (83%) (Moubareck et al., 2005). Other researchers in

Lebanon (Khanfar et al., 2009) observed that the proportion
of ESBL-producing isolates was significantly larger among
inpatients (15.4%) than in outpatients (4.5%). Moreover, data
collected over three years in Kuwait showed that the levels of

ESBLs were lower in community isolates of K. pneumoniae
(17%) and E. coli (12%) than in the corresponding hospital
isolates (28% and 26%, respectively) (Al Benwan et al., 2010).

Only lately have we begun to understand the extent of the
ecological disaster related to ESBL-producing Enterobacteria-
ceae in parts of Asia and the Indian subcontinent, and the

number of reports of very high frequency of such bacteria in
those regions continues to rise. It is likely that some of the
successful ESBL-producing clones originate from Asia.

Deficient sewage routines (the ‘‘Delhi belly’’) and poor quality
of drinking water, in combination with a lack of control over
prescription and sales of antibiotics, are probably major
factors that have promoted the development of resistance.
The United Nations has estimated the population of Asia to
be 4.2 billion in 2012, and hence it is a very challenging task
to try to stop the growing resistance to antibiotic stemming

from this part of the world as exemplified by the rapid spread
of the carbapenemase NDM-1 (Kumarasamy et al., 2010). A
few articles published as early as the end of the 1980s and

the beginning of the 1990s have reported occurrence of the
SHV-2 and Toho-1 (CTX-M-44) enzymes in China and Japan
(Hawkey, 2008). According to the SENTRY surveillance pro-

gram there have been rapid increase in ESBL-producing K.
pneumoniae (up to 60%) and E. coli (13–35%) in different
parts of China, with a predominance of the CTX-M-14 and
CTX-M-3 enzymes (Hawkey, 2008; Hirakata et al., 2005). It

has been found that 66% of third generation cephalosporin
resistant E. coli and K. pneumoniae from three medical centers
in India harbored the CTX-M-15 type of ESBL, which was

also the only CTX-M enzyme found (Ensor et al., 2006), and
an investigation of 10 other centers in that country showed
that rates of ESBL-producing Enterobacteriaceae reached

70% (Mathai et al., 2002). Recently ESBL production was
observed in 48% of E. coli, 44% of K. pneumoniae and 50%
of P. aeruginosa isolates in a tertiary hospital in Patiala,

Punjab (Rupinder et al., 2013). In other recent studies, authors
observed ESBL rates of 46% and 50% in out- and inpatients,
respectively (Sankar et al., 2012), and Nasa and co-workers
detected ESBL production in almost 80% of clinical isolates

(Nasa et al., 2012). Investigations from India and Pakistan
show an alarming and rapid increase in the prevalence of
Enterobacteriaceae with NDM-1 with prevalence rate from

6.9% in a hospital in Varanasi, India, to 18.5% in Rawalpindi,
Pakistan (Perry et al., 2011) and perhaps the spread of these
enzyme could be even more rapid than the spread of the

CTX-M enzymes.
Majda et al. reported that 72% of E. coli and 65.8% of K.

pneumoniae were ESBL producers at the Microbiology labora-

tory of Shalamar Medical College, Lahore. Sensitivity testing
showed a multidrug resistance in ESBL producing E. coli
and K. pneumoniae. Maximum resistance was recorded in
E. coli (ESBL) as cefotaxime (98.9%), Ceftazidime (96.7%)

and Cefuroxime (93.4%) while minimum resistance was seen
with Imipenem (0.8%), fosfomycin (1.2%) and Nitrofurantoin
as well piperacillin/tazobactam (2.2%) each. The ESBL pro-

ducing Klebsiella showed maximum resistance to ceftazidime
(100%), cefotaxime (89%), and Cefuroxime (84%) while min-
imum resistance was seen with imipenem (4%), Nitrofurantoin

and Piperacillin/Tazobactam (8%) (Majda et al., 2013).
In a most recent study Shakti et al. reported 12.11% ESBL

positive among ICU and NICU isolates and 22.47% ESBL
positive from nosocomial isolates. The author further statically

confirmed that ESBL strains were equally distributed in com-
munity or hospital units. Antibiogram of 23 antibiotics
revealed progressive increase in drug resistance against each

antibiotic with the maximum resistant values recorded against
gentamycin: 92% and 79%, oxacillin: 94% and 69%, ceftriax-
one: 85% and 58%, and Norfloxacin 97% and 69% resistance,

in nosocomial and community isolates respectively (Shakti
et al., 2014).

Although there are some differences between countries, the

highest prevalence of ESBL-producing K. pneumoniae in the
world is seen primarily in Latin America, data from 33 centers
in Latin America collected over the period 2004–2007 within
the Tigecycline Evaluation and Surveillance Trial (TEST)



Table 1 Epidemiology of ESBL producing organisms.

