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With Particular stx Subtypes are More Frequently
Found in Isolates From Hemolytic Uremic
Syndrome Patients Than From Asymptomatic
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Background. Enterohemorrhagic Escherichia coli (EHEC) O157:H7 infection causes severe diseases such as
bloody diarrhea and hemolytic uremic syndrome (HUS). Although EHEC O157:H7 strains have exhibited high ge-
netic variability, their abilities to cause human diseases have not been fully examined.

Methods. Clade typing and stx subtyping of EHEC O157:H7 strains, which were isolated in Japan during
1999-2011 from 269 HUS patients and 387 asymptomatic carriers (ACs) and showed distinct pulsed-field gel
electrophoresis patterns, were performed to determine relationships between specific lineages and clinical presentation.

Results. Clades 6 and 8 strains were more frequently found among the isolates from HUS cases than those from
ACs (P =.00062 for clade 6, P <.0001 for clade 8). All clade 6 strains isolated from HUS patients harbored stx2a and/
or stx2c, whereas all clade 8 strains harbored either stx2a or stx2a/stx2c. However, clade 7 strains were predominantly
found among the AC isolates but less frequently found among the HUS isolates, suggesting a significant association
between clade 7 and AC (P <.0001). Logistic regression analysis revealed that 0-9 year old age is a significant pre-
dictor of the association between clade 8 and HUS. We also found an intact norV gene, which encodes for a nitric
oxide reductase that inhibits Shiga toxin activity under anaerobic condition, in all clades 1-3 isolates but not in clades
4-8 isolates.
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Conclusions.

Early detection of EHEC O157:H7 strains that belonged to clades 6/8 and harbored specific stx subtypes may be

important for defining the risk of disease progression in EHEC-infected 0- to 9-year-old children.

Keywords. clade; EHEC; HUS; O157; stx.

Over the last 3 decades, enterohemorrhagic Escherichia coli
(EHEC), one of the major categories of diarrheagenic E coli,
has been frequently reported to cause severe diseases such as
hemorrhagic colitis, hemolytic uremic syndrome (HUS), and en-
cephalopathy [1,2]. The serogroup O157 (serotype O157:H7/H—)
was identified as the major EHEC responsible for sporadic cases
and outbreaks in several countries [3-7]. In Japan, more than
3000 annual cases of EHEC infections (including asymptomatic
carriers [ACs]) were reported during 2004-2012 [8]. Among the
isolates collected during 2008-2012, serogroup O157 predomi-
nated (62.2%) followed by 026 (22.5%), O111 (3.25%), and
0103 (3%) [8-12]. During this time period, serogroup O157
was found in more than 85% of total HUS cases [8-12].

Shiga toxin (Stx) is the most important and critical virulence
factor of EHEC that is known to cause these severe diseases.
There are 2 antigenically distinct types of Stx, Stx1 and Stx2.
Several studies have suggested that, compared with strains har-
boring stx1 gene, strains with stx2 are more often associated
with HUS [13-15]. These 2 genes have been further divided
into several subtypes: subtypes stxla, stxlc, and stxld for the
stxI gene, and subtypes stx2a-g for the stx2 gene [16]. The sub-
types stx2a and/or stx2c were more often found to be associated
with HUS than the other stx types [17, 18].

Genomic diversity of serotype O157:H7 has been extensively
studied by using several molecular subtyping methods includ-
ing pulsed-field gel electrophoresis (PFGE) [19-21], multilocus
variable tandem repeat analysis (MLVA) [22-24], octamer-
based genome sequencing [25], lineage-specific polymorphism
assay-6 (LSPA-6) [26], and single-nucleotide polymorphism
(SNP) typing [27]. Although PFGE and MLVA have revealed
considerable genetic diversity of O157:H7 strains and have
been used for epidemiological analysis, they are not applicable
to phylogenetic or population genetic analyses. Octamer-based
genome sequencing analysis initially identified 2 distinct lineag-
es of EHEC O157:H7 strains, designated as lineage I and lineage
II [25]. Lineage-specific polymorphism assay analysis, which
can subtype strains by the amplicon sizes of 6 polymerase
chain reaction (PCR) products, showed that most of the strains
belonging to lineage I were LSPA type 111111, whereas the
strains belonging to lineage II were consisted of LSPA types
222222, 222211, 222212, and 222221 [26]. A microarray-
based comparative genome hybridization analysis further iden-
tified another lineage, termed lineage I/II, which contains LSPA
type 211111 [28]. An SNP-based subtyping method was also
used to classify O157:H7 strains into 9 genetic clades (clades
1-9) [27]. The lineage I described above corresponded to clades
1, 2, 3, and 4 [29, 30]; lineage I/II corresponded to clades 6, 7

[30], and 8 [29-31]; and lineage II (LSPA type 222222 and
212111) corresponded to clade 7 and 9 [30].

