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Developing Urinary Metabolomic Signatures
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Abstract

Early detection is vital to improve the overall survival rate of bladder cancer (BCa) patients, yet there is a lack
of a reliable urine-based assay for early detection of BCa. Urine metabolites represented a potential rich source
of biomarkers for BCa. This study aimed to develop a metabolomics approach for high coverage discovery and
identification of metabolites in urine samples. Urine samples from 23 early stage BCa patients and 21 healthy
volunteers with minimum sample preparations were analyzed by a short 30 min UPLC-HRMS method. We
detected and quantified over 9000 unique UPLC-HRMS features, which is more than four times than about
2000 features detected in previous urine metabolomic studies. Furthermore, multivariate OPLS-DA classifi-
cation models were established to differentiate urine samples from bladder cancer cohort and normal health
cohort. We identified three BCa-upregulated metabolites: nicotinuric acid, trehalose, AspAspGlyTrp, and three
BCa-downregulated metabolites: inosinic acid, ureidosuccinic acid, GlyCysAlaLys. Finally, analysis of six
post-surgery BCa urine samples showed that these BCa-metabolomic features reverted to normal state after
tumor removal, suggesting that they reflected metabolomic features associated with BCa. ROC analyses using
two linear regression models to combine the identified markers showed a high diagnostic performance for
detecting BCa with AUC (area under the ROC curve) values of 0.919 to 0.934. In summary, we developed a
high coverage metabolomic approach that has potential for biomarker discovery in cancers.

Introduction

Bladder cancer (BCa) is one of the most prevalent
malignancies of the urinary system, and there is a trend

of increasing incidence and mortality of BCa worldwide in
recent decades (Kaufman et al., 2009, Lozano et al., 2012,
Siegel et al., 2012). Early detection is vital to the overall
survival rate of BCa patients. The 5-year survival rate for
patients diagnosed at Stage I of the BCa can reach 94%
(Kaufman et al., 2009). However, conventional detection
methods including voided urinary cytology, cystoscopy im-
aging, transurethral bladder biopsy are highly invasive, ex-
pensive, inconvenient, and are not sensitive to detect early
onset of BCa (Tetu, 2009). Typically, when BCa is diag-
nosed, transurethral resection of the bladder tumor (TURBT)
is recommended as the standard of treatment. However, BCa
is known to have high rate of recurrence, which calls for
extensive long-term surveillance program following TURBT

treatment. Ideally, a convenient biomarker assay with mini-
mal cost shall be employed routinely to monitor BCa relapse
before more invasive diagnostic options are recommended.
Employing fast and cost-effective bioassay-based monitoring
strategy can help to lower the mental and financial burden for
the patients, which will lead to better patient compliance, thus
in turn may increase detection rate for BCa relapse. Despite
years of attempts to develop such a vital screening assay,
there is still a dearth of suitable candidates with sufficient
sensitivity and specificity as compared to routine cytology or
cystoscopy-based methods.

Malignant cells or tissue usually display a wide range of
metabolic abnormalities that can be reflected by concentra-
tion changes of specific metabolite species compared to
normal cells or tissue. Therefore, measuring these metabolic
products with abnormal levels allows differentiation of can-
cerous from normal samples. Of the various analytical
strategies, the high throughput metabolomic survey provides
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a nonbiased, quantitative methodology for a large portion of
metabolites in a given biological system. For the choice of
biofluid samples, urine seems to be the ideal reservoir from
which BCa diagnostic marker can be derived, as it is in direct
contact with the cancer lesion on the bladder transitional
epithelium. Based on this rationale, urinary metabolomics
studies for BCa diagnosis has been carried out previously
with various analytical platforms, including GC-MS, NMR
and LC-MS (Huang et al., 2011, Issaq et al., 2008, Jobu et al.,
2012, Pasikanti et al., 2010, Srivastava et al., 2010).