S. No. ESBL producing organisms Country/City References

1 E. coli, K. pneumoniae Sweden Alsterlund et al. (2009)

2 Salmonella spp. Spain Fernandez et al. (2006)

3 E. coli, K. pneumoniae Italy Perilli et al. (2011)

4 K. pneumoniae Turkey Aktas et al. (2008)

5 Enterobacteriaceae, P. aeruginosa Nigeria Ruth et al. (2011)

6 E. coli Nepal Thakur et al. (2013)

7 E. coli, K. pneumoniae Tanzania Mshana et al. (2009)

8 E. coli, K. pneumoniae Iran Fatemeh et al. (2012)

9 E. coli Middle East Al-Agamy et al. (2006)

10 E. coli Saudi Arabia Tawfik et al. (2011)

11 K. pneumoniae Saudi Arabia Khanfar et al. (2009)

12 E. coli, K. pneumoniae Lebanon Moubareck et al. (2005)

13 E. coli, K. pneumoniae Kuwait Moubareck et al. (2005)

14 E. coli, K. pneumoniae China Hawkey (2008) and Hirakata et al. (2005)

15 E. coli, K. pneumoniae India Ensor et al. (2006) and Nasa et al. (2012)

16 E. coli, K. pneumoniae Punjab Rupinder et al. (2013)

17 E. coli Odisha Shakti et al., 2014

18 Enterobacteriaceae Pakistan Perry et al. (2011)

19 E. coli, K. pneumoniae Lahore Majda et al. (2013)

20 E. coli, K. pneumoniae Latin America Rossi et al. (2008)

21 Enterobacteriaceae Canada Pitout et al. (2005)

22 E. coli United States Winokur et al. (2001) and Sanchez et al. (2012)
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showed ESBLs in 36.7% of K. pneumoniae isolates and in
20.8% of 932 E. coli isolates (Rossi et al., 2008).

A large variety of different types of SHV have also been

described. One extensive outbreak of Enterobacteriaceae pro-
ducing the CTX-M-14 enzyme occurred in Calgary, Canada
(Pitout et al., 2005). In a large study performed in 2001, it

was demonstrated that about 5.3% of E. coli in the United
States harbored ESBLs (Winokur et al., 2001), and an
investigation conducted in 2009 showed that 9% of E. coli
isolates at a cancer center in Texas were ESBL producers

(Bhusal et al., 2011). Sanchez et al., investigated data obtained
from The Surveillance Network (TSN) concerning in vitro
antimicrobial resistance in US outpatients between 2000 and

2010, and their results showed that resistance to ceftriaxone
rose from 0.2% to 2.3% and resistance to cefuroxime
increased from 1.5% to 5%, but the bacterial isolates in focus

were not tested for ESBLs (Sanchez et al., 2012). The epidemi-
ology of ESBLs producing organism is shown in Table 1.
8. Treatment

The carbapenems (imipenem, meropenem, ertapenem, doripe-
nem) are still the first choice of treatment for serious infections

with ESBL-producing E. coli and K. pneumoniae. It has been
reported that >98% of the ESBL-producing E. coli, K. pneu-
moniae and P. mirabilis are still susceptible to these drugs
(Perez et al., 2007). But with the emergence of the carbape-

nem-resistant Enterobacteriaceae, the ‘‘magic bullet’’ is actu-
ally difficult to find. There are some older drugs which can
be used to treat the ESBL-producing E. coli or K. pneumoniae

infections. Fosfomycin was reported of having admirable
in vitro activity against the ESBL-producing E. coli or
K. pneumoniae. In Hong Kong, most of the ESBL-producing

E. coli isolates were reported to be sensitive to fosfomycin
(Ho et al., 2010). Colistin is another choice which we can
consider for the treatment of these organisms. Although once
considered as quite a toxic antibiotic, it is a last resort that we
can consider at the present moment as there is no new anti

gram negative antibiotics available for the treatment of these
multidrug resistant organisms. Other than ESBL-producing
organisms, actually colistin is used in the treatment of

multidrug resistant P. aeruginosa, carbapenem resistant
A. baumannii. Close monitoring for the development of side
effects can improve the safety margin when prescribing the
drug. Tigecycline is also one of the drugs in the pipeline which

can be considered for treatment (Perez et al., 2007).

