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Abstract Galectins are mammalian lectins established to play a crucial role in the progression of

various cancer types by the virtue of their differential expression in normal and cancerous cells. In

the present study, goat heart galectin-1 (GHG-1) was purified and investigated for its potential role

in the detection of post-malignant changes in glycosylation pattern. When exposed to superoxide

radicals generated from a pyrogallol auto-oxidation system, GHG-1 treated erythrocyte suspension

released higher amount of oxyhemoglobin than the unagglutinated erythrocytes. The extent of

erythrocyte hemolysis was found to be directly proportional to concentrations of hypochlorous

acid. GHG-1 was used to detect the change in the b-galactoside expression pattern in erythrocyte

membrane from human donors suffering from prostate and breast cancer. No significant change

was observed in the hemolysis of lectin agglutinated erythrocytes collected from pre-operated breast

cancer patients, whereas significant increase was observed in normal healthy control and post-

operated samples. Findings of this study proclaim GHG-1 as an important tool for the detection

of post-malignant changes in glycosylation pattern.
ª 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Galectins are b-galactoside binding lectins established as
potential target for cancer therapy (Hasan et al., 2007). Galec-

tin-1 (Gal-1) has been reported to bind preferentially to gangli-
oside GM1 on neuroblastoma cells and facilitate growth
control (Kopitz et al., 2003; Robert et al., 2012) and also

provide hydrophobic tails as interaction site for oncogenic
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H-Ras (Rotblat et al., 2004). The underlying mechanism to
carry out this role is its glycan binding property present on cell
membranes, thereby causing lysis of cells. A number of glyco-

conjugates expressed on the erythrocyte membranes have been
reported to be altered in primary cancerous and metastatic
conditions (Pugalendhi et al., 2010). Some noticeable altera-

tions in the serum glycoconjugates have been observed in
patients with various cancer types (Shetty et al., 2013). These
alterations in glycoconjugates can act as excellent indicators

for diagnostics, staging, prognostics, therapeutics, and detec-
tion of early recurrence in cancer (Baxi et al., 1991;
Hernández-Hernández et al., 2006; Shetty et al., 2013). Owing
to their multivalent sugar binding property, lectins have been

used as an excellent tool for the detection of aberrant glycosyl-
ation related to various carcinomas and may provide useful
diagnostic or prognostic information, thus contributing

directly to cancer biology (Hernández-Hernández et al.,
2006). The remarkable role played by galectins ranging from
cell signaling to apoptosis make them potent tumorigenic mol-

ecules, and have been reported to be over-expressed quite often
in cancerous cells and cancer associated stromal cells (Lahm
et al., 2004). This altered expression of galectins correlates with

the acquisition of metastatic phenotype and tumor aggressive-
ness, indicating toward the potential ability of galectins in the
modulation of tumor progression thus influencing the outcome
of the disease (Greco et al., 2004).

In the present study, goat heart galectin-1 (GHG-1) was
purified (Ashraf et al., 2011) and investigated for the effect
of pyrogallol and hypochlorous acid (HOCl) on the hemolysis

of GHG-1 agglutinated erythrocytes. In our earlier study, we
also reported that glycosylation plays a crucial role in main-
taining the structural and functional integrity of GHG-1

(Ashraf et al., 2010a). Since erythrocytes of various carcinoma
cells have been reported to show distinct glycosylation patterns
which become a diagnostic index to examine the presence and

proliferation of well known cancers, we also investigated the
varied expression pattern of b-galactoside sugar residues on
erythrocyte membrane of breast and prostate cancer patients
using GHG-1 as a diagnostic tool.
2. Materials and methods

2.1. Reagents

Sephadex G100 and G50, molecular weight markers (14.4–

97.4 kDa), coomassie brilliant blue (CBB) G-250 and R-250,
sugars, pyrogallol and HOCl were purchased from Sigma
Aldrich (St Louis, MO, USA). All other chemicals used were

of analytical grade and were purchased from Qualigens Fine
Chemicals and Merck India Ltd., India.

