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Background. Although many risk factors are well known, Clostridium difficile infection (CDI) continues to be a
significant problem throughout the world. The purpose of this study was to develop and validate a data-driven,
hospital-specific risk stratification procedure for estimating the probability that an inpatient will test positive for
C difficile.
Methods. We consider electronic medical record (EMR) data from patients admitted for ≥24 hours to a large

urban hospital in the U.S. between April 2011 and April 2013. Predictive models were constructed using L2-regu-
larized logistic regression and data from the first year. The number of observational variables considered varied from
a small set of well known risk factors readily available to a physician to over 10 000 variables automatically extracted
from the EMR. Each model was evaluated on holdout admission data from the following year. A total of 34 846
admissions with 372 cases of CDI was used to train the model.
Results. Applied to the separate validation set of 34 722 admissions with 355 cases of CDI, the model that made

use of the additional EMR data yielded an area under the receiver operating characteristic curve (AUROC) of 0.81
(95% confidence interval [CI], .79–.83), and it significantly outperformed the model that considered only the small
set of known clinical risk factors, AUROC of 0.71 (95% CI, .69–.75).
Conclusions. Automated risk stratification of patients based on the contents of their EMRs can be used to ac-

curately identify a high-risk population of patients. The proposed method holds promise for enabling the selective
allocation of interventions aimed at reducing the rate of CDI.

Keywords. Clostridium difficile; data-driven methods; electronic medical records; machine learning; risk
stratification.

Although many risk factors are well known (eg, health-
care-associated exposure, age, underlying disease, use of
antimicrobial agents, etc), Clostridium difficile infection
(CDI) continues to be a significant problem throughout
the world. Despite much effort, CDI rates in the United
States have increased in recent years [1]. In the United

States, from 1996 to 2009, CDI rates for hospitalized pa-
tients ages ≥65 years increased by 200% [2]. Beyond
causing significant morbidity and mortality, each case
of CDI is associated with the addition of several thou-
sand dollars in hospital costs for primary infections
and tens of thousands of dollars per case for recurrent
infections [3]. A conservative estimate of the financ-
ial burden of CDI in the United States is $1.1 billion
annually [4]. Costs stem in part from (1) the lack of
cost-effective proactive interventions and (2) the lack
of means for focusing such interventions based on
risk [5].
In this study, we consider the challenge of building a

clinical tool for predicting the risk of inpatients testing
positive for pathogenic C difficile during a hospital ad-
mission.We explore the development of hospital-specific
risk stratification based on data that are readily drawn
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from local electronic health records. This process allows for
straightforward integration into the health information system
and the automatic calculation of patient risk.
In contrast to previous risk stratification models for CDI, we

do not limit ourselves to the set of known risk factors but con-
sider over 10 000 variables automatically extracted from the
electronic medical record (EMR). Using machine learning tech-
niques, we develop the model on admissions from a single year
and validate the model on a holdout set of admissions from the
following year. The holdout set consists of cases that are with-
held from the process used to construct the predictive model.
We compare our proposed model with one based on a small
set of known risk variables.
We show that the addition of information not usually consid-

ered can lead to a significant improvement in discrimination
performance compared with a model based on a small set of
known risk variables. Although building and using such data-
driven models may seem more complex than using a simple
rule, we argue that the accuracy and hospital specificity makes
themmore appropriate. Moreover, the growing ubiquity of elec-
tronic health systems provides the necessary infrastructure to
automate data-driven risk methods, making them easy to con-
struct and use.

METHODS

Data
The data for this retrospective cohort study came from the
electronic databases of a large urban hospital in the U.S. All
patients admitted on or after April 12, 2011 and discharged
on or before April 12, 2013 were initially considered. Patients
<18 years of age, patients with a length of stay (LOS) <24
hours, and patients with a positive test for C difficile within
24 h of admission were excluded from the analysis. Clostridi-
um difficile infection cases were identified using the hospital’s
laboratory database. Admissions in which patients had at
least 1 positive result for toxigenic C difficile were identified.
During the study period, the testing protocol used by the hos-
pital consisted of a DNA amplification assay (illumigene C dif-
ficile) for the direct detection of C difficile toxins A and B in
unformed stool.
We define the risk period of a patient as the time from admis-

sion to the time of a positive test result or to discharge if the
patient never tests positive. In our study population, all patients
have a risk period greater than 24 hours. The Institutional Re-
view Board of the Office of Research Integrity of the MedStar
Health Research Institute approved the statistical analysis of
retrospective medical records.