However, the catalog of the urinary metabolome has re-
cently reached near 4000 species according to the ever-
growing human metabolome project (www.urinemetabolome
.ca), yet such a diverse urinary metabolite spectrum was
nonetheless under-represented in most previous studies that
only partially covered fewer than 2000 features per study
(Huang et al., 2011, Issaq et al., 2008, Jobu et al., 2012, Pa-
sikanti et al., 2010, Srivastava et al., 2010). As the result, none
of the markers identified so far have shown validated clinical
values, particularly for early BCa detections. This is probably
because only small fraction of abundant urinary components,
which are unlikely to reflect the local lesion at early stage, were
surveyed due to the low sensitivity of previous analytical
platforms. Thanks to the latest development of ultra perfor-
mance liquid chromatography (UPLC) and electrospray ioni-
zation mass spectrometry (ESI-MS) instruments with significant
improvement in detection sensitivity, investigation is possible
of low abundant metabolites that were never been detected
before to achieve deep coverage of urine metabolome. Ad-
ditionally, the higher mass resolution of TOF-HRMS now helps
to narrow down each acquired analyte to a small list of plausible
molecular formulas with high identification confidence.

In this study, we specifically aimed to develop multivariate
models using time-of-fly high resolution mass spectrometry
(TOF-HRMS) technology providing high metabolomics cov-
erage to differentiate samples from BCa cohort and normal
health cohort. Based on this model, we further aimed to develop
urinary metabolite markers for early stage BCa detection.

Methods

Subjects

The study cohort consists of 23 patients with BCa at early
stages and 21 healthy controls without a history of BCa or any
suggestive BCa symptoms. All patients in the control group
were also confirmed by abdominal ultrasound examination.
Patients with benign urinary conditions were excluded from
this study. All BCa patients were treated with transurethral
resection of bladder tumor (TURBT). Microscopic histology
and CT imaging were used for pathologic staging of BCa
according the American Joint Committee on Cancer (AJCC)
TNM staging system. Characteristics of all enrolled cases are
summarized in Table 1. Informed consent was obtained from
each patient and approval was granted by Institutional Re-
view Board of Shaoxing People’s Hospital and Clinical Re-
search Ethics Committee of Sir Run Run Shaw Hospital of
Zhejiang University before commencing the study.

Sample collection and processing

Voided urine samples were collected in the morning before
breakfast from all subjects at Shaoxing People’s Hospital

(Shaoxing, China) and Sir Run Run Shaw Hospital (Hang-
zhou, China). For BCa patients, all samples were collected a
day before TURBT operation. In addition, post-surgery urine
samples were collected at 7 days after TURBT treatment
from 6 BCa patients. The collected urine samples were
centrifuged at 3000 g for 10 min at 4�C to remove suspended
debris, and the resulting supernatants were aliquoted and
immediately stored at - 80�C without any preservatives.
Prior to UPLC-MS analysis, urine samples were diluted 1:1
with HPLC water and were distributed randomly into 96-well
injector trays kept at 4�C.

Metabolomics analysis

Urine metabolites fingerprinting was performed on a
UPLC-HRMS system consisting of a Agilent 1290 UPLC
hyphened with a Agilent 6230 TOF-MS. Urine, treated as
described above, was injected at a volume of 5 lL into a
reversed-phase column (ACQUITY 100 · 2.1 mm, 1.7 lm,
Waters, Milford, MA, USA) at 50�C. The system was oper-
ated at a flow rate of 0.3 mL/min of mobile phase consisting
of solvent A: water with 0.1% formic acid (FA, Sigma-
Aldrich, St. Louis, MO, USA), and organic solvent B: ace-
tonitrile (ACN, Sigma-Aldrich) with 0.1% FA. The total
analysis time per sample was 25 min. The gradient started
with 3% of B and increased to 60% in 12 min, then reached
100% in 3 min, and maintained at 100% for 1 min. The gra-
dient was ended by return to 3% B in 1 min and kept at the re-
equilibration condition for 8 min until next injection.

