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Abstract

Glioblastoma (Gb) is one of the most deadly tumors. Its molecular subtypes are yet to be fully characterized
while the attendant efforts for personalized medicine need to be intensified in relation to glioblastoma diagnosis,
treatment, and prognosis. Several molecular signatures based on gene expression microarrays were reported, but
the use of microarrays for routine clinical practice is challenged by attendant economic costs. Several authors
have proposed discriminant equations based on RT-PCR. Still, the discriminant threshold is often incompletely
described, which makes proper validation difficult.

In a previous work, we have reported two Gb subtypes based on the expression levels of four genes: CHI3L1,
LDHA, LGALS1, and IGFBP3. One Gb subtype presented with low expression of the four genes mentioned, and
of MGMT in a large portion of the patients (with anticipated high methylation of its promoter), and mutated
IDH1. Here, we evaluate the robustness of the equations fitted with these genes using RT-PCR values in a set of
64 cases and importantly, define an unequivocal discriminant threshold with a view to prognostic implications.
We developed two approaches to generate the discriminant equations: 1) using the expression level of the four
genes mentioned above, and 2) using those genes displaying the highest correlation with survival among the
aforementioned four ones, plus MGMT, as an attempt to further reduce the number of genes. The ease of
equations’ applicability, reduction in cost for raw data, and robustness in terms of resampling-based classifi-
cation accuracy warrant further evaluation of these equations to discern Gb tumor biopsy heterogeneity at
molecular level, diagnose potential malignancy, and prognosis of individual patients with glioblastomas.

Introduction

Glioblastoma is one of the most deadly tumors.
Yet its molecular subtypes in relation to its diagnosis,

treatment, and prognosis deserve further characterization
(Grant et al., 2014; Park et al., 2013; Shao et al., 2013;
Tabouret et al., 2014). In this vein, the use of gene-expression
microarrays has allowed the characterization of certain types
of glioma and glioblastoma (Castells et al., 2012; Colman
et al., 2010; de Tayrac et al., 2011; Freije et al., 2004;
Gravendeel et al., 2009).

Glioblastoma is clinically classified as primary or sec-
ondary subtypes depending on whether it was diagnosed
as a de novo tumor or it derived from gliomas of lower
grade, respectively (Louis et al., 2007). Secondary Gb is
characterized by a high percentage of cases harboring a
G to A transition in the central base of the codon 132 of
the IDH1 gene (Yan et al., 2009). Although several works
have proposed methods to stratify Gb cases based on gene-
expression profiling (Colman et al., 2010; Lee et al., 2008;
Li et al., 2009; Nigro et al., 2005; Verhaak et al., 2010),
there is no consensus so far on potential molecular
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subtypes, neither on the optimal approach to perform such
stratification.

Identification of such groups by automated and fully ob-
jective methods is a crucial step due to the data complex-
ity. Several studies have shown the possibility of robustly
classifying brain tumors based on omics data (Castells et al.,
2010; 2012; Gravendeel et al., 2009). However, the use of
high throughput data for diagnostics purposes is not always
optimal due to its high cost (despite ongoing trends for re-
ductions in the cost of molecular analyses) particularly in
resource-limited regions or the developing world. Hence, the
development of supervised statistical methods based on a
cost-effective technology such as RT-PCR is an alternative
worth consideration for its implementation in clinical routine,
so that Gb cases with better prognosis or more likely to re-
spond to therapy can be detected.

We have previously reported a linear discriminant (LDA)
equation fitted with the expression values from only four
transcripts (CHI3L1, LDHA, LGALS1, and IGFBP3), which
was able to distinguish two survival groups in Gb (Castells
et al., 2012). These four genes, selected from the publication
of Colman and collaborators (2010), showed the highest ro-
bustness to detect Gb groups in two independent datasets
when compared to genes proposed in another publication
(Lee, 2008) and to the most variable genes across the cases in
our local dataset (Castells et al., 2012). To our knowledge,
this and two other reports (de Tayrac et al., 2011; Kawaguchi
et al., 2013) contain the only published equations to distinguish
molecular subtypes of glioma based on the expression profile
obtained from microarray experiments. The aim of the present
study was to evaluate the potential use of RT-PCR data to
develop an LDA equation using a similar approach to previous
studies (Arimappagan et al., 2013; Colman et al., 2010).