Feature Extraction
For each admission in our study population, we extracted 2 sets
of variables from the hospital database:

• Curated Variables: known clinical risk factors for C difficile
drawn from the literature, and readily available to physicians
within 24 hours of admission [6–20].

• EMR Data: all structured patient data that can be auto-
matically extracted from the EMR within 24 hours of
admission.

These 2 sets of variables are described in detail in the next
section. The first set of variables, selected by a team of collabo-
rating physicians, represents well known risk factors for C diffi-
cile. We restricted this set to variables typically available to
physicians, eg, we do not consider colonization pressure,
which requires information on patient locations to calculate
unit-wide and hospital-wide rates of infection with C difficile
(see Supplementary Supporting Information). The second set
of variables is a much larger set, consisting of structured data
that are easily derived in a fully automated manner from the
EMR, including colonization pressure. Most of the variables
or features we considered were categorical (discrete) and several
were continuous. We discretized the continuous data and
mapped all data to binary variables.

Learning to Predict Risk
We sought to predict in advance which patients would test pos-
itive for C difficile during the current hospitalization. We chose
to make a single prediction for each patient as in reference [2].
We made the prediction 24 hours after admission to leverage
the entries made to the EMR shortly after admission.
After feature extraction, our dataset consisted of patient ad-

missions represented by feature vectors, labeled either positive
or negative depending on whether the patient tested positive for
C difficile during the current admission. Given the labeled data,
we sought a function that maps a set of observations about a
patient to a scalar value in [0, 1] (ie, a probability). This func-
tion was learned on training data from the first year using logis-
tic regression, a computationally efficient method for linear
classification. Solving for the regression coefficients, ie, feature
weights, is an optimization problem (see Supplementary Sup-
porting Information for more detail). To improve generalizabil-
ity to unseen future patient cases, we used L2-regularized
logistic regression [21]. The solution to the optimization prob-
lem depends on the data used in training. We considered 3 dif-
ferent models: 1 based on the small set of curated risk factors
and 2 others that included the longer list of variables extracted
automatically from the EMR. Under Results, we compare the
performance of the 3 models.

Model Evaluation
To measure the performance of the models, we applied each
model in turn to a set of holdout data from the following
year. Validation on a holdout dataset is important when work-
ing with a large number of risk variables, because it becomes
easier to overfit to the training set with increasing numbers of
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variables being considered, which can produce deceptively good
results. Furthermore, dividing the data temporally (rather than
randomly) into a training and validation set mimics how we
expect the predictive model learned from historical data to per-
form in the risk stratification of future patients. Recent hospital-
izations are likely to be more similar to the cases that we will see
in the future.
Each models’ ability to discriminate low-risk from high-risk

patients was measured using the area under the receiver operat-
ing characteristic curve (AUROC) [21]. The 95% confidence
interval was calculated using 100 bootstrap samples (sampling
with replacement) of the validation set [22]. To further quantify
each model’s ability to risk stratify the patients in the validation
set, we measured the calibration of both models, capturing how
closely predicted risk matched actual risk [23]. We sorted
the test patients by their predictions and grouped them by dec-
iles. For each group, we calculated the median predicted prob-
ability of risk and the actual probability of risk (for each of the
100 bootstrap samples). We also compared the performance of
the models using the Net Reclassification Improvement (NRI)
[24]. We considered grouped NRI instead of continuous NRI
because calibration can greatly affect the continuous NRI mea-
surement. To measure NRI for different decision thresholds, we
split the validation data into 2 groups, high risk and low risk,
sweeping the decision threshold from the 50th percentile to
the maximum. Finally, we measured the classification perfor-
mance of the models, in terms of sensitivity and positive pre-
dictive value, using a decision threshold based on the 95th
percentile. This threshold was chosen based on the class imbal-
ance (ie, identifies a patient population 5 times greater than the
expected number of infected patients). In addition to identify-
ing which patients were predicted to test positive and which pa-
tients actually tested positive, we noted when patients tested
positive. This method allowed us to determine how far in ad-
vance the model is capable of accurately identifying high-risk
patients, an important measure of performance for any pre-
dictive model. All statistical analyses were performed using
MATLAB.