2.2. Isolation and purification of GHG-1

GHG-1 was isolated and purified essentially according to the
methods used in our earlier studies on heart galectins
(Ashraf et al., 2010a,b, 2011). The standard method of

Lowry was used to estimate the protein concentration
(Lowry et al., 1951). The method of two fold serial dilutions
was used to determine the protein activity (Raz and Lotan,

1981).
2.3. Effect of GHG-1 on pyrogallol induced free radical damage
to erythrocyte membrane

GHG-1 agglutinated erythrocyte suspensions (300 ll) were
exposed to superoxide radicals generated from a pyrogallol

auto-oxidation system (by adding 10 ll of 0.02 M pyrogallol
solution freshly prepared in hydrogen peroxide) and incubated
at 37 �C for 20 min. Erythrocytes were recovered by centrifu-
gation at 3000 rpm for 5 min. Cells were then washed thrice

and centrifuged with PBS ‘B’ and all the washings were pooled
for analyzing the oxyhemoglobin (OxyHb) released. The
released OxyHb concentration in the supernatant was

measured by the equation of Winterbourn (1985).

½OxyHb� ¼ ð119A577Þ � ð39A630Þ � ð89A560Þ
2.4. Effect of HOCl on GHG-1 induced hemolysis of trypsinized
rabbit erythrocytes

GHG-1 agglutinated erythrocyte suspensions (300 ll) were
treated with varying concentrations of HOCl (50–350 lM) in

PBS ‘B’ at 22 �C for 20 min. Cells were then washed thrice with
excess of cold PBS ‘B’ and suspended in PBS ‘B’ as 10% sus-
pension. The susceptibility of erythrocytes to HOCl induced
oxidative damage was measured in terms of percent hemolysis

as discussed above.

2.5. Differential hemolytic action of GHG-1 toward erythrocytes
of breast and prostate cancer patients

Pre-operated and post-operated (7 days after surgery) heparin-
ized venous blood samples from breast and prostate cancer

patients (age > 45 years) were procured from the surgery out-
patient department and male surgical wards of the Department
of Surgery, Jawaharlal Nehru Medical College, Aligarh, India.

Plasma was separated by centrifuging the blood sample at
5000 rpm for 5 min, the pellet containing erythrocytes was
washed thrice with cold PBS ‘B’ and 4% RBC suspension
was prepared. A trypsin solution (100 mg%) was then added

to erythrocytes (0.1 ml of trypsin solution per ml of erythro-
cyte suspension) and incubated for 1 h at 37 �C. The trypsini-
zed erythrocytes were washed four to five times with PBS ‘B’

and finally 8% erythrocyte suspension was prepared and per-
cent hemolysis was determined as discussed above.

3. Results and discussion

Oxidative stress has been reported to enhance endothelial
binding of lectins and activate the lectin complement pathway

(Collard et al., 2001; Laderach et al., 2013), thus proclaiming
an interesting correlation between lectins and oxidative stress.
We thus investigated the effect of GHG-1 on pyrogallol

induced free radical damage to erythrocyte membrane.
Trypsinized rabbit erythrocyte suspension (8%) when treated
with GHG-1 for 1 and 4 h and then exposed to superoxide rad-
icals generated from a pyrogallol auto-oxidation system,

released 28 and 36 lM oxyhemoglobin, respectively, in com-
parison with 6 lM oxyhemoglobin released by unagglutinated
erythrocytes (Fig. 1). However, no release of oxyhemoglobin

was observed in erythrocytes, which were neither treated with



Figure 1 Effect of GHG-1 on pyrogallol induced free radical

damage to erythrocyte membrane: OxyHb concentration was

measured in the hemolysates of ‘a’: erythrocytes exposed to

superoxide radicals in the absence of GHG-1, ‘b’: erythrocytes

exposed to superoxide radicals in the presence of GHG-1 after 1 h,

‘c’: erythrocytes exposed to superoxide radicals in the presence of

GHG-1 after 4 h. Samples were centrifuged and RBC lysates were

analyzed at 540 nm. Values shown are the mean ± S.E.M

obtained from three observations.