We characterized the Gb groups in terms of the mutational
status of the codon 132 of IDH1, so that they could be linked
to primary or secondary Gb. We also evaluated the muta-
tional status of codon 172 of IDH2 in an attempt to identify
rare mutations also leading to secondary Gb (Yan et al.,
2009). Another feature we studied was the average survival
time of each group and the expression level of the MGMT
gene, as an indirect measurement of its promoter’s methyl-
ation status. That is, MGMT is a gene involved in the repair of
DNA damage by alkylating agents, such as the temozolo-
mide, the standard chemotherapeutic compound used for Gb
treatment. The hypermethylation of such promoter produces
a decrease in the expression of that gene, and the temozolomide
is more effective in those tumors (Hegi et al., 2005). Thus, the
patients harboring methylation of MGMT promoter, or low ex-
pression of this gene, are more likely to respond to the therapy.

We aimed to describe the classification method developed
accurately, so that other people can easily test our molecular-
based Gb stratification on their own patients in actual clinical
practice or in available retrospective sample cohorts. We
followed two approaches: 1) assessment of the reproduc-
ibility of the LDA equation using RT-PCR expression values
of the four previously reported genes, and 2) fitting an LDA
equation with those genes (the four initial ones plus MGMT)
most correlated with survival, as a way to select the minimum
number of genes required to classify Gb in different molecular
types. In both approaches, we normalized the data using two
different methods: 1) standardization per gene, and 2) quan-
tiles normalization followed by standardization per gene.

Methods

Sample collection

The 64 Gb biopsies were obtained as described in our
previous work (Castells et al., 2012). Among the 47 biopsies
used for the report by Castells et al., (2012), there was enough
material left for additional analysis in 42 samples. The ad-
ditional 22 biopsies used in the present work were collected
in the Hospital Universitari de Bellvitge (L’Hospitalet de
Llobregat). The 271 Gb from The Cancer Genome Atlas
(TCGA) were selected based on availability of both gene-
expression microarray and survival data (CGARN 2013). The
full study protocol was approved by the local Ethics Com-
mittees and informed consent was obtained from all patients.

RNA isolation and RT-PCR experiments

RNA was isolated and quantified as described in our pre-
vious work (Castells et al., 2012). One microgram RNA was
used as input for the reverse transcription using the iScript
cDNA synthesis kit (Bio-Rad, Hercules, CA). A 1/20 dilution
of the reverse transcription product was used for the RT-PCR
reaction and performed using the IQ SYBR Green Supermix
kit (Bio-Rad) following the manufacturer instructions. A
25 lL reaction was undertaken in 96 well-plates using the
CFX96 Touch� Real-Time PCR Detection System (Bio-
Rad). The MGMT primers described in (Tanaka et al., 2008)
were used in this study. The primers for the genes described in
our previous work (Castells et al., 2012) were: CHI3L1: Fw-
CTGTGGGGATAGTGAGGCAT and Rv-TAGGATGTTT
GGCTCCTTGG, LDHA: Fw-CACAGCTATATCCTGATG
CTGG and Rv-GACTAGGCATGTTCAGTGAAGGAG,
LGALS1: Fw-CTAAGAGCTTCGTGCTGAACCTG and
Rv-ATGCACACCTCTGCAACACTTC, IGFBP3: Fw-AGG
GCACTCTGGGAACCTAT and Rv-CTCTCTGTCCCTCC
TACCCC. The raw data from the RT-PCR experiments can
be found in Supplementary Table S1 (supplementary material
is available online at www.liebertpub.com/omi).

Sanger sequencing

Twenty nanograms of cDNA were used as input to amplify
regions containing the target fragment of codon 132 of IDH1
and codon 172 of IDH2. Amplification products were purified
using ExoSAP-IT (Affymetrix) and sequenced using nested
primers. One microgram of the purified product was used for
the sequencing reaction using BigDye� Terminator v3.1
Cycle Sequencing Kit (Life Technologies). The amplification
and sequencing primers for IDH1 were the same than the
ones reported by Gravendeel et al., (2009), while specific
primers were designed for IDH2. The amplification was
performed using the pair CACCCCTGATGAGGCCCG/
TTTGGGGTGAAGACCATT and the reverse primer was
replaced for sequencing (GCCCGTGTGGAAGAGTTCAA).

Data normalization

Two strategies were followed to normalize both the local
and the TCGA dataset: 1) In the local dataset, the Ct mean
and standard deviation of each gene from the training set
were computed. The corresponding Ct mean was subtracted
from all Ct values of the given gene and divided by the
standard deviation (i.e., Ctgene1-sample1 - Ctgene1/sdgene1). For
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TCGA data, all cases were used to compute the mean and
standard deviation. 2) Prior to the standardization, quantiles
normalization was undertaken using the normalize.quantiles
function available in the preprocessCore R package (Bolstad
et al., 2003).