RESULTS

After applying exclusion criteria (described in Figure 1), the
final population consisted of 69 568 admissions. Table 1 sum-
marizes the demographic and admission-related characteristics
of the study population. Given the EMRs of all patients in our
dataset, we extracted the features referenced in Table 2 for each
patient admission and a binary label indicating whether a
patient tested positive for C difficile (and when). This process
resulted in 14 curated features and 10 845 additional features
derived from the EMR.
We learned 3 different models based on different sets of var-

iables. The first model, named EMR, was constructed by first
considering all of the features extracted from the EMR (ie, all
of the features in Table 2). For computational efficiency, this
set of features was reduced to only those features that occurred
in at least 1% of the population. The resulting model was trained
on 1017 variables. The second model, Curated, considered only
the first 14 features listed in Table 2, known risk factors for
C difficile readily available to clinicians. For completeness, we
constructed a third model, EMRall, that used all of the features
extracted from the EMR (without any filtering). This final
model considered all 10 859 features.
We constructed the risk stratification models (eg, identified

the set of weights for combining the observations) on admis-
sions from the first year, and we validated the learned prediction
rules on all admissions in the second year.

• Training Set: 34 846 admissions (372 cases of CDI).

• Validation Set: 34 722 admissions (355 cases of CDI).

We tested the predictive power of each of the models on the
validation data and achieved the results displayed in Table 3.
This table presents the AUROC. In the third column of Table 3,
we consider the performance on all patients in the validation
set. Note that this result includes patients who test positive or
are discharged between 24 and 48 hours after admission.
These cases are arguably the easiest cases to identify (the closer
one is to a positive test result or discharge the easier it is to

Figure 1. Study population flow diagram.
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predict). Therefore, to further validate the 3 models, in the last
column of Table 3 we note the performance of each model on
the subset of admissions with a risk period greater than 48
hours: 28 984 admissions, 286 in which the patient tests positive
for C difficile. The EMR model performs significantly better

than the Curated model, on this subset of test patients. Figure 2
shows how this trend continues when we consider patients with
even longer risk periods.
In Figure 3A, we plot the ROCs generated by applying the

EMR and the Curated models to the validation data. In all 3
plots, we see a clear advantage of the model trained on the
EMR data versus the model trained only on the smaller subset
of well known risk factors, specifically in the region between
0.05 and 0.25 false-positive rate (shown in Figure 3A(iii)). In
Figure 3B, we display the calibration of both models. The
Curated classifier, depicted in the last plot, underestimates the
probability of testing positive for patients who are at high risk
and overestimates the probability for patients who are at low
risk, suggesting that it is not well calibrated.
Figure 4A plots the NRI for different cutoffs (based on per-

centiles). In general, we see approximately 15% of improvement
in the reclassification of positive examples (ie, the EMR classi-
fier does a better job at classifying the patients who eventually
test positive for C difficile). In addition, Figure 4B gives the con-
fusion matrix for both classifiers when patients were classified
as high risk if the predicted probability was greater or equal
to the 95th percentile. From the confusion matrices, in Fig-
ure 4B, we calculated a 38% increase in sensitivity and a 50%
increase in positive predictive value, using the EMRmodel com-
pared with the Curated model. The EMR model identified 26
additional true positives compared with the Curated model,
while identifying fewer false positives. Figure 4C further illus-
trates the ability of the EMR model to identify patients several
days in advance of a positive test result.

DISCUSSION

Electronic medical record-based methods for patient risk strat-
ification for CDI in advance of disease performed significantly
better than methods based on known risk factors, as represent-
ed in the Curated model. The EMR model resulted in a 10% im-
provement in the AUROC over that of the Curated model. For a
true positive rate of 0.5, the EMR model would misclassify over
3000 fewer patients a year. The EMR model performed better
than the Curated model consistently across patient populations,
independent of when patients tested positive for toxigenic C dif-
ficile. Furthermore, the proposed classifier identified more true
positives, while reducing the number of false positives com-
pared with the Curated model. Given the significant class im-
balance of the problem (ie, a positive test result occurs in only
1% of the population), simultaneous improvements in sensitiv-
ity and specificity is a significant achievement. Despite the large
difference in numbers of features considered, the EMR and
EMRall models performed nearly identically, confirming that
we do not sacrifice classifier performance when filtering vari-
ables for computational efficiency.