9. Conclusion

The incidence of infections caused by beta-lactam-resistant
organisms due to the production of various enzymes has
increased in recent years. Detection of ESBL production is

of paramount importance both in hospital and community
isolates. Infection-control practitioners and clinicians need
the clinical laboratory to rapidly identify and characterize

different types of resistant bacteria. This in turn is required
to minimize the spread of these bacteria and help select appro-
priate antibiotics. This is particularly true for ESBL-producing

bacteria. The epidemiology of ESBL-producing bacteria is
becoming more complex with increasingly blurred boundaries
between hospitals and the community. The acquisition of
efficient mobile elements has accelerated the transfer of

various antibiotic resistance genes. Probably, a ‘‘super bug’’,
resistant to relatively all licensed antibiotics, may rise in the
future. Constant and careful worldwide surveillance for

multidrug-resistant bacteria is urgently warranted.
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Buisson, Y., Genel, N., Decré, D., Arlet, G., Talarmin, A.,

Richard, V., 2011. Rectal carriage of extended-spectrum beta-

lactamase-producing gram negative bacilli in community settings in

Madagascar. PLoS ONE 6 (7), e22738.

Hirakata, Y., Matsuda, J., Miyazaki, Y., Kamihira, S., Kawakami,

S., Miyazawa, Y., Ono, Y., Nakazaki, N., Hirata, Y., Inoue, M.,

Turnidge, J.D., Bell, J.M., Jones, R.N., Kohno, S., 2005. Regional

variation in the prevalence of extended-spectrum beta-lactamase-

producing clinical isolates in the Asia-Pacific region (SENTRY

1998–2002). Diagn. Microbiol. Infect. Dis. 52 (4), 323–329.

Ho, P.L., Yip, K.S., Chow, K.H., Lo, J.Y., Que, T.L., Yuen, K.Y.,

2010. Antimicrobial resistance among uropathogens that cause

acute uncomplicated cystitis in women in Hong Kong: a prospec-

tive multicenter study in 2006 to 2008. Diagn. Microbiol. Infect.

Dis. 66, 87–93.

Humeniuk, C., Arlet, G., Gautier, V., Grimont, P., Labia, R.,

Philippon, A., 2002. b-lactamases of Kluyvera ascorbata, probable

progenitors of some plasmid-encoded CTX-M types. Antimicrob.

Agents Chemother. 46, 3045–3049.

Ibuka, A., Taguchi, A., Ishiguro, M., Fushinobu, S., Ishii, Y.,

Kamitori, S., Okuyama, K., Yamaguchi, K., Konno, M., Matsuz-

awa, H., 1999. Crystal structure of the E166A mutant of extended-

spectrum beta-lactamase Toho-1 at 1.8 A� resolution. J. Mol. Biol.

285, 2079–2087.

Kahlmeter, G., 2008. Breakpoints for intravenously used cephalo-

sporins in Enterobacteriaceae-EUCAST and CLSI breakpoints.

Clin. Microbiol. Infect. 14, 169–174.

Khanfar, H.S., Bindayna, K.M., Senok, A.C., Botta, G.A., 2009.

Extended spectrum beta lactamases (ESBL) in Escherichia coli and

Klebsiella pneumoniae: trends in the hospital and community

settings. J. Infect. Dev. Ctries. 3 (4), 295–299.

Knothe, H., Shah, P., Krcmery, V., Antal, M., Mitsuhashi, S., 1983.

Transferable resistance to cefotaxime, cefoxitin, cefamandole and

cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia

marcescens. Infection 11, 315–317.

Kritu, P., Prakash, G., Shiba, K.R., Reena, K.M., RAM, N.S.,

Ganesh, R., 2013. Antibiogram typing of gram negative isolates in

different clinical samples of a tertiary hospital. Asian J. Pharm.

Clin. Res. 6 (1), 153–156.

Kumarasamy, K.K., Toleman, M.A., Walsh, T.R., Bagaria, J., Butt,

F., Balakrishnan, R., Chaudhary, U., Doumith, M., Giske, C.G.,

Irfan, S., Krishnan, P., Kumar, A.V., Maharjan, S., Mushtaq, S.,

Noorie, T., Paterson, D.L., Pearson, A., Perry, C., Pike, R., Rao,

B., Ray, U., Sarma, J.B., Sharma, M., Sheridan, E., Thirunarayan,

M.A., Turton, J., Upadhyay, S., Warner, M., Welfare, W.,

Livermore, D.M., Woodford, N., 2010. Emergence of a new

antibiotic resistance mechanism in India, Pakistan, and the UK: a

molecular, biological, and epidemiological study. Lancet Infect.

Dis. 10 (9), 597–602.

Leach, K.L., Swaney, S.M., Colca, J.R., McDonald, W.G., Blinn,

J.R., Thomasco, L.M., Gadwood, R.C., Shinabarger, D., Xiong,

L., Mankin, A.S., 2005. The site of action of oxazolidinone

antibiotics in living bacteria and in human mitochondria. Mol.