Linear discriminant analysis assumes the hypotheses of
normal distribution and independence of variables. To that
end, the normalized data were evaluated using the hist

function from the graphics R package, the qqplot and cor
from the stats R package (all with default settings).

Evaluation of the prediction accuracy

We followed two approaches to fit an equation based on
LDA (Fig. 1 and figures cited therein): Approach 1 (Fig. 1A)
assessment of the reproducibility of our LDA equation using

FIG. 1. Diagram of computations performed. This figure summarizes the
computations performed using as input the four genes from ColSBE (CHI3L1,
LDHA, LGALS1, and IGFBP3) (top panel A) and the two genes selected from the
PCA approach (MGMT and LDHA) (bottom panel B). Sets of genes are re-
presented by a squared-box, datasets by a rounded-edges box, and computations
described inside empty circles. The crossed empty circles indicate that only one
of the following items are performed at the same time. The gray-colored text
provides the figures and/or files containing the output information. ‘‘Standard’’ is
an abbreviation for standardization, ‘‘Tr. mean-sd’’ stands for mean and standard
deviation from the training set, ‘‘Quant’’ means quantiles normalization, ‘‘Norm’’
denotes normalization, ‘‘Cox res’’ corresponds to Cox residuals and ‘‘expr val-
ues’’ means expression values.

PERSONALIZED MEDICINE AND GLIOBLASTOMAS 43



RT-PCR expression values of the four previously reported
genes (CHI3L1, LDHA, LGALS1, and IGFBP3) and Ap-
proach 2 (Fig. 1B) fitting an LDA equation with genes most
correlated with survival among the four genes in approach 1,
plus MGMT. The 64 Gb were divided into training and test
sets depending on the approach used. In Approach 1, the 42
cases for which microarray data were available constituted
the training set and the remaining 22 ones were used as test
set. For Approach 2, those 25 cases with survival information
available among the 42 training cases in Approach 1 were used
as training set. To assess the differences in survival, those 25
cases plus the 10 cases with survival available in the test set
from Approach 1 were used. In contrast, all data available
(n = 64) were employed to evaluate the differences in terms of
MGMT expression level and IDH1 mutational status.

The prediction accuracy for each approach was evaluated
by fitting an LDA equation by randomly selecting two-thirds
of cases (28 out of 42 in Approach 1) and 17 out of 25 in
Approach 2 and classifying one-third of cases, which had
been left out as a test. This procedure was repeated 10,000
times and at each iteration, the composition of groups in
terms of MGMT expression, IDH1 mutational status, and
survival time was assessed. In both cases, the discriminant
threshold was set to zero.

The accuracy and the specificity were computed as the
percentage of cases correctly classified with respect to the
‘‘gold-standard’’ reference in the entire set or separately
per group, respectively. Accuracy is defined as [true posi-
tive + true negative]/[total positive + total negative], while
specificity is defined as [true negative]/[false positive + true
negative]. Additionally, sensitivity is defined as [true posi-
tive]/[true positive + false negative]. Provided that only two
groups are considered, as in this work, the specificity calcu-
lated for one group is the sensitivity of the other one and
vice versa. We considered as ‘‘gold-standard’’ reference the
classification defined in our previous work (Castells et al.,
2012) for Approach 1. In contrast, that reference in Approach
2 was the group class defined by the principal component
analysis (PCA) performed using as input the expression of the
five transcripts measured by RT-PCR (Fig. 1). That is, two
groups in the training set (n = 25) were determined by se-
lecting those genes most associated with IDH1 status and
survival. Such association was computed by including the
mutational status of IDH1 and the residuals of a Cox’s re-
sidual from a null model as supplemental variables in the
PCA (Fig. 1), which is an approach similar to the one per-
formed in a precedent work (Freije et al., 2004). The Cox’s
residuals can be understood as a measure of ‘‘excess of
death’’ (Therneau et al., 1990) and the higher their values, the
higher the probability of death.

A final LDA equation was fitted using the entire training
set in each respective approach and the resulting equation was
used to classify all cases (n = 64). As the ‘‘gold-standard’’
classification from test samples was unknown, the prediction
accuracy was only evaluated by MGMT expression, IDH1
mutational status, and survival time per group.