Table 1. Descriptive Characteristics of Study Population

Variable Statistic (n = 69 568)

Female gender (%) 56.72

Age (%)
18–25 6.36

25–45 20.87

45–60 25.23
60–70 18.74

70–80 15.37

80–100 10.37
≥100 2.97

Hospital admission type (%)

Emergency 58.53
Routine elective 19.36

Urgent 12.43

Term pregnancy 9.41
Hospital admission source (%)

Admitted from home 79.34

Transferred from another health institution 12.02
Outpatient 6.20

Other* 2.42

Hospital service (%)
Medicine 45.54

Cardiology 12.41

Surgery 11.41
Obstetrics 10.72

Psychiatry 4.21

Other† 15.71
Hemodialysis performed (%) 5.02

Diabetic (%) 31.46

Medications (%)
Immunosuppressants (solid-organ

transplant)
1.84

Corticosteroids 11.31
Antimicrobials assoc** 36.67

Antimicrobials rarely assoc 18.30

Proton pump inhibitors 34.92
CDI (%) 1.05

Median LOS in days (IQR) 4.01 (2.40–7.12)

Previous visit in last 90 days (%) 21.85
History of CDI, 1 year (%) 1.45

Abbreviations: assoc, ; CDI, Clostridium difficile infection; IQR, interquartile
range; LOS, length of stay.
* Other includes routine admission (unscheduled), transferred form a nursing
home, referred and admitted by family physician.
† Other includes burn, gynecology, neurosurgery, open heart surgery,
oncology, orthopedics, trauma, vascular.
** assoc refers to known associations between antimicrobials and CDI.
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To the best of our knowledge, this model is the first risk strat-
ification model for CDI based on data automatically extracted
from the EMR. Several recent efforts have focused on building

more conventional predictive models for CDI based on known
risk factors. Results in the literature for the problem of risk strat-
ification for CDI vary greatly, with reported AUROC’s ranging
from 0.63 to 0.88 [7, 22–24]. The variation in classification per-
formance arises from differences in task definitions, study pop-
ulations, and methods used to generate and evaluate the
predictions. For example Garey et al [7], considered only hospi-
talized patients receiving broad-spectrum antibiotics, whereas
we consider all hospitalized patients. Such differences render
simple comparisons among performance measures uninforma-
tive. Thus, in a review of prior work, we shall focus on reported
methodology rather than on relative performance.
Tanner et al [22] tested the ability of the Waterlow Score to

risk stratify patients at the time of admission for contracting
C difficile. The Waterlow Score considers 10 variables available
at the time of admission, including build and weight for height,
skin type and visual risk areas, sex and age, malnutrition,

Table 3. Performance of 3 Models Varying in Complexity on the
Test Data (n = 34 722)*

Model Dimensionality AUC RP> 24
(95% CI)

AUC RP > 48
(95% CI)

EMR 1017 0.8129 (.79–.83) 0.7886 (.76–.82)
Curated 14 0.7163 (.69–.75) 0.6900 (.66–.72)

EMRall 10 859 0.8140 (.80–.83) 0.7896 (.76–.81)

Abbreviations: AUC, receiver operating characteristic curve; CI, confidence
interval; EMR, electronic medical record; RP, risk period.

* We measure performance in terms of AUC of predictions applied to all of the
patients present in the hospital 24 h after admission (who have not yet tested
positive for Clostridium difficile) and also a subset of patients with an RP >48 h.

Table 2. Variable Descriptions*

Variable Name Description

Curated Variables Based on Well Known Risk Factors (All Variables Collected During First 24 H of Admission)

age_70 (Time of Admission - Birthday) ≥70 years [8, 9, 11]
admission_source:TE Transfer from nursing home [1]

day90_hospit Recent hospitalization in the previous 90 days [7, 10]

hist_cdi Previous CDI within the last year [11]
hemodialysis Procedure code for dialysis [10]

gastro_tube Procedure code associated with nasogastric or esophagostomy tube [16, 19]

ccsteroids POE for corticosteroids [10]
immunosuppressants POE for solid-organ transplant immunosuppressants

chemo_cdi POE for chemotherapeutic agents associated with CDI

chemo_entero POE for chemotherapeutic agents associated with enteropathy
antimicrobials_assoc POE for antimicrobials frequently associated with CDI [9, 12–14, 20]

antimicrobials_rarely POE for antimicrobials rarely associated with CDI [6]

ppi POE for proton pump inhibitors [15, 17]
abdominal_surgery Procedure codes for abdominal surgery associated with CDI [9, 18]