Cell. 26, 393–402.

Livermore, D.M., 1995. Beta-lactamases in laboratory and clinical

resistance. Clin. Microbiol. Rev. 8, 557–584.

Ma, L., Ishii, Y., Ishiguro, M., Matsuzawa, H., Yamaguchi, K., 1998.

Cloning and sequencing of the gene encoding Toho-2, a class A
b-lactamase preferentially inhibited by tazobactam. Antimicrob.

Agents Chemother. 42, 1181–1186.

Majda, Q., Najma, A., Summyia, B., 2013. Evaluation of extended

spectrum beta-lactamase mediated resistance in Escherichia coli and

Klebsiella in urinary tract infection at a tertiary care hospital.

Biomedica 29, 78–81.

Mathai, D., Rhomberg, P.R., Biedenbach, D.J., Jones, R.N., 2002.

Evaluation of the in vitro activity of six broad-spectrum beta-

lactam antimicrobial agents tested against recent clinical isolates

from India: a survey of ten medical center laboratories. Diagn.

Microbiol. Infect. Dis. 44 (4), 367–377.

Matsuoka, M., Sasaki, T., 2004. Inactivation of macrolides by

producers and pathogens. Curr. Drug Targets Infect. Disord. 4,

217–240.

Meeta, S., Sati, P., Preeti, S., 2013. Prevalence and antibiogram of

extended spectrum b-lactamase (ESBL) producing Gram negative

bacilli and further molecular characterization of ESBL producing

Escherichia coli and Klebsiella spp. J. Clin. Diag. Res. 7 (10), 2168–

2172.

Moubareck, C., Daoud, Z., Hakime, N.I., Hamze, M., Mangeney,

N., Matta, H., Mokhbat, J.E., Rohban, R., Sarkis, D.K., Doucet-

Populaire, F., 2005. Countrywide spread of community- and

hospital acquired extended-spectrum beta-lactamase (CTX-M-15)-

producing Enterobacteriaceae in Lebanon. J. Clin. Microbiol. 43

(7), 3309–3313.

Mshana, S.E., Kamugisha, E., Mirambo, M., Chakraborty, T.,

Lyamuya, E.F., 2009. Prevalence of multi resistant gram-negative

organisms in a tertiary hospital in Mwanza, Tanzania. BMC Res.

Notes. 26 (2), 49. http://dx.doi.org/10.1186/1756-0500-2-49.

Naas, T., Oxacelay, C., Nordmann, P., 2007. Identification of CTX-

M-type extended spectrum-b-lactamase genes using real-time PCR

and pyrosequencing. Antimicrob. Agents Chemother. 51, 223–230.

Naas, T., Poirel, L., Nordmann, P., 2008. Minor extended-spectrum

b-lactamases. Clin. Microbiol. Infect. 14 (1), 42–52.

Nasa, P., Juneja, D., Singh, O., Dang, R., Singh, A., 2012. An

observational study on bloodstream extended-spectrum beta-lacta-

mase infection in critical care unit: incidence, risk factors and its

impact on outcome. Eur. J. Intern. Med. 23 (2), 192–195.

National Committee for Clinical Laboratory Standards. Performance

standards for antimicrobial susceptibility testing. 12th informa-

tional supplement. M100–S12. Wayne, P.A., National Committee

for Clinical Laboratory Standards, 2002.

Neuhauser, M.M., Weinstein, R.A., Rydman, R., Danziger, L.H.,

Karam, G., Quinn, J.P., 2003. Antibiotic resistance among gram-

negative bacilli in US intensive care units: implications for

fluoroquinolone use. JAMA 289, 885–888.

Nordmann, P., Poirel, L., Walsh, T.R., Livermore, D.M., 2011. The

emerging NDM carbapenemases. Trends Microbiol. 19, 588–595.

Olson, A.B., Silverman, M., Boyd, D.A., McGeer, A., Willey, B.M.,

Pong-Porter, V., Daneman Mulvey, M.R., 2005. Identification of a

progenitor of the CTX-M-9 group of extended-spectrum b-lacta-
mases from Kluyvera georgiana isolated in Guyana. Antimicrob.

Agents Chemother. 49, 2112–2115.

Paterson, D.L., Bonomo, R.A., 2005. Extended-spectrum beta-

lactamases: a clinical update. Clin. Microbiol. Rev. 18, 657–686.

Paterson, D.L., Ko, W.C., Von, G.A., Casellas, J.M., Mulazimoglu,

L., Klugman, K.P., Bonomo, R.A., Rice, L.B., McCormack, J.G.,

Yu, V.L., 2001. Outcome of cephalosporin treatment for serious

infections due to apparently susceptible organisms producing

extended-spectrum b-lactamases: implications for the clinical

microbiology laboratory. J. Clin. Microbiol. 39, 2206–2212.