Statistical tests and software

The survival analysis and the assessment of differences
between tumor groups in terms of IDH1 status and MGMT
expression or mutation were performed with the freely-

available R software (R Core Team 2014) by using the same
functions and packages as the ones described in Castells et al.
(2012). The PCA analysis was performed using the Facto-
MineR package (http://factominer.free.fr).

Results

Evaluation of normal distribution and independence
of variables (genes)

The hypotheses of normal distribution and independence
assumed by the linear discriminant model were assessed prior
to developing the equations. The standardization of Ct values
produced a low correlation between pairs of genes, while the
distribution appears to be normal in most cases, but biased for
genes LGALS1 and MGMT (Supplementary Table S1 and
Figures S1 and S2). In contrast, a normal distribution was
observed for all genes when quantiles normalization was
applied before standardization (Supplementary Table S2 and
Figures S3 and S4). However, in this case the correlation
increased between pairs of genes and was high between
LDHA and LGALS1. As no method fully accomplished the
assumptions of the LDA model, the analysis was per-
formed using the data normalized through both ap-
proaches. A scheme of the computations performed is
shown in Figure 1.

Robustness of Gb classifier based on real-time
PCR data from previously selected four-gene
set (CHI3L1, LDHA, LGALS1, and IGFBP3)

We fitted an LDA equation using the standardized Ct
values from two-thirds of cases (28 out of 42) from the
training set. The derived LDA equation was used to classify
the remaining third of cases (n = 14). This procedure was
repeated 10,000 times, so that a precise estimation of clas-
sification error was obtained (Table 1).

The performance of the classification was very high and
none of the iterations classified IDH1 mutated cases into the
GHE, as expected from Castells et al. (2012). Also, the fold-
change GHE/GLE for the MGMT gene was on average higher
than two, and the GHE presented a higher percentage of cases
above the MGMT average expression, as previously de-
scribed (Castells et al., 2012). Subsequent to the iterative
process, an LDA equation was fitted using all training sam-
ples (ColSBE-RT, Eq. 1):

DSCColSBE-RT¼ 1:04�CHI3L1CtStdþ 0:07�LDHACtStd

þ 0:69�LGALS1CtStd� 0:25�IGFBP3CtStd

(Eq: 1)

The subindex ‘‘CtStd’’ indicates that the Ct value used for
a given gene was standardized by using the mean and
standard deviation (Mean (StDv)) from the training set and
changing the sign of the resulting value to set low Cts as
high expression (see discriminant scores in Supplementary
Table S1):

CHI3L1Mean (StDv)¼ 20:76(2:44)

LDHAMean (StDv)¼ 21:48(1:18)
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LGALS1Mean (StDv)¼ 21:97(1:35)

IGFBP3Mean (StDv)¼ 23:43(1:76)

All cases were classified as GLE or GHE by setting to zero
the cut-off threshold for the discriminant coefficients (DSC)
obtained from applying Equation 1. As shown in Figure 2A,
survival differences between GLE and GHE were not sig-
nificant, but those patients with the highest survival were
classified as GLE. Three out of the four IDH1 mutated cases

were classified as GLE, and the ratio GHE/GLE for the ex-
pression level of MGMT was almost two (GHE/GLE = 1.85),
although the percentage of cases above the average Ct was
higher in GLE than in GHE (Fig. 2C). No case was found
mutated in codon 172 of the IDH2 gene. The use of the
original classification of training cases from microarrays data
did not change the results as depicted in Supplementary
Figure S7.

The same procedure was repeated for the data normalized
by quantiles prior to the standardization. As Table 1 shows,
the percentage of accuracy substantially improved compared
to the previous approach. Also, a similar percentage of cases
harboring the IDH1 mutation in GLE was found, while the
fold-change based on the MGMT expression slightly de-
creased. As above, an LDA equation was fitted using all
training samples (ColSBE-RT, Eq. 2):

DSCColSBE-RT¼ 1:07�CHI3L1CtStd� 0:074�LDHACtStd

þ 1:02�LGALS1CtStd� 0:46�IGFBP3CtStd

(Eq: 2)

Equivalently to the procedure described above, the sub-
index ‘‘CtStd’’ indicates that the Ct value used for a given
gene was standardized after quantiles normalization by using
the mean and standard deviation (Mean(StDv)) from the
training set and changing the sign of the resulting value to set
low Cts as high expression (see discriminant scores in Sup-
plementary Table S3). As quantiles normalization makes
the distribution equal for all variables, the mean and stan-
dard deviation were identical per gene (mean = 23.04 and
sd = 1.73).