Samples were analyzed in both positive and negative ESI
modes in separate runs on a TOF mass analyzer operated in
full scan mode from m/z 100 to 1000 Th. The capillary
voltage was 4000 V; the nebulizer nitrogen flow rate was
11 L/min maintained at 310 kPa; and the temperature at
325�C. During the analyses, reference masses (m/z 121.0509,
m/z 922.0098 for positive ESI and m/z 112.9856, m/z
1033.9891 for negative ESI) were continuously infused to
allow constant mass correction. During the analyses, samples
were kept in the LC auto-sampler maintained at 4�C.

The LC-MS raw data were obtained by MassHunter
(Agilent, Santa Clara, CA) in centroid mode and converted to
mzData format processed in MZmine 2.10 (mzmine.source-
forge.net) software environment. Briefly, the LC-MS profiles
were first cleaned of background noise. Individual com-
pounds within the 15 min effective LC gradient window from
each sample were recognized by unique m/z and retention
time (RT) values. Isotopic peaks of each compound were
grouped. Chromatograms of each compound were then
aligned across samples/injections for comparison. Metabolite

Table 1. Characteristics of Enrolled Patients

Groups BCa Normal Post-surgery

No. patients 23 21 6
Average age 65.14 – 13.27 53.76 – 19.47 66.83 – 6.91
Sex ratio, M:F 18:5 12:9 4:2

Tumor Stage
Ta 4 0 0
T1 18 0 6
T2 1 0 0
T3 0 0 0
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features were then tabulated with unique m/z, RT, and peak
areas from each sample.

Statistical analysis and multivariate modeling

To build sound statistical models, only features presented
in 90% of all samples across the whole experiment were
chosen. The filtered features were then gap filled by Peak
Finder module in MZmine 2.0 to avoid missing data points.
Instrumental signal variations were corrected against the
peak area of the total ion chromatogram of each LC-MS run.
The corrected data were imported to SIMCA-P v12 (Ume-
trics AB, Sweden) for multivariate data analysis. Data were
Ln transformed and Pareto scaled before principal compo-
nent analysis (PCA) or orthogonal partial least squares-
discriminant analysis (OPLS-DA) to model the difference
between the BCa patients and healthy controls. Potential
biomarkers were selected based on OPLS-DA model by
S-plot and Variable Importance in the Project (VIP > 2) value.
Student’s t-tests were employed to further ensure the selected
species significantly differentially expressed ( p < 0.01) be-
tween the BCa patients and the controls. In addition, only
species with stable LC profile (RSD% of RT < 0.5%) across
the whole experiment were considered as final biomarker
candidates.

Metabolite identification

For structure elucidation of potential biomarker candi-
dates, CID assisted MS/MS experiments were performed on a
Premier Q-TOF mass spectrometer (Waters, Milford, MA,
USA) with the same UPLC system configuration and chro-
matographic conditions. The capillary voltage was set at
3.0 kV, and the sampling cone voltage was set at 50.0 V for
positive ESI or 40.0 V for negative ESI. The nebulizer ni-
trogen flow rate was 7.5 L/min maintained at 120�C. During
the analyses, reference masses (m/z 556.2771 for positive
ESI and m/z 554.2615 for negative ESI) were continuously
infused via lock mass spray. For each candidate on separate
LC-MS/MS runs, the quadruple was set to isolate candidate
precursor m/z during the whole UPLC gradient, while the
TOF mass analyzer operated in full scan mode from m/z 50 to
1000 Th. Argon was used as the collision gas with different

collision energies ranging from 30 to 80 V, according to the
respective chemical stability. The UPLC-MSMS data were
collected by MassLynx v4.1 software (Waters Co.). Tandem
spectra of each metabolite candidate were exported in mgf
format. To identify potential biomarkers, both HMDB (http://
www.hmdb.ca/), METLIN (http://metlin.scripps.edu/) were
searched using MS/MS peak list with 10 ppm mass error and
precursor mass with 5 ppm mass error.