Figure 2 Effect of hypochlorous acid on GHG-1 induced

hemolysis of trypsinized rabbit erythrocytes: an 8% trypsinized

rabbit erythrocyte suspension (200 ll) treated with 100 ll GHG-1

(100 lg/ml) was incubated at varying concentrations of HOCl

(50–350 lM). Samples were centrifuged and RBC lysates were

analyzed at 540 nm.
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lectin nor exposed to oxidative damage (control), or lectin

treated cells but not exposed to oxyradical shock. Lectin med-
iated crosslinking of erythrocyte surface glycoprotein has been
reported to significantly enhance the susceptibility to free rad-

ical induced membrane damage (Hajela et al., 1997). The effect
of lectin induced agglutination on the rate of oxidative damage
to the cell membrane revealed that lectin induced perturba-

tions in cell membrane make it more vulnerable to oxidative
attack. The leaks or pores formed in the lipid bilayer facilitate
the superoxide ions to seep through the hydrophobic cellular

membrane which was earlier impervious to these ions.
It is a well established fact that HOCl is an extremely toxic

oxidant that can react with a variety of cellular components. It
has also been confirmed that HOCl causes erythrocyte lysis

through lipid modification, membrane cross linking, K+ leak-
age and cell swelling (Vissers and Winterbourn, 1991;
Zavodnik et al., 2002). Therefore, the oxidizing action of

HOCl was monitored in the presence of GHG-1 in terms of
percent erythrocyte hemolysis. The extent of erythrocyte
hemolysis was found to be directly proportional to HOCl con-

centrations (Fig. 2) Prior agglutination of erythrocytes with
GHG-1 resulted in significant (P < 0.001) enhancement of
hemolysis as compared to untreated cells in the presence
of varying concentrations of HOCl. At the concentration of

350 lM HOCl, GHG-1 agglutinated erythrocytes showed
50% hemolysis, as compared to 26% in non-agglutinated
erythrocytes.

An additive effect on the increase in percent hemolysis of
erythrocytes is observed by lectin mediated HOCl induced cell
damage, thus suggesting that together with hypochlorite, lec-

tins may be an active pore forming agent, thereby making
the membrane components more susceptible to oxidative
assault. Heart lectin is a homodimeric protein with two

binding sites which can cross-link identical ligands on the cell
surface or to the extracellular matrix inducing conformational
changes in membrane proteins and altering lipid fluidity,
and thus may increase the accessibility of HOCl to RBC
components. As the average number of pores formed by HOCl
per cell is less than one (Zavodnik et al., 2002), prior agglutina-
tion with lectin possibly increases the number of short lived
pores in plasma membrane. This suggests the possibility of the

role of galectins in HOCl induced neutrophil mediated cellular
damage, which may have direct implications in various inflam-
matory conditions where increased expression of galectin has

been reported (Rorive et al., 2001). Thus, lectins exhibiting
hemolytic and cytolytic functions might be involved in the
defense mechanism of mammalian nervous system, not only

neutralizing foreign substances by binding to their carbohydrate
moieties, but also acting directly as a toxic protein to invading
microorganisms. Hence, lectin interaction with membranes acts

as a perturbing tool causing a change in membrane topology
and assembly, which may play an important role under
physiological demands or pathological conditions in mamma-
lian nervous system. This is further strengthened by the fact that

the antigenic determinants present on the exterior surface of
erythrocytes and other cells are carried by both glycolipids
and glycoproteins, and soluble blood group substances are

strictly glycoprotein in nature (Toivanen et al., 2008).
Galectins have been reported to modulate functions crucial

for cell survival, migration and metastasis, thus making them

potential targets for cancer therapy (Vladoiu et al., 2014).
The close involvement of galectins in various cancer types con-
tinues to be established (Huang et al., 2014; Song et al., 2014).
GHG-1 mediated agglutination of erythrocytes collected from