All cases were classified as GLE or GHE by setting to zero
the cut-off threshold for the discriminant coefficients (DSC)
obtained from applying Equation 1. The differences between
groups in terms of survival, IDH1 and MGMT composition
were equivalent to the result obtained by data only stan-
dardized, regardless that the cases from the training set were
labeled by Equation 2 (Supplementary Fig. S10) or the
classification provided by microarray data were used instead
(Supplementary Fig. S12).

Robustness of Gb classifier based on most
correlated genes with survival

The PCA analysis resulted in the selection of genes MGMT
and LDHA as input to generate three discriminant equa-
tions.(Eq. 3–5) (see Supplementary Figures S5 and S9 for the
data). The accuracy of classifying the samples into good or
poor prognosis groups (abbreviated as GPG and PPG, re-
spectively) was evaluated through a resampling approach in
the training cases from the previous approach with avail-
able survival data (n = 25). This procedure showed that the
LDA function based on the expression level of LDHA-
MGMT or MGMT alone provided the best classification re-
sults (Table 2).
Then, a final LDA equation based on the 25 Gbs was
computed and used to classify the remaining cases with
survival available (n = 10) and nonavailable (n = 29) data.
The mean and standard deviation of Ct values from the
training set (n = 25) were used to standardize the rest of
samples:

Table 1. Summary of Resampling Results in Training

Dataset for ColSBE Using RT-PCR Values

Ct standardized

Estimate Training Test All

Sensitivity 89.0 80.3 86.0
Specificity 83.8 80.7 84.1
Accuracy 85.8 80.7 84.1

% IDH1 mut GLE 13.3 7.7 10.6
% IDH1 mut GHE 0 0 0

Fold-change GHE/GLE
MGMT

2.1 2.3 2.0

% GLE < mean MGMT 59.6 65.1 62.2
% GHE < mean MGMT 33.3 39.0 35.5

Ct quantiles normalized +
standardized

Estimate Training Test All

Sensitivity 97.0 86.4 93.3
Specificity 83.7 81.6 83.0
Accuracy 88.9 83.6 87.2

% IDH1 mut GLE 12. 7.4 10.0
% IDH1 mut GHE 0.0 0.0 0.0

Fold-change GHE/GLE
MGMT

1.8 1.8 1.6

% GLE < mean MGMT 58.5 63.9 61.1
% GHE < mean MGMT 33.4 38.3 35.2

This table depicts the average classification and molecular
features across iterations based on the stratification resulting from
LDA equations fitted with the RT-PCR values from the ColSBE. On
the top panel, Ct values were transformed to a zero centred
distribution by subtracting the Ct value of a sample from the mean
of all samples for a given gene and divided by the standard
deviation (i.e., for a gene 1 and a sample 1 the computation would
be [Mean Ct gene1 – Ct gene1-sample1]/standard deviation Ct
gene1). On the bottom panel, Ct values were first normalized by the
quantiles method and the same standardization than the one
described above was undertaken. The 42 cases composing the
training set were subjected to an iterative process that was repeated
10,000 times. Such set of samples was split in a further training (2/3
of cases) and test (1/3 of cases) set at each iteration. The training set
was used to develop the LDA equation and the obtained discrim-
inant coefficients were multiplied by expression values from the test
set, which resulted into a single discriminant score per sample.
Those cases displaying a negative score were classified as GLE,
while as GHE those ones showing a positive one. The sensitivity,
specificity, and accuracy (see Methods) were computed taking as a
‘‘gold standard’’ reference the classification obtained by the
ColSBE from gene expression microarrays. Also, the percentage
of cases harboring the IDH1 mutation per group is described (%
IDH1 mut GLE or GHE), the MGMT fold-change GHE/GLE and
the percentage of cases per group having a MGMT expression value
below the average of all cases (% GLE or GHE < mean MGMT).
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MGMTMean (StDv)¼ 27:3(2:1)

LDHAMean (StDv)¼ 21:6(0:98)

LDA equations were fitted with the standardized values from
the training set (n = 25). The discriminant scores were com-
puted for each sample (both training and test sets, n = 64)
and equation (see discriminant scores in Supplementary
Table S3):

DSCMGMT-LDHA-RT¼ � 0:88�MGMTCtStd

þ 1:26�LDHACtStd (Eq: 3)

DSCMGMT-RT¼ 1:14�MGMTCtStd (Eq: 4)