Results

UPLC-HRMS profiling of urine metabolome

Fifty urine samples (23 BCa, 21 normal, and 6 post-
surgery) were analyzed using UPLC-HRMS nontargeting
profiling. The urine metabolites were detected in both positive
and negative electrospray modes. The typical UPLC-HRMS
chromatograms in both ESI modes are shown in 3D format as
in Figure 1. The successful alignment of metabolomics pro-
files between samples depends on the stability of the UPLC
performance. To assure this, 14 injections of QC samples
made from a mixture of all samples were used throughout both
ESI positive and negative mode experiments.

The median RSD% of the retention time of the 1000 most
intensive peaks in the 14 positive QC runs is 0.342%, whereas
that of the 500 most intensive peaks in the 14 negative QC
runs is 0.247% (Fig. 2). For the same selection of peaks in QC
runs, the variations of m/z values were less than 10 ppm in
both positive and negative modes. These results demon-
strated the robust stability and reproducibility of the UPLC
separation and TOF mass measurement. Using the minimum
intensity threshold of 200 counts, a total of 9110 and 530
unique entities (defined by a unique pair of RT and M/Z
value) in positive and negative ESI mode, respectively, were
consistently detected in at least 90% (n = 45) urine samples.

Multivariate models establishment

After data normalization, log transformation, and Pareto
scaling, unsupervised PCA was performed to assess the
overall intergroup separation as shown in Figure 3. Accord-
ing to the PCA score plots in both positive (R2Xcum = 0.445,
Q2

cum = 0.19) and negative ESI mode (R2Xcum = 0.761,
Q2

cum = 0.404), there were no distinctive differences between

FIG. 1. Representative 3D
profiles of urinary metabo-
lome from both positive (left)
and negative (right) mode
UPLC-HRMS analyses.
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normal and cancer groups. Considering the complex and
dynamic nature of human urine metabolome, this is possible
that negligible individual differences comprised mostly by
BCa-irrelevant variations make it unlikely to separate groups
without a supervised based approach. However, it is notable
that all QC data clustered closely together in both positive
and negative ESI modes, indicating the satisfactory stability
of our UPLC-HRMS method.

To specify BCa-related metabolomic alterations, super-
vised orthogonal OPLS-DA models were constructed using
pre-surgery BCa and normal control datasets collected from
both ESI modes (Fig. 4). The OPLS-DA model for positive
ESI mode dataset showed satisfactory predictive ability
with 1 predictive component and 2 orthogonal components
(R2Xcum = 0.238, R2Ycum = 0.976, Q2

cum = 0.33). The OPLS-

DA model for negative ESI mode dataset consisted of 1 pre-
dictive component and 5 orthogonal components (R2Xcum =
0.699, R2Ycum = 0.982, Q2

cum = 0.648) showed even better
predictive ability. To guard against model overfitting, analysis
of variance testing of cross-validated predictive residuals (CV-
ANOVA) (Erikssona et al., 2008) was applied, and statistical
significance ( p = 0.014 for positive ESI datasets and p = 0.001
for negative ESI datasets) was achieved. In both OPLS-DA
models, cancer samples were completely discriminated from
the control samples in the predictive component. Our mod-
eling results suggested potential value of using urinary me-
tabolomic profile for early diagnosis of BCa.

Additionally, we further analyzed the urine metabolome
from post-surgery groups (n = 6). Except for sample S4,
which was clearly deemed as cancer sample, other post-

FIG. 2. Superposed chromatograms from
14 QC runs (color-coded) in positive (upper)
and negative (lower) mode UPLC-HRMS
analyses without any post-run RT correction,
alignment, or background subtraction.
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surgery samples have shown overall return trends of the
metabolomic trajectory toward to the normal state, hence
indicated a recovering event as a result of TURBT operation.
These metabolomic shifts demonstrated the potential use of
metabolomics data to assist the evaluation of BCa treatment
outcome. Interestingly, patient S4 was the only case reported

BCa relapse within the study cohorts. This patient was di-
agnosed with BCa and has received TURBT 3 years ago. The
sample S4 was collected after the recent second TURBT
treatment. Therefore, future study shall investigate if the
metabolomics models developed in this study can be use for
BCa recurrence monitoring.