Perez, F., Endimiani, A., Hujer, K.M., Bonomo, R.A., 2007. The

continuing challenge of ESBLs. Curr. Opin. Pharmacol. 7, 459–

469.

Perilli, M., Segatore, B., Mugnaioli, C., Celenza, G., Rossolini, G.M.,

Stefani, S., Luzzaro, F., Pini, B., Amicosante, G., 2011. Persistence

of TEM-52/TEM-92 and SHV-12 extended-spectrum beta-lactamases

http://refhub.elsevier.com/S1319-562X(14)00094-1/h0170
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0170
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0170
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0170
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0175
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0175
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0180
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0180
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0185
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0185
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0185
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0185
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0185
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0190
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0190
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0190
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0190
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0190
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0190
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0195
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0195
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0195
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0195
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0195
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0200
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0200
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0200
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0200
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0205
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0205
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0205
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0205
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0205
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0215
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0215
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0215
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0220
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0220
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0220
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0220
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0225
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0225
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0225
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0225
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0230
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0230
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0230
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0230
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0580
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0580
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0580
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0580
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0580
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0580
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0580
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0580
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0580
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0580
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0585
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0585
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0585
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0585
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0585
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0240
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0240
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0245
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0245
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0245
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0245
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0250
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0250
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0250
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0250
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0255
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0255
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0255
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0255
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0255
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0260
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0260
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0260
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0265
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0265
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0265
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0265
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0265
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0275
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0275
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0275
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0275
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0275
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0275
http://dx.doi.org/10.1186/1756-0500-2-49
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0285
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0285
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0285
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0290
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0290
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0295
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0295
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0295
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0295
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0305
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0305
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0305
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0305
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0310
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0310
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0315
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0315
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0315
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0315
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0315
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0320
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0320
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0325
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0325
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0325
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0325
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0325
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0325
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0330
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0330
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0330
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0335
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0335
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0335


100 S. Shaikh et al.
in clinical isolates of Enterobacteriaceae in Italy. Microb. Drug Resist.

17 (4), 521–524.

Perry, J.D., Naqvi, S.H., Mirza, I.A., Alizai, S.A., Hussain, A.,

Ghirardi, S., Orenga, S., Wilkinson, K., Woodford, N., Zhang, J.,

Livermore, D.M., Abbasi, S.A., Raza, M.W., 2011. Prevalence of

faecal carriage of Enterobacteriaceae with NDM-1 carbapenemase

at military hospitals in Pakistan, and evaluation of two chromo-

genic media. J. Antimicrob. Chemother. 66 (10), 2288–2294.

Petroni, A., Corso, A., Melano, R., Cacace, M.L., Bru, A.M., Rossi,

A., Galas, M., 2002. Plasmidic extended-spectrum beta-lactamases

in Vibrio cholerae O1 El Tor isolates in Argentina. Antimicrob.

Agents Chemother. 46, 1462–1468.

Philippon, L.N., Naas, T., Bouthors, A.T., Barakett, V., Nordmann,

P., 1997. OXA-18, a class D clavulanic acid-inhibited extended-

spectrum beta lactamase from Pseudomonas aeruginosa. Antimic-

rob. Agents Chemother. 41, 2188–2195.

Pitout, J.D., Laupland, K.B., 2008. Extended-spectrum b-lactamase-

producing Enterobacteriaceae: an emerging public health concern.

The Lan. Infect. Dis. 8 (3), 159–166.

Pitout, J.D., Hossain, A., Hanson, N.D., 2004. Phenotypic and

molecular detection of CTX-M-b-lactamases produced by Esche-

richia coli and Klebsiella spp. J. Clin. Microbiol. 42, 5715–5721.

Pitout, J.D., Gregson, D.B., Church, D.L., Elsayed, S., Laupland,

K.B., 2005. Community-wide outbreaks of clonally related CTX-

M-14 beta-lactamase-producing Escherichia coli strains in the

Calgary health region. J. Clin. Microbiol. 43 (6), 2844–2849.

Pitout, J.D., Hamilton, N., Church, D.L., Nordmann, P., Poirel, L.,

2007. Development and clinical validation of a molecular diagnos-

tic assay to detect CTX-M-type b-lactamases in Enterobacteria-

ceae. Clin. Microbiol. Infect. 13, 291–297.

Poirel, L., Le Thomas, I., Naas, T., Karim, A., Nordmann, P., 2000.

Biochemical sequence analyses of GES-1, a novel class A extended-

spectrum b-lactamase, and the class 1 integron in 52 from Klebsiella

pneumoniae. Antimicrob. Agents Chemother. 44, 622–632.