DSCLDHA-RT¼ 1:22�LDHACtStd (Eq: 5)

Once again, the LDA function based on MGMT-LDHA (Eq.
3) produced the best overall results, since the difference in
survival was the highest among the three equations, the ex-
pression of MGMT was very high in PPG, and three out of
four IDH1-mutated cases were classified as GPG (see Fig. 3).
Actually, Equation 4 provided the best result in terms of
MGMT expression and IDH1 mutational status, but the av-
erage survival was very similar between GPG and PPG.
Equation 5 showed a similar survival difference to the one
from Equation 3, but the life expectancy of each group was
opposite to that expected. Moreover, the expression of
MGMT was approximately identical between groups.

The analysis was then repeated using the data standardized
per gene after quantiles normalization (see Supplementary
Fig. S9). Again, the genes most correlated with survival were

FIG. 2. Survival and molecular features of ColSBE. (A) Survival curves based on
ColSBE as classified by the LDA equation using standardized Ct values for those cases
with survival data available. (B) Survival curves for patients harboring or not the mutation
in IDH1. In each plot, the amount of cases per group is shown as well as its associated p
value, which indicates the probability that curves are equal, the death hazard ratio (HR)
computed from the Cox’s proportional hazard model is depicted, as well as the p value
providing the probability that the HR is different than zero. (C) The histograms summarize
the molecular features based on MGMT expression and IDH1 mutational status (codon
132). The left-side bars describe the percentage of cases within each ColSBE group below
the MGMT average expression, while the right-side bars provide the percentage of cases
showing IDH1 mutation in each ColSBE group. The GHE/GLE indicates the fold-change
between groups for the MGMT expression levels. The p value denotes the probability that
proportions are equal.
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MGMT and LDHA. Similar to the data only normalized,
equations fitted with LDHA-MGMT and only MGMT dis-
played the highest classification accuracy through the re-
sampling procedure, as well as the remaining features (see
Table 2). Moreover, the values obtained using this approach
across the three variables analyzed (survival, MGMT and
IDH1) were higher than the ones obtained by only stan-
dardizing the data.

The final LDA equation based on the 25 Gbs was computed
and used to classify the remaining cases with survival data
available (n = 10) and nonavailable (n = 29). The mean and
standard deviation of Ct values from the training set (n = 25)
were used to standardize the rest of samples, which are the
same values than described in previous section (mean = 23.04
and sd = 1.73).

LDA equations were fitted with the standardized values
from the training set (n = 25). The discriminant scores were
computed for each sample (both training and test sets, n = 64)
and equation (see discriminant scores in Supplementary
Table S3):

DSCMGMT-LDHA-RT¼ 1:72�MGMTCtStd

� 0:73�LDHACtStd (Eq: 6)

DSCMGMT-RT¼ 1:47�MGMTCtStd (Eq: 7)

DSCLDHA-RT¼ 1:10�LDHACtStd (Eq: 8)

By doing so, the survival differences between groups
were reduced compared to the only standardized data, but
such difference increased between GPG and PPG for the
MGMT and IDH1 analysis (see Supplementary Figures S11
and S13).

External validation of equations using TCGA data

We used data from those 271 cases with gene expression
microarray and survival data available in The Cancer Atlas
Repository (TCGA) as an approach to validate the equations
developed using RT-PCR data, similarly to Arimappamagan
and collaborators (2013). We directly fitted Equations 1 and
3–6 with the standardized values from microarray data in
TCGA and set the DSC threshold to zero. Our strategy dif-
fered from the one performed by Arimappamagan and col-
laborators in the sense that we kept fixed the DSC threshold,
while they modified it for each dataset tested. Equation 3
produced the best result in terms of survival, although it did
not achieve significance (see Supplementary Figure S6). An
overall non-correlation with the expected features was ob-
served for the remaining equations. IDH1-mutated cases
showed a significant higher survival and MGMT expres-
sion than wild-type ones, but the HR associated was not
significant. Accordingly, IDH1 mutational status should be

Table 2. Summary of Resampling Results in Training Dataset Using PCA Classification

Ct standardized

MGMT-LDHA MGMT LDHA

Estimate Training Test All Training Test All Training Test All

Sensitivity 99.9 91.4 97.5 85.8 85.5 85.7 42.8 42.9 42.9
Specificity 87.3 86.0 86.9 77.7 78.0 77.8 44.4 44.5 44.4
Accuracy 91.0 87.4 89.8 80.1 79.9 80.0 44.0 44.1 44.0