FIG. 3. PCA score plots of ESI-positive
(upper) and ESI-negative (lower) metabo-
lome from all samples. The black square, red
dot, green triangle, and blue diamond mark-
ers represent BCa, normal, post-surgery, and
QC samples.
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Metabolite markers associated with bladder cancer

Based on the established OPLS-DA models, potential
biomarkers contributed to the discrimination of cancer and
control groups were selected according to the S-plot (Fig. 5)
and the threshold of VIP > 2. To further discard possible
spurious markers due to peak mismatches and to pave
foundation for robust assay development, only species with
average MS intensity >1000 counts, LC retention time
RSD% < 0.5%, and significant differences in raw MS in-
tensity (t-test p < 0.01) were selected. This narrowed down
the targets to a final list (Table 1) of 21 and 3 metabolites
detected in positive and negative ESI mode, respectively.

The pooled urine QC samples were analyzed again by
UPLC-QTOF to obtain the CID fragmentation pattern for
each of the 24 plausible metabolites. Corresponding MS/MS
peak lists were searched against the HMDB or Metlin
database. Some putative biomarkers were identified and
are summarized in Table 2. Three upregulated metabo-
lites: nicotinuric acid (NTUA), tetrapeptide AspAspGlyTrp
(DDGW), trehalose (TRHL), and three downregulated me-
tabolites: tetrapeptide GlyCysAlaLys (GCAK), inosinic
acid (ISNA), and ureidosuccinic acid (UDSA) were iden-
tified. The relative intensities of these SIX metabolites all
show significant differences ( p < 0.01) between healthy
and cancerous samples as displayed in Figure 6, which
also includes their relative intensities in urine samples
collected from six post-surgery BCa patients. To our ex-
pectation, all six markers showed a reversing tendency
toward the normal level from BCa state after TURBT
operation, with three of them (GCAK, NTUA, ISNA)
showing significant changes compared to cancerous sam-
ples. Such recovering alterations indicated a direct link

between these metabolites markers and the physical exis-
tence of the BCa tumor.

Receiver operating characteristic curve analysis
and linear regression models

To better assess the clinical utility potential of the
markers, receiver operating characteristic (ROC) curve
analyses were performed for individual markers and
possible marker combinations (Table 3). The sensitivity
and specificity of each marker was calculated at the best
cut-off value.

When used alone (Fig. 7), the tetrapeptide GlyCysAlaLys
showed the best combination of sensitivity (82.61%) and
specificity (76.19%) of all, with AUC of 0.834. The inosinic
acid (AUC = 0.720) although showing the best sensitivity
(95.65%), had the worst specificity (42.86%) of all. On the
contrary, trehalose (AUC = 0.776) displayed a mediocre
sensitivity at 60.87%, but nonetheless had the best specificity
(90.48%) among all others.

Such distinctive diagnostic characteristics of different
markers identified in this dataset prompted us to try marker
combinations with higher sensitivity and specificity. We
further constructed two multivariate linear regression
models using combinations of the relative intensity of
various metabolites for early BCa determination (Fig. 8).
In the first model, all six variables were used, and an op-
timum R2 can be achieved by:
MixModel1 = 0.7793 + 0.005921 · DDGW - 0.006758 · GCAK
0.001266 · ISNA + 0.004530 · NTUA + 0.001669 · TRHL -
0.007907 · UDSA.

The ROC analysis of MixModel1 showed significant im-
provement of sensitivity (91.30%) and specificity (80.95%)

Table 2. Statistically Significant Urinary Metabolites Differentiating BCa from Healthy Cohort

MZ (Th) Ion RT (min) Identification/ion VIP FC T test

288.2836 + 14.3 Unknown species (possible formula C17H37NO2 [M + H]) 