Poirel, L., Girlich, D., Naas, T., Nordmann, P., 2001. OXA-28, an

extended-spectrum variant of OXA-10 beta-lactamase from Pseu-

domonas aeruginosa and its plasmid- and integron-located gene.

Antimicrob. Agents Chemother. 45, 447–453.

Poirel, L., Kampfer, P., Nordmann, P., 2002. Chromosome-encoded

Ambler class A b-lactamase of Kluyvera georgiana, a probable

progenitor of a subgroup of CTX-M extended-spectrum b-lacta-
mases. Antimicrob. Agents Chemother. 46, 4038–4040.

Rice, L.B., Willey, S.H., Papanicolaou, G.A., Medeiros, A.A.,

Eliopoulos, G.M., Moellering, R.C.J., Jacoby, G.A., 1990. Out-

break of ceftazidime resistance caused by extended-spectrum beta-

lactamases at a Massachusetts chronic-care facility. Antimicrob.

Agents Chemother. 34 (11), 2193–2199.

Rossi, F., Garcia, P., Ronzon, B., Curcio, D., Dowzicky, M.J., 2008.

Rates of antimicrobial resistance in Latin America (2004–2007) and

in vitro activity of the glycylcycline tigecycline and of other

antibiotics. Braz. J. Infect. Dis. 12 (5), 405–415.

Ruiz, J., 2003. Mechanisms of resistance to quinolones: target alter-

ations, decreased accumulation and DNA gyrase protection. J.

Antimicrob. Chemother. 51, 1109–1117.

Rupinder, B., Geeta, W., Shikha, J., 2013. Prevalence of extended

spectrum b-lactamases in multidrug resistant strains of gram

negative Bacilli. J. Acad. Indus. Res. 1 (9), 558–560.

Ruth, A.A., Damian, C.O., Romanus, I.I., Charles, O.E., 2011.

Antimicrobial resistance status and prevalence rates of extended

spectrum beta-lactamase producers isolated from a mixed human

population. Bosnian J. Basic Med. Sci. 11 (2), 91–96.

Sanchez, G.V., Master, R.N., Karlowsky, J.A., Bordon, J.M., 2012.

In vitro antimicrobial resistance of urinary Escherichia coli isolates

among U.S. outpatients from 2000 to 2010. Antimicrob. Agents

Chemother. 56 (4), 2181–2183.

Sankar, S., Narayanan, H., Kuppanan, S., Nandagopal, B., 2012.

Frequency of extended spectrum beta-lactamase (ESBL)-producing
Gram-negative bacilli in a 200-bed multi-specialty hospital in

Vellore district, Tamil Nadu, India. Infection 40 (4), 425–429.

Schwarz, S., Kehrenberg, C., Doublet, B., Cloeckaert, A., 2004.

Molecular basis of bacterial resistance to chloramphenicol and

florfenicol. FEMS Microbiol. Rev. 28, 519–542.

Shakti, R., Debasmita, D., Mahesh, C., Sahu, R., Padhy, N., 2014.

Surveillance of ESBL producing multidrug resistant Escherichia

coli in a teaching hospital in India. Asian Pac. J. Trop. Dis. 4 (2),

140–149.

Siegel, J.D., Rhinehart, E., Jackson, M., Chiarello, L., 2006. Health

Infection Control Practices Advisory Committee. Management of

multidrug-resistant organisms in healthcare settings, <http://

www.cdc.gov/ ncidod/dhqp/pdf/ar/MDROGuideline2006.pdf>.

Sirot, D., Sirot, J., Labia, R., Morand, A., Courvalin, P., Darfeuille-

Michaud, A., Perroux, R., Cluzel, R., 1987. Transferable resistance

to third-generation cephalosporins in clinical isolates of Klebsiella

pneumoniae: identification of CTX-1, a novel beta lactamase. J.

Antimicrob. Chemother. 20 (3), 323–334.

Soughakoff, W., Goussard, S., Courvalin, P., 1988. TEM-3 beta-

lactamases which hydrolyzes broad-spectrum cephalosporins is

derived from the TEM-2 penicillinases by two amino acid substi-

tutions. FEMS Microbiol. Lett. 56, 343–348.

Spanu, T., Sanguinetti, M., Tumbarello, M., D’Inzeo, T., Fiori, B.,

Posteraro, B., Santangelo, R., Cauda, R., Fadda, G., 2006.

Evaluation of the new VITEK 2 extended-spectrum b-lactamase

(ESBL) test for rapid detection of ESBL production in Enterobac-

teriaceae isolates. J. Clin. Microbiol. 44, 3257–3262.