Variable Category Description

Categories of Additional Variables Extracted From the EMR

previous visits Statistics on previous LOS (within 90 days) lengths (total, max, avg)
dxcodes Highest level of ICD9 codes coded during most recent visit

labresults Any laboratory test that was observed within 24 h with flag (high, low, critical)

vitals All vitals with flags (high, low) collected during first 24 h
procedures All procedure codes collected during first 24 h

medications All POE for previous visit and during first 24 h of current visit

admission_type Admission type
admission_source Admission source

hospital_service Hospital service

age Discretized [15, 25, 45, 60, 70, 80, 100]
city City where the patient resides

colonization_pressure Unit and hospital-wide colonization pressure on day of admission

Abbreviations: avg, average; CDI, Clostridium difficile infection; EMR, electronic medical record; LOS, length of stay; max, maximum; POE, physician order entry.

* We describe each patient admission using 2 sets of variables. We refer to the first set of variables as Curated. The second set of variables consists of all additional
data procured from the structured fields of patients’ electronic health records.
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continence, mobility, tissue malnutrition, neurological deficit,
and major surgery or trauma. Dubberke et al [6], identified sev-
eral additional risk factors for CDI, including colonization pres-
sure, which attempts to capture the exposure to the pathogen
from surrounding colonized or infected patients. More recently,
Dubberke et al [23] developed and validated a risk-prediction
model based on variables collected at the time of admission

and also during the hospitalization to identify patients at high
risk of CDI. The final model includes 10 different variables:
age, colonization pressure, times admitted to hospital in the
previous 60 days, modified acute physiology score, days of treat-
ment with high-risk antibiotics, whether albumin level was low,
admission to an intensive care unit, and receipt of laxatives, gas-
tric acid suppressors, or antimotility drugs. Garey et al [7] used

Figure 2. The area under the receiver operating characteristic curve (AUROC) achieved when both the electronic medical record (EMR) and the Curated
models were applied to patients in the validation set. Each comparison considers a different subset of patients based on the length of their risk periods. For
example, in the third comparison from the left, all patients have a risk period of at least 72 hours.

Figure 3. (A) Receiver operating characteristic (ROC) curves for the first 2 models listed in Table 3. The thin dotted lines represent the 95% confidence
bounds generated using 100 bootstrap samples from the test data. A(i) shows the ROC curve generated on all admissions in the test data, whereas A(ii)
considers only those patients with a risk period of at least 48 hours. A(iii) focuses on only a portion of the ROC curve presented in 3A(ii). (B) B(i) shows the
calibration for the EMR model, and B(ii) shows the calibration for the Curated model. The black dashed lines represent perfect calibration, ie, where the
predicted probability aligns with the likelihoods seen when the classifier is applied to the test patients (45 degree line).
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5 variables (age 50–80, age >80, hemodialysis, nonsurgical ad-
mission, and intensive care unit LOS) to build a risk index for
hospitalized patients receiving broad-spectrum antibiotics.
In all of the work discussed above, building risk stratification

models for C difficile is a 2-step process. In a first step, risk

factors for C difficile are identified using either logistic regres-
sion or based on previously identified risk factors drawn from
the literature. This initial step typically results in the use of fewer
than a dozen variables. A second step corresponds to construct-
ing a prediction rule (ie, the function used to combine the

Figure 4. (A) Net reclassification improvement (NRI) of using the electronic medical record (EMR) model to classify patients as high risk or low risk versus
the Curated model. (B) Confusion matrices for both the EMR model and the Curated model, using a decision threshold based on the 95th percentile. (C)
Histogram of when patients in the validation set tested positive for pathogenic C difficile and the number patients correctly identified as high risk in each
group, using the EMR model with same decision threshold as in 4(B).
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factors into a risk score). These functions are typically learned
based on a training set of example patient cases (patient admis-
sions labeled as either tested positive for C difficile or not). This
method is appropriate if the number of available learning exam-
ples is small, if the variables must be extracted by hand, or if the
prediction rule will be implemented by hand. Yet, many hospi-
tal databases now contain hundreds of thousands of EMRs on
patient hospitalizations. Although these data are available in
most hospital database systems, they are often overlooked
when building prediction rules given the traditional goal of gen-
erating simple clinical rules (eg, back of the envelope addition
with a small number of factors). As we have shown, these
data can be harnessed via machine learning techniques to
learn accurate hospital-specific risk stratification models that
take into consideration thousands of variables. The proposed
methods yield hospital-specific, risk stratification models that
are custom tailored to the distributions, readily available vari-
ables, and nuances of individual hospitals.
In this study, we considered the task of predicting which pa-