A detailed epidemiological analysis demonstrated that
patients with HUS were more likely to be infected with strains
belonging to clade 8 than with strains belonging to other clades
[27]. However, only 11 isolates from HUS patients were avail-
able for characterization in this study, and thus the association
between clade membership and HUS requires confirmation,
particularly for strains isolated from different geographic
locations. Follow-up studies demonstrated that some of the
clade 8 isolates showed elevated expression levels of stx2 and
locus of enterocyte effacement genes (LEE, which is responsible
for the intimate adhesion of EHEC to the epithelial cells), as
well as increased adhesion of these isolates to cultured epithelial
cells relative to strains of clades 1-3. However, not all clade 8 iso-
lates screened exhibited the same phenotype, suggesting that
genetic variability exists within these clade 8 strains [32-34].

In the present study, we have determined the clade distribu-
tion and analyzed the stx subtypes of 656 EHEC O157:H7 iso-
lates, which were collected in Japan during the years 1999-2011
for evaluating their public health significance.

METHODS

Escherichia coli 0157:H7 Isolates Used in This Study

We collected more than 320 O157:H7 isolates from HUS pa-
tients during 1999-2011 in cooperation with local public health
laboratories in Japan. Among these isolates, we chose a total of
296 isolates, consisting of all isolates from sporadic cases and 1
representative isolate from each outbreak. We also chose a total
of 392 O157:H7 isolates from ACs including food handlers or
workers in daycare centers, who were required by law to under-
go periodic stool examination. Table 1 lists the ages of all HUS
patients and ACs included in this study.

Table 1. Age-Wise Distribution in HUS Patients and AC

Strains Derived From:
Age (years) HUS AC
0-9 192 29 (137°)
10-19 20 24
20-64 27 312
>65 30 22
Total 269 387 (495)

Abbreviations: AC, asymptomatic carrier; HUS, hemolytic uremic syndrome.
" Total number of test strains after addition of 108 strains (see text).
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Because the above-described set of strains contained only 29
isolates from ACs 0 to 9 years old, we included another 108
O157:H7 strains, each one of which was isolated from a 0- to
9-year-old AC and exhibited a distinct PFGE pattern, for our
analysis.

Pulsed-Field Gel Electrophoresis

Pulsed-field gel electrophoresis analysis was carried out as de-
scribed previously [21]. Pulsed-field gel electrophoresis patterns
were analyzed by BioNumerics software, version 6.6 (Applied
Maths, Belgium).

Mismatch Amplification Mutation Assay-Polymerase Chain
Reaction for Detecting Clade 8 Strains

Based on the available information that the clade 8-specific SNP
found in the ECs2357 gene (open reading frame number of E
coli O157:H7 Sakai strain [accession no. BA000007.2]) was
C539A [38], we developed a PCR assay, called the mismatch
amplification mutation assay (MAMA)-PCR here, to specifi-
cally detect clade 8 isolates. For the PCR amplification, a common
primer, 2357-F3 (5'-GAAGTGTGCGATCTGTCAGAA-3’),
and 2 specific primers, 539A-R (5'-AAGAGCGTTTTCCAG
TGGCTCTT-3’) and 539C-R (5'-CAGAGCGTTTTCCAGTG
GCTCTG-3’), were designed to detect clade 8 and other clades,
respectively. The 3’-end nucleotides of 539A-R and 539C-R
primers (T and G, respectively) were complementary to A
(clade 8) and C (other clades), respectively, at position 539,
but a mismatched nucleotide was introduced at the penultimate
base at the 3’ ends of both primers (designed T for C) to en-
hance the specificity. The underlined nucleotides in 539A-R
and 539C-R primers, as shown above, indicate the hairpin
regions, which could also increase the specificity. The condition
to amplify the 222 base pair (bp)-long PCR product was as
follows: 95°C for 2 minutes, followed by 25 cycles of 95°C for
30 seconds, 65°C for 30 seconds, and 72°C for 30 seconds,
with a final extension at 72°C for 5 minutes. ExTaq polymerase
(Takara, Japan) was used for the PCR amplification, and PCR
was performed using a thermal cycler (T1 Thermocycler, Bio-
metra, Germany).