Spratt, B.G., 1994. Resistance to antibiotics mediated by target alter-

ations. Science 264, 388–393.

Steward, C.D., Wallace, D., Hubert, S.K., Lawton, R., Fridkin, S.K.,

Gaynes, R.P., McGowan, J.E., Tenover, F.C., 2000. Ability of

laboratories to detect emerging antimicrobial resistance in nosoco-

mial pathogens: a survey of project ICARE laboratories. Diag.

Microbiol. Infect. Dis. 38 (1), 59–67.

Straus, S.K., Hancock, R.E.W., 2006. Mode of action of the new

antibiotic for gram-positive pathogens daptomycin: comparison

with cationic antimicrobial peptides and lipopeptide. Biochim.

Biophys. Acta 1758, 1215–1223.

Strohl, W.R., 1997. Biotech Antibiotics. Marcel Dekker Inc., New

York, USA.

Swedish Institute for Infectious Disease Control, 2012. Available

from: <http://www.smi.se/in-english/statistics/extended-spectrum-

beta-lactamaseesbl/> (accessed 16-04-12).

Tande, D., Jallot, N., Bougoudogo, F., Montagnon, T., Gouriou, S.,

Sizun, J., 2009. Extended spectrum beta-lactamase-producing

Enterobacteriaceae in a Malian orphanage. Emerg. Infect. Dis. 15

(3), 472–474.

Tawfik, A.F., Alswailem, A.M., Shibl, A.M., Al-Agamy, M.H., 2011.

Prevalence and genetic characteristics of TEM, SHV, and CTX-M

in clinical Klebsiella pneumoniae isolates from Saudi Arabia.

Microb. Drug Resist. 17 (3), 383–388.

Thakur, S., Pokhrel, N., Sharma, M., 2013. Prevalence of multidrug

resistant enterobacteriaceae and extended spectrum b lactamase

producing Escherichia coli in urinary tract infection. R.J.P.B.C.S. 4

(2), 1615–1624.

Tzouvelekis, L.S., Bonomo, R.A., 1999. SHV-type b-lactamases.

Curr. Pharm. Des. 5, 847–864.

Tzouvelekis, L.S., Tzelepi, E., Tassios, P.T., Legakis, N.J., 2000.

CTX-M type beta-lactamases: an emerging group of extended-

spectrum enzymes. Int. J. Antimicrob. Agents 14, 137–

143.

UK Health Protection Agency. Laboratory detection and reporting

of bacteria with extended spectrum b-lactamases. QSOP 51.

<http:// www.hpa-standardmethods.org.uk/documents/qsop/pdf/

qsop51. pdf> (accessed 17.01.2008).

Vahaboglu, H., Ozturk, R., Aygun, G., Coskunkan, F., Yaman, A.,

Kaygusuz, A., Leblebicioglu, H., Balik, I., Aydin, K., Otkun, M.,

http://refhub.elsevier.com/S1319-562X(14)00094-1/h0335
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0335
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0340
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0340
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0340
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0340
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0340
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0340
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0345
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0345
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0345
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0345
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0350
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0350
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0350
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0350
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0365
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0365
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0365
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0360
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0360
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0360
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0370
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0370
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0370
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0370
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0355
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0355
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0355
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0355
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0385
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0385
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0385
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0385
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0375
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0375
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0375
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0375
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0380
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0380
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0380
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0380
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0390
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0390
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0390
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0390
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0390
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0395
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0395
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0395
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0395
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0400
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0400
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0400
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0405
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0405
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0405
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0410
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0410
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0410
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0410
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0415
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0415
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0415
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0415
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0420
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0420
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0420
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0420
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0425
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0425
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0425
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0430
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0430
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0430
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0430
http://www.cdc.gov/%20ncidod/dhqp/pdf/ar/MDROGuideline2006.pdf
http://www.cdc.gov/%20ncidod/dhqp/pdf/ar/MDROGuideline2006.pdf
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0440
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0440
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0440
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0440
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0440
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0445
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0445
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0445
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0445
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0450
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0450
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0450
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0450
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0450
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0455
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0455
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0460
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0460
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0460
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0460
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0460
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0465
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0465
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0465
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0465
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0470
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0470
http://www.smi.se/in-english/statistics/extended-spectrum-beta-lactamaseesbl/
http://www.smi.se/in-english/statistics/extended-spectrum-beta-lactamaseesbl/
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0480
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0480
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0480
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0480
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0485
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0485
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0485
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0485
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0570
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0570
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0570
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0570
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0495
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0495
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0500
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0500
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0500
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0500
http://%20www.hpa-standardmethods.org.uk/documents/qsop/pdf/qsop51.%20pdf
http://%20www.hpa-standardmethods.org.uk/documents/qsop/pdf/qsop51.%20pdf
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0515
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0515


Antibiotic resistance and extended spectrum beta-lactamases 101
1997. Widespread detection of PER-1-type extended-spectrum

beta-lactamases among nosocomial Acinetobacter and Pseudomo-

nas aeruginosa isolates in Turkey: a nationwide multicenter study.