% IDH1 mut GPG 28.6 13.9 21.8 33.2 9.9 20.0 66.6 5.1 15.4
% IDH1 mut PPG 0.0 0.02 0.006 0.0 0.0 0.0 0.0 0.0 0.0

Fold-change PPG/GPG MGMT 11.0 6.2 7.8 19.3 7.2 10.6 23.3 0.6 1.6
% GPG < mean MGMT 85.7 78.9 82.5 100 100 100 100 53.8 61.5
% PPG < mean MGMT 22.1 20.6 21.6 7.2 5.8 6.7 0.0 46.1 25.0

Ct quantiles normalized + standardized

MGMT-LDHA MGMT LDHA

Estimate Training Test All Training Test All Training Test All

Sensitivity 100.0 99.9 99.9 100.0 100.0 100.0 39.7 40.4 40.0
Specificity 85.2 81.1 83.8 80.0 80.1 80.0 50.0 50.1 50.0
Accuracy 88.0 85.3 87.0 83.7 84.5 84.0 48.1 48.0 48.0

% IDH1 mut GPG 40.0 15.2 24.4 40.1 13.3 22.2 90.0 5.5 16.7
% IDH1 mut PPG 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fold-change PPG/GPG MGMT 16.4 7.8 9.6 18.8 9.4 11.2 24.5 0.6 1.7
% GPG < mean MGMT 100.0 85.0 90.2 100.0 100.0 100.0 90.0 56.2 66.7
% PPG < mean MGMT 21.8 21.3 21.6 12.5 12.6 12.5 0.0 47.6 23.1

This table depicts the average classification and molecular features across 10,000 iterations. Only those samples having survival data
were considered (n = 25). Two thirds of cases were used as training set (n = 16), and the remaining ones were used as a test set (n = 9). The
information in this table is equivalent to that provided in Table 1, but in this case the LDA equations were fitted only using the
standardized RT-PCR expression values from MGMT and LDHA genes. On the top panel, values were only standardized, while on the
bottom one, the Ct values were first normalized by the quantiles method and the same standardization as the one described above was
undertaken afterwards.

PERSONALIZED MEDICINE AND GLIOBLASTOMAS 47



combined with other information to improve the classifica-
tion of Gb in terms of survival.

The same analysis was repeated for Equations 2 and 6–8,
but TCGA data were first normalized by quantiles and then
standardized. As we show in Figure 4, the composition of
groups, either GLE/GHE or GPG/PPG, in terms of MGMT
and IDH1, showed no differences across the different equa-
tions. However, GLE showed a lower probability of death
(HR = 0.86) than GHE, although the difference was not sta-
tistically significant. Such a result was not observed for any of
the other equations or for the only standardized data, which
rather provided a higher hazard ratio for the GLE (Supple-
mentary Figure S6).

Discussion

Availability of a classification threshold remains a key
point for the clinical application of a diagnostic signature on
single patients. Such value must be independent of the group
of samples to be tested. In this work we propose a set of
equations with a clearly defined discriminant threshold.

Our approach was strict in terms of avoiding overestimated
results as much as possible. All cases in Figures 2, 3, and 4
were classified based on the equations proposed, rather than
using the classification defined by microarray data in Equa-
tion 1 or the classification derived from Supplementary
Figures S1 and S9. Actually, the use of the ‘‘gold-standard’’
classification for the training set resulted in a similar result of
survival outcome in Equation 1 (see Supplementary Figure
S7), but a fair improvement for Equations 3–5 (see Supple-
mentary Figure S8). The use of quantiles normalization prior
to normalization gave rise to a similar result than the one
obtained with only normalized data when applied to local
data (Supplementary Figures S7 and S8 and S10–S13).

However, the validation of equations using TCGA data
resulted in the detection of GLE displaying a lower death
hazard ratio than GHE by using the data standardized after
quantiles normalization, although such difference was not
significant (see Fig. 4). Even if the MGMT methylation and
the percentage of IDH1-mutated cases were almost equal
between these two groups, this result provides evidence of the
ColSBE’s ability to detect Gb cases of better prognosis. The