breast and prostate cancer patients showed a differential pat-
tern of hemolytic activity when compared to healthy controls.
In breast cancer patients, agglutination with GHG-1 displayed

an increase in percent hemolysis in both pre-operated (29%)
and post-operated (41%) erythrocytes with respect to unagglu-
tinated pre-operated (24%) and post-operated (10%) erythro-

cytes (Fig. 3). In prostate cancer patients, agglutination with
GHG-1 displayed an increase in percent hemolysis in both
pre-operated (71%) and post-operated (47%) erythrocytes

with respect to unagglutinated pre-operated (47%) and post-
operated (13%) erythrocytes (Fig. 4).

No significant change was observed in the hemolysis of
lectin agglutinated erythrocytes collected from pre-operated



Figure 3 Hemolysis of human erythrocytes collected from

normal, pre-operated and post-operated breast cancer patients in

the absence and presence of GHG-1: an 8% trypsinized rabbit

erythrocyte suspension (200 ll) was prepared for normal, pre-

operated and post-operated blood samples obtained from breast

cancer patients, and treated in the presence and absence of GHG-1

(100 lg/ml). The degree of hemolysis was calculated by comparing

with identical volume of erythrocytes mixed with distilled water

which represented 100% lysis. Values shown are the mean ±

S.E.M obtained from three observations.
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breast cancer patients, whereas a significant increase was
observed in normal healthy control and post-operated sam-
ples. This observation may be attributed to the decrease in

the expression of b � 1 fi 4 linked glycans on erythrocyte
membrane surface in breast cancer patients and re-expression
of b � 1 fi 4 linked glycans after surgery. Owing to the path-

ological condition of cancer, an increase in the hemolysis of
lectin untreated pre-operated erythrocytes was observed in
comparison with the healthy control, and this finding was sup-
ported by an earlier study (Abou-Seif et al., 2000). Changes in

binding qualities of blood group substances with lectins occur
with the change in glyco-moieties of the glycoproteins
(Hernández-Hernández et al., 2006). These changes in cell
Figure 4 Hemolysis of human erythrocytes collected from

normal, pre-operated and post-operated prostate cancer patients

in the absence and presence of GHG-1: An 8% trypsinized rabbit

erythrocyte suspension (200 ll) was prepared for normal, pre-

operated and post-operated blood samples obtained from prostate

cancer patients, and treated in the presence and absence of GHG-1

(100 lg/ml). The degree of hemolysis was calculated by comparing

with identical volume of erythrocytes mixed with distilled water

which represented 100% lysis. Values shown are the mean ±

S.E.M obtained from three observations.
surface carbohydrates, during malignancy development
involve blood antigens (Baxi et al., 1991). In contrast, an
increase in hemolysis in lectin agglutinated erythrocytes was

observed in prostate cancer patients, suggesting no change in
glycosylation with respect to lectin specific sugars in
erythrocytes of prostate cancer patients. These findings corre-

late galectin expression with the presence of erythrocytes in
advanced stages of cancer and highlight potential role of
galectins in antiangiogenic therapy (Laderach et al., 2013).

4. Conclusion

The effect of lectin induced agglutination on the rate of oxida-

tive damage to the cell membrane revealed that lectin induced
perturbations in cell membrane make it more vulnerable to
oxidative attack. Leaks or pores formed in the lipid bilayer

facilitate the superoxide ions to seep through the hydrophobic
cellular membrane which was earlier impervious to these ions.
No significant change was observed in the hemolysis of lectin
agglutinated erythrocytes collected from pre-operated breast

cancer patients, whereas a significant increase was observed
in normal healthy control and post-operated samples. These
findings suggested that lectins can be used as an excellent tool

to detect the changes in the glycosylation pattern during malig-
nancy which can be a better and handy method than analyzing
biopsy samples.
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