Antimicrob. Agents Chemother. 41, 2265–2269.

Vahaboglu, H., Coskunkan, F., Tansel, O., Ozturk, R., Sahin, N.,

Koksal, I., Kocazeybek, B., Tatman-Otkun, M., Leblebicioglu, H.,

Ozinel, M.A., Akalin, H., Kocagoz, S., Korten, V., 2001. Clinical

importance of extended-spectrum beta-lactamase (PER-1-type)-

producing Acinetobacter spp. and Pseudomonas aeruginosa strains.

J. Med. Microbiol. 50, 642–645.

Walsh, C., 2003. Antibiotics: actions, origins, resistance. ASM Press,

Washington, DC.

Weldhagen, G.F., Poirel, L., Nordmann, P., 2003. Ambler class A

extended-spectrum beta-lactamases in Pseudomonas aeruginosa:

novel developments and clinical impact. Antimicrob. Agents

Chemother. 47, 2385–2392.

Wiegand, I., Geiss, H.K., Mack, D., Sturenburg, E., Seifert, H., 2007.

Detection of extended-spectrum b-lactamases among Enterobacte-

riaceae by use of semiautomated microbiology systems and manual

detection procedures. J. Clin. Microbiol. 45, 1167–1174.
Winokur, P.L., Canton, R., Casellas, J.M., Legakis, N., 2001.

Variations in the prevalence of strains expressing an extended-

spectrum beta-lactamase phenotype and characterization of isolates

from Europe, the Americas, and the Western Pacific region. Clin.

Infect. Dis. 32, 94–103.

Wolter, D.J., Hanson, N.D., Lister, P.D., 2004. Insertional

inactivation of oprD in clinical isolates of Pseudomonas aerugin-

osa leading to carbapenem resistance. FEMS Microbiol. Lett.

236, 137–143.

Woodford, N., Fagan, E.J., Ellington, M.J., 2006. Multiplex PCR for

rapid detection of genes encoding CTX-M extended-spectrum

b-lactamases. J. Antimicrob. Chemother. 57, 154–165.

Woodford, N., Turton, J.F., Livermore, D.M., 2011. Multi resistant

gram negative bacteria: the role of high-risk clones in the

dissemination of antibiotic resistance. FEMS Microbiol. Rev. 35,

736–755.

Yang, W., Moore, I.F., Koteva, K.P., Bareich, D.C., Hughes, D.W.,

Wright, G.D., 2004. TetX is a flavin-dependent monooxygenase

conferring resistance to tetracycline antibiotics. J. Biol. Chem. 279,

52346–52352.

http://refhub.elsevier.com/S1319-562X(14)00094-1/h0515
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0515
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0515
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0515
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0510
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0510
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0510
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0510
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0510
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0510
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0520
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0520
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0525
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0525
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0525
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0525
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0530
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0530
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0530
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0530
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0535
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0535
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0535
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0535
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0535
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0540
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0540
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0540
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0540
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0550
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0550
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0550
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0555
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0555
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0555
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0555
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0560
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0560
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0560
http://refhub.elsevier.com/S1319-562X(14)00094-1/h0560

	Antibiotic resistance and extended spectrum  beta-lactamases: Types, epidemiology and  treatment
	1 Introduction
	2 How do antibiotics work?
	2.1 Interference with cell wall synthesis
	2.2 Inhibition of protein synthesis
	2.3 Interference with nucleic acid synthesis
	2.4 Inhibition of a metabolic pathway
	2.5 Disorganizing of the cell membrane

	3 Antibiotic resistance mechanism
	3.1 Antibiotic inactivation
	3.1.1 By hydrolysis
	3.1.2 By redox process

	3.2 Antibiotic inactivation by group transfer
	3.3 Antibiotic resistance via target modification

	4 Genetics of antibiotic resistance
	4.1 Antibiotic resistance via mutations
	4.2 Antibiotic resistance via horizontal gene transfer

	5 ESBL definition and classification
	5.1 SHV type
	5.2 TEM type
	5.3 CTX type
	5.4 OXA type
	5.5 PER type
	5.6 GES type
	5.7 VEB-1, BES-1, and other ESBL type

	6 Detection
	6.1 Phenotypic detection
	6.2 Genotypic detection

	7 Epidemiology
	8 Treatment
	9 Conclusion
	Conflicts of interest
	Acknowledgements
	References