FIG. 3. Survival and molecular features of LDA functions. Left plots are survival curves
based on LDA functions (Equations 2, 3, and 4) fitted with either MGMT-LDHA, MGMT,
or LDHA expression values. All samples having survival data available were used (n = 35).
The p value indicates the probability that curves are equal. Plots on the right depict the
percentage of cases showing an MGMT expression below the average of all cases (n = 64)
and the percentage of cases showing IDH1 mutation in each group (GPG and PPG). The p
value denotes the probability that proportions are equal.
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fact that we have been using microarray data to validate the
results obtained from RT-PCR experiments may be ham-
pering the identification of the expected features for each
group (GLE: higher survival time, higher % of MGMT
methylation and higher % of IDH1 mutated cases than
GHE). Therefore, a dataset of equivalent size to the TCGA
one analyzed herein should be screened by RT-PCR for a
proper validation of our results. Actually, an RT-PCR-based
dataset would also be more convenient to assess whether a
smaller number than four genes can discriminate Gb groups
with better prognosis (increased survival and high % of
IDH1 mutated cases) and response to therapy (high meth-
ylation level of MGMT).

Although Arimappamagan and collaborators (2013) suc-
ceeded in distinguishing two groups of Gb displaying a dif-
ferential survival time based on a 14 gene-signature, they
modified the threshold for classification and set the mid-value
of all discriminant scores, called weighted prognostic gene
score (WG), as the threshold to classify the TCGA data. To
our understanding, an overestimated result can be obtained
by following that approach. Colman and collaborators (2010)
developed a metagene score based on 9 transcripts measured
by RT-PCR and validated their classification threshold on a
large test dataset, but the threshold derived by applying re-
cursive partitioning analysis (RPA) was not explicitly de-
scribed in their work. This makes the direct validation of their

FIG. 4. Survival and molecular features of LDA functions and IDH1 mutational status
based on 271 TCGA cases and data standardized after quantiles normalization. Left plots
are survival curves based on classification provided by the IDH1 status and by the
LDA functions fitted with ColSBE, MGMT-LDHA, MGMT or LDHA expression values
(Equations 2 and 6–8). The discriminant scores for classification were computed by
multiplying standardized values from TCGA data by the discriminant coefficients obtained
from our training RT-PCR data (n = 35, Equations 1–4). The cut-off to classify in one of
two groups was set to zero. The p value indicates the probability that curves are equal.
Plots on the right depict the percentage of cases showing an MGMT expression below the
average of all cases and the percentage of cases showing IDH1 mutation in each group.
The p value denotes the probability that proportions are equal.
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equation by other people not possible and forces that RPA is
applied on the data to be tested.

On the other hand, we attempted to improve the classifi-
cation threshold by applying RPA in our local and TCGA
datasets, but no improvement was observed in terms of sur-
vival difference between GHE and GLE groups (data not
shown). In this sense, we also performed a linear regression
between the Ct and the microarray values available in the
training set (n = 42) to mimic the analysis that would have
been done in a quantitative RT-PCR setting. However, the
result obtained was almost identical to what is described
herein (data not shown), which seems to discard the potential
benefit of using quantitative RT-PCR to improve the results
of our study.

Conclusions

The detailed description of the set of equations provided in
this work warrant consideration for further development for
applications in clinical or histopathology laboratories and/or
research groups to assess the molecular characterization of
Gb biopsies. Nevertheless, there are some issues that require
further evaluation for a widespread use of our equations,
such as the unverified reproducibility of Ct values using other
RT-PCR reagents and machines. Still, from the two nor-
malization strategies used, the most convenient one seems to
be the quantiles normalization prior to standardization as
the LDA assumptions are better fulfilled.

The ease of equations applicability, reduced cost for
producing the raw data and robustness in terms of resam-
pling-based classification accuracy still make the reported
equations a reliable tool to evaluate tumor biopsy heteroge-
neity at the molecular level and to identify the potential
malignancy and prognosis of individual Gb samples.
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Abbreviations Used

CHI3L1¼Chitinase 3-like 1
ColSBE-RT¼Colman’s signature-based equation

(described in Castells et al., 2012)
based in real-time PCR values

Gb¼Glioblastoma
GPG¼Good prognosis groups
GHE¼Group of high expression
GLE¼Group of low expression

IDH1 and IDH2¼ Isocitrate dehydrogenase 1 and 2
IGFBP3¼ Insulin-like growth factor binding

protein
LDA¼Linear discriminant analysis

LDHA¼Lactate dehydrogenase isoform A
LGALS1¼Lectin, galactoside-binding, soluble

MGMT¼O6-Methylguanine-DNA
methyltransferase

PCA¼ Principal component analysis
PPG¼ Poor prognosis groups
RPA¼Recursive partitioning analysis

RT-PCR¼ real-time PCR
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