stx Subtyping and Detection of Internal Deletion in norV
Subtyping of stxI and stx2 was performed as described previ-
ously [16]. To detect an internal deletion of 204 bp-long
DNA in the norV gene, PCR amplification was performed
using the following 2 primers: NORV-F1 (5-ATGTCGAA
TAACACCCGCAT-3’) and NORV-R1 (5-GCCTTTTGCC
GGATCGTAAA-3"). The condition used for the PCR amplifi-
cation was as follows: 94°C for 2 minutes, followed by 25 cycles
of 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 30
seconds, with a final extension at 72°C for 1 minute. Using
this condition, we expected to obtain either a 540 bp DNA frag-
ment (intact norV) or a 336 bp DNA fragment (norV contain-
ing an internal deletion of 204 bp).

Clade Typing

Clades 1-3 and 8 strains were subtyped by DNA sequencing
based on their SNP profiles as described previously [27]. The
remaining clades were identified on the basis of SNPs or com-
binations of SNPs specific for individual clade [27]. Minimal re-
quirements for determining clades 4 or 5, 6, 7, and 9 were as
follows: clade 9 was determined by using the SNP T281C of
ECs0654; clade 7 was determined by using the SNP A247G of
ECs0517 for strains not belonging either to clade 8 or to clade 9;
clade 6 was determined by using the SNP A348C of ECs3942 for
strains not belonging to clade 3; and clades 4 or 5 were deter-
mined by using the SNP G776A of ECs4380 for strains not be-
longing to clades 6-9.

Statistical Analysis

Statistical analysis was performed using > and Fisher’s exact
tests (Epilnfo version 7.1.1.14 or on-line calculator available at
the online Website for statistical computation [http://vas
sarstats.net/odds2x2.html]). Logistic regression analysis was
performed on the online calculator at http://statpages.org/
logistic.html. Two-tailed P values <.01 were considered
significant.

RESULTS

Pulsed-Field Gel Electrophoresis Analysis to Determine
Genetic Relatedness of Tested Strains

We examined the phylogenetic relationship of EHEC O157:H7
isolates obtained from patients with HUS and ACs to determine
whether specific lineages could be correlated with the strain
source. For this purpose, we examined epidemiologically un-
linked EHEC O157:H7 isolates, collected in Japan during
1999-2011, from 296 HUS patients and 392 ACs. We initially
performed a cluster analysis of all strains using PFGE to deter-
mine how many of them shared the same PFGE patterns.
Among all the isolates, 253 strains from HUS patients and
386 strains from ACs showed distinct PFGE patterns (results
not shown). There were also multiple strains sharing the same
PFGE pattern; thus, 46 strains from HUS patients showed 16
distinct PFGE patterns and 6 strains from ACs showed 1
PFGE pattern (results not shown). Therefore, from each
group of strains with identical PFGE pattern, only 1 representa-
tive strain was chosen for clade typing.

Clade Typing of Isolates With Distinct Pulsed-Field

Gel Electrophoresis Patterns

A total of 656 isolates (269 isolates from HUS patients and 387
isolates from ACs), all having distinct PFGE patterns as de-
scribed above, were used for the clade typing (clades 1-9). Re-
sults shown in Table 2 suggest that clade 3 (n = 84, 31.2%)
strains predominated among the HUS isolates, which was fol-
lowed by clade 2 (n=75, 27.9%) and clade 8 (n =50, 18.6%)
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Table 2. Distribution of Clade Type of 0157:H7 Strains Isolated
From HUS Patients and ACs

Strains Derived From:

OR (95% ClI),
Clade HUS (n=269) AC (n=2387) P Value for HUS
1 ) 5) 2.64 (0.88-7.98), .13
2 75 75 1.61(1.11-2.32), .014
B 84 66 2.21 (1.563-3.2), <.0001
4/5 4 2 2.91 (0.53-16), .23*
6 24 10 3.69 (1.74-7.86), .00062
7 23 216 .074 (0.046-0.12), <.0001
8 50 13 6.57 (3.49-12.4), <.0001

Abbreviations: AC, asymptomatic carrier; Cl, confidence interval, HUS,
hemolytic uremic syndrome; OR, odds ratio.

* Fisher's exact test value (2-tailed).

strains. In contrast, clade 7 (n = 216, 55.8%) strains predominat-
ed among the AC isolates, which was followed by clade 2
(n=75, 19.4%) and clade 3 (n =66, 17.1%) strains. We did
not detect clade 9 strains in either group. The number of
clade 8 strains found among the AC isolates was 13 (3.4%).
Therefore, the frequency of clade 8 strains found among the
HUS isolates was more than 5 times higher than those found
among the AC isolates. This result suggests a statistically signifi-
cant association between the clade 8 strains and HUS, and that
this association was better than that with other clades (clades 1-
7) combined (odds ratio [OR], 6.57; confidence interval [CI],
3.49-12.4; P <.0001). In addition to clade 8, statistically signifi-
cant association was also observed between clade 3 (OR, 2.21;
CI, 1.53-3.2; P<.0001) and clade 6 (OR, 3.69; CI, 1.74-7.86;
P =.00062) strains and HUS (Table 2). Although the clade 8
strains were more likely to be isolated from HUS patients
than the clade 3 (OR, 3.02; CI, 1.52-6.03; P =.0022) strains,
no significant difference was observed between the clades 6
and 8 (OR, 1.6; CI, 0.62-4.17; P = .47) strains. Therefore, clades
6 and 8 strains were not very different with respect to their as-
sociation with HUS. In contrast to these results, clade 7 strains
were predominantly found among the AC isolates but were less
frequently found among the HUS isolates (n = 23, 8.6%). In fact,
the frequency of finding clade 7 strains among the AC isolates
was 6 times higher than those among the HUS isolates. Thus,
this result suggests a statistically significant association between
the clade 7 strains and AC, and that this association was better
than that with other clades (clades 1-6, 8) combined (OR,
0.074; CI, 0.046-0.12; P <.0001).

stx Subtypes and Their Association With Clade

and Hemolytic Uremic Syndrome Cases

We next analyzed the stx subtypes of strains used for the clade
analysis. As shown in Table 3, stxIa/stx2a was the most frequent
stx subtype found among the isolates from both HUS patients

Table 3. Association of stx Genotypes With Clinical Outcome

Strains From:

HUS AC OR (95% Cl)

stx Genotype  (n=269) (n=387) P Value for HUS
stx1a 1 3 48 (0.049-4.62) .65*
stx2a 53 53 1.55 (1.02-2.35) .04
stx2c 10 131 .075 (0.04-0.15) <.0001
stx1a/stx2a 152 139 2.32 (1.69-3.19) <.0001
stx1a/stx2c 2 30 .06 (0.02-0.27) <.0001*
stx1alstx2al 1 9 .16 (0.02-1.24) .05*

stx2c
stx2alstx2c 50 22 3.79 (2.23-6.43) <.0001

Abbreviations: AC, asymptomatic carrier; Cl, confidence interval, HUS,
hemolytic uremic syndrome; OR, odds ratio.

* Fisher's exact test value (2-tailed).

(152, 56.5%) and ACs (139, 35.9%). The stx subtypes stx2c and
stxla/stx2c were found more frequently among the AC isolates
than among the HUS isolates (Table 3). This result is mainly
due to the high prevalence of clade 7 among these stx subtypes
(Table 4). The frequencies of finding stx subtypes stxla/stx2a
and stx2a/stx2c among the HUS isolates were higher than
those from the AC isolates (Table 3). Because most of the strains
harboring stxla/stx2a belonged to clade 2 or clade 3 (275 of 291;
94.5%), higher association of these stx subtypes with HUS, rath-
er than that with AC, was due to the high prevalence of their
respective clades. The frequency of finding the stx2a/stx2c sub-
type was higher among the HUS isolates than among the AC
isolates because most isolates harboring this stx subtype be-
longed to either clade 6 or to clade 8 (57 of 72; 79.2%). In con-
trast, the frequency of finding the stx2a subtype among the HUS
and AC isolates were not significantly different (Table 3). How-
ever, 23 of 30 (76.7%) clade 8 strains were isolated from HUS
patients, suggesting a statistically significant association

Table 4. stx Genotype of Strains Belonging to Each Clade Group

stx Genotype of Isolates From HUS/AC

stx1a/
stxlal  stxlal stx2al stx2a/
Clade stxla stx2a stx2c stx2a stx2c  stx2c  stx2c

1 0/0 1/0 0/0 8/5 0/0 0/0 0/0

2 171 1173 0/0 62/69 0/0 1/2 0/0
8 0/2 2/2 0/0 82/62 0/0 0/0 0/0
4/5 0/0 3/0 0/2 0/0 0/0 0/0 1/0
6 0/0 2/1 3/1 0/0 0/3 0/0 19/5
7 0/0 11/40 7128 0/3 2/27 0/7 3/11
8 0/0  23/7 0/0 0/0 0/0 0/0 27/6
Total 1/3  53/53 10/131 152/139  2/30 1/9 50/22

Abbreviations: AC, asymptomatic carrier; HUS, hemolytic uremic syndrome.
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Fig. 1. Development of a clade 8-specific mismatch amplification muta-

tion-polymerase chain reaction (PCR) assay. Lane M shows the DNA size
markers (Tracklt 1 kb Plus DNA Ladder, Life Technologies) including DNA
fragments sized 100, 200, 300, 400, 500, 650, 850, 1000 bp, and so on. The
black arrows on the right side of both panels indicate positions of the PCR
products. Two different strains from each clade were used. (A) Polymerase
chain reaction performed using the 539C-R primer detected strains belong-
ing to clades 1-7, but not strains belonging to clade 8. (B) Polymerase
chain reaction performed using the 539A-R primer detected strains belong-
ing to clade 8, but not strains belonging to clades 1-7.

between the clade 8 strains harboring only stx2a and HUS (OR,
4.37;CI, 1.14-16.69; P = .0012). Likewise, 40 of 51 (78.5%) clade
7 strains were isolated from ACs, suggesting a statistically signif-
icant association between the clade 7 strains harboring only
stx2a and AC (OR, 11.75; CI, 4.72-29.3; P<.0001) (Table 4).
Taken together, these results suggest that the clade typing rather
than the stx2a genotype is a determinant for the association of
strains with HUS or AC.

Development of Mismatch Amplification Mutation Assay-
Polymerase Chain Reaction to Detect Further Clade 8 Strains
A previous study has developed a real-time PCR assay for de-
tecting clade 8 strains [35]. In the present study, we have devel-
oped an alternative PCR-based assay, called MAMA-PCR,
which allowed inexpensive detection of clade 8 strains without
performing any DNA sequencing analysis. As shown in
Figure 1, clade 8 was specifically detected by a specific primer
set but not by the other primer set that can detect all other
clades (clades 1-7). Using this assay, we were able to confirm
all 63 clade 8 strains (listed in Table 2), which were subtyped
by DNA sequencing (results not shown).

The 0- to 9-Year-0ld Age Group Is a Significant Predictor for the
Association Between Clade 8 and Hemolytic Uremic Syndrome
In Japan, incidence of EHEC infection was highest among the
0- to 4-year-old age group followed by those in the 5- to 9-year-

Table 5. Clade 8 Strains Isolated From Patients With HUS or ACs
(Age-Wise Distribution)

Number of Clade 8/
Other Clades
OR (95% CI),
Age (years) HUS AC P Value of Clade 8 for HUS
0-9 42/150 6/131 6.11 (2.52-14.84), <.0001
>10 8/69 13/345 3.08 (1.23-7.7), .019*
Total 50/219 19/476 5.72 (3.29-9.93), <.0001

Abbreviations: AC, asymptomatic carrier; Cl, confidence interval; HUS,
hemolytic uremic syndrome; OR, odds ratio.

* Fisher's exact probability test value (2-tailed).

old age group [8]. As shown in Table 1, 192 of 269 (71.4%)
strains isolated from HUS patients were from children of ages
between 0 and 9 years; in contrast, only 29 isolates were from
ACs, which did not contain any clade 8 strain. Therefore, for
further analyzing the frequency of occurrence of clade 8 strains
among the 0- to 9-year-old age group, we included another 108
test strains, which were obtained from 0- to 9-year-old children
without any symptoms, and each one of these strains exhibited
different PFGE patterns (data not shown). Mismatch amplifica-
tion mutation assay-PCR analysis (Table 5) demonstrated that 6
of 108 strains belonged to clade 8, suggesting that the associa-
tion between clade 8 and HUS for the 0- to 9-year-old age group
was still statistically significant (OR, 6.11; CI, 2.52-14.84;
P <.0001). On the other hand, this association was not signifi-
cant when strains were isolated from HUS patients or ACs who
were over 10 years old (OR, 3.08; CI, 1.23-7.7; P = .019 [Fisher’s
exact test value]). Logistic regression analysis indicated that the
0- to 9-year-old age group was a significant predictor for the as-
sociation between clade 8 and HUS; thus, crude and adjusted
OR values for this age group were 5.72 and 4.44, and difference
between them was more than 10%. However, no association was
observed between gender and HUS status (OR, 1.02; CI, 0.74-
1.41; P=1). Gender was not a predictor for the association be-
tween clade 8 and HUS; in this case, the crude OR was equal to
that of the adjusted OR (both were 6.3).

Clade Specific Deletion of norV/
The norV gene, which encodes an anaerobic nitric oxide (NO)
reductase, has been shown to be a putative virulence determi-
nant in certain O157:H7 strains because NO inhibited Stx2 ex-
pression under anaerobic condition [36, 37]. In the reference
strains EDL933 (belonging to clade 3) and Sakai (belonging
to clade 1), the NO reductase activity was abolished because
of an internal 204-bp deletion in the norV gene; however, in
the spinach outbreak-derived clade 8 strain TW14359, the
norV gene was found to be intact [38].

We designed specific PCR primers (see Methods) to examine
the distribution of this 204-bp deletion in norV in each clade
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group. We found that 84 of 145 strains (57.9%) isolated from
HUS patients and 177 of 223 strains (79.4%) isolated from
AC harbored the intact norV gene. Therefore, the presence of
norV gene by itself does not cause HUS. We found that all tested
isolates belonging to clade 1 (n = 12), clade 2 (n = 47), and clade
3 (n = 48) had the same norV deletion as that found in the Sakai
and EDL933 strains [39]. On the other hand, all tested isolates
belonging to clade 4 or 5 (n=4), clade 6 (n=33), clade 7
(n=173), and clade 8 (n = 51) had intact norV gene. Therefore,
presence of an intact norV is rather nonrandomly distributed
across O157:H7 lineages (clades 1-3 vs clades 4-8).

DISCUSSION

A previous study, for which only 11 isolates from HUS patients
were available, suggested that HUS patients were 7 times more
likely to be infected with a clade 8 strain than with a strain be-
longing to other clades (clades 1-7) [27]. In the present study,
clade typing of 656 epidemiologically independent O157:H7
isolates, collected from 269 HUS patients and 387 ACs in
Japan during the years 1999-2011, revealed that the degree of
association of clade 8 strains with HUS was statistically more
significant than that with AC. Using the same strain set, we
also found significant association between the strains belonging
to clade 6 and HUS. To the best of our knowledge, this is the
first report that uses a large set of O157 strains and demon-
strates a significant association not only between clade 8 strains
and HUS cases but also between clade 6 strains and HUS cases.
In addition to these results, we also found statistically significant
association between clade 7 strains and AC, which confirmed
the earlier observation that the clade 7 strains caused less severe
disease [27, 39].

To assess the potential contributions of high virulent lineages
of EHEC 0157 to HUS, it is highly desirable to have suitable
methods available for their early detection. Therefore, detection
of clade 6 and clade 8 strains by using a rapid and specific meth-
od, such as reverse transcription (RT)-PCR, is not only impor-
tant to have but is also useful for clinical laboratories.
Availability of such methods would also help in understanding
the environmental reservoirs and sources of such high virulent
strains. In the present study, we have developed MAMA-PCR,
an inexpensive PCR-based method for detecting clade 8 strains,
as an alternative to the RT-PCR-based detection method that
was developed previously [35].

Several previous studies showed that some of the clade 8
strains expressed elevated levels of several virulence-related
genes and demonstrated enhanced ability to attach to epithelial
cells compared with several other strains belonging to clades
1-3 [33-35]. However, further studies using a large set of
strains, including the clade 6 strains, would be required to un-
derstand the molecular mechanism of lineage-specific variabil-
ity in virulence of EHEC O157 strains.

Subtyping of stx gene in each clade revealed that all clade 6
strains isolated from HUS patients harbored stx2a and/or stx2c,
whereas all clade 8 strains harbored either stx2a or stx2a/stx2c.
In most clade 2 and clade 3 strains, the observed stx subtype was
stxlalstx2a (86.2% and 96%, respectively). Thus, there seems to
be close association between these clades and stx subtypes of
strains, which contribute to the observed high degree of associ-
ation between the stx subtypes and HUS cases.

Clade 7 strains harbored several different stx subtypes, in-
cluding stx2a, stx2c, stxlal/stx2a, stxlalstx2c, stxla/stx2alstx2c,
and stx2a/stx2c. Among these stx subtypes, the major stx sub-
types found in clade 7 strains were stx2c and stxla/stx2c.
Thus, these subtypes showed higher degree of association
with AC than with HUS.

Hemolytic uremic syndrome was more often found to be as-
sociated with the stx subtype stx2a than with any other stx sub-
types [17, 18]. However, results shown in this study indicated
that the frequency of finding the stx2a subtype among the
HUS and AC isolates was comparable. On the other hand,
our findings that the clade 7 strains harboring only the stx sub-
type stx2a showed higher association with ACs rather than with
HUS cases (P <.0001) and the clade 6 or clade 8 strains harbor-
ing the stx subtype stx2a showed higher association with the
HUS cases rather than with ACs (P =.00079), suggested that
the clade typing is essential for determining the virulence po-
tential of EHEC O157 strains harboring only the stx subtype
stx2a.

In the present study, we also observed that the 0- to 9-year-
old age group was a significant predictor for the association be-
tween clade 8 strains and HUS cases. In addition to the clade 8
strains, close association between the clade 6 strains and HUS
was also observed for this age group. Thus, 12% (23 of 192)
and 1.3% (1 of 77) of clade 6 isolates from HUS patients were
actually obtained from the 0- to 9-year-old and >10-year-old
age groups, respectively; in contrast, numbers of clade 6 strains
isolated from ACs were comparable (4.4% vs 2.8%) for both age
groups. Contrary to these observations, clade 7 strains isolated
from patients with HUS were comparable in number (8.3% vs
9.1%) for both 0- to 9-year-old and >10-year-old age groups,
whereas those isolated from ACs were 23.4% (32 of 137) and
58.1% (208 of 358) for the 0- to 9-year-old and >10-year-old
age groups, respectively. Therefore, we found significant associ-
ation between the clade 7 strains isolated from ACs and >10-
year-old age group (P <.0001).

All of the clades 1-3 strains used in this study carried an in-
ternal 204 bp deletion in the norV gene, which encodes a puta-
tive virulence factor; however, all the tested strains belonging to
clades 4-8 carried the intact norV gene. Consistent with these
results, a previous study examining O157 strains isolated from
geographically different places showed that all strains isolated in
Argentina (n =57) and Australia (n = 58) and harboring the in-
tact norV gene belonged to clade 4, 6, 7, or 8 [40]. These results
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suggest that the presence of intact norV does not have any as-
sociation with HUS.

In conclusion, the present study using a large set of EHEC
O157 strains isolated from HUS patients and ACs showed a sig-
nificant association of clade 6 or 8 and clade 7 strains with HUS
and ACs, respectively. All Clade 6 strains isolated from HUS pa-
tients harbored stx2a and/or stx2c, whereas clade 8 strains har-
bored either stx2a or stx2a/stx2c but not stx2c. Taken together,
we believe that our observed results would prompt further in-
vestigations that would help us find the reservoirs and sources
of these high virulent strains among geographically different
samples and also help us develop molecular methods to rapidly
and specifically identify clades with or without stx subtype.
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