tients would test positive for pathogenic C difficile during the
current admission, using data collected within the first 24
hours of admission. Framing the problem as such allowed us
to measure the utility of the EMR data available shortly after ad-
mission. However, this problem formulation resulted in the
identification of patients who acquired an infection during
the current hospitalization and those who were probably already
infected at the time of admission. The Centers for Disease Con-
trol and Prevention defines hospital-acquired CDI as a positive
test result for C difficile at least 3 calendar days after admission
[25]. This policy is aimed at excluding patients admitted with an
infection who were tested before day 3. The ability to identify
both sets of patients is clinically relevant. In particular, early
identification could aid in reducing further transmission of
the disease. However, if one is more interested in focusing pre-
vention efforts on hospital-acquired disease, the proposed
methods could be used to make a prediction about each patient
72 hours after admission. In addition, the proposed methods
could be extended to make multiple predictions throughout a
hospitalization. For example, a prediction could be made on a
daily basis with the availability of additional EMR data. The
ability to identify patients at high risk of acquiring CDI in ad-
vance of disease could enable effective, targeted interventions to
reduce patient risk.
Currently, avoiding preventable exposure to antibiotics asso-

ciated with CDI and preventing ingestion of the C difficile or-
ganism or spore are the core tenants of prevention efforts
[26]. In the absence of effective risk stratification that can
focus the allocation of interventions on the patients at highest
risk, interventions, such as proactively isolating patients, target-
ed antimicrobial review, or performing enhanced environment
cleaning, are prohibitively expensive [27]. Only a small fraction
of patients become infected with C difficile during their

hospitalization. Thus, any intervention applied to the entire
population is likely to have no positive effect in at least 99%
of the admissions. In contrast, our risk stratification model pre-
sented in the previous section can identify a population of pa-
tients at 6 times the risk of the reference population, enabling
the selective targeting of interventions.
Furthermore, this risk stratification method could be incor-

porated into a clinical study designed to test the efficacy of pro-
active interventions. For example, a study could focus on
protecting high-risk patients from organisms in the environ-
ment whether being shed from asymptomatic carriers [10], car-
ried on the hands of a healthcare worker, or remaining in the
room after the previous occupant [28]. A focused antimicrobial
review targeting high-risk patients may be another opportunity
for cost-effective CDI prevention. The efficacy of probiotics in
preventing infection with C difficile is still being investigated [9].
Currently, such studies are expensive because in the absence of
an effective risk stratification model, a large number of patients
must be included to power the analysis. The proposed risk strat-
ification model could help identify a better study population (ie,
the population of patients at highest risk of acquiring CDI),
thereby reducing the total cost while increasing the statistical
power of the analysis. Targeting such high-risk groups with
an intervention would limit the total number of patients receiv-
ing the intervention while increasing the fraction of patients for
which the intervention might have a positive effect.
There are several limitations to this work. First, we lack

ground truth regarding the outcome of some patients, because
not all patients are tested for C difficile. It is possible that some
patients become colonized during their hospital stay, but they
only start showing symptoms of infection after discharge. If these
patients are not readmitted to the hospital and tested for C dif-
ficile, we will not identify them correctly. Future analysis on pro-
spective data should include an extended follow-up period to
identify such cases. Second, the potential for statistical correla-
tion among the variables considered in our high-dimensional
models limits our ability to accurately identify risk factors. In
this work, we consider only linear models. Such an approach
yields models that are interpretable as the sum of weights on
variables, versus more complex functions of variables associated
with nonlinear methods. Even so, more research is needed be-
fore we can effectively and succinctly explain why a particular
patient is identified as high risk.
Although more complex than traditional tools for calculating

patient risk, models that leverage the richness of the EMR can
perform significantly better. Moreover, with the advent of the
EMR, these more sophisticated models can be integrated directly
into the health information system at the hospital.
We have integrated a version of the model based on 1000 var-

iables into the health record system at the hospital. The risk
score is computed as a scheduled task that runs once a day
on patient data drawn from the hospital’s health information
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system, and it provides an updated risk score that is displayed as
part of the patient information available throughout the hospi-
tal. We are now exploring ways to incorporate this risk score
into existing care delivery processes, with the goal of ultimately
improving patient care.

Supplementary Data

Supplementarymaterial is available online atOpen Forum Infectious Diseases
(http://OpenForumInfectiousDiseases.oxfordjournals.org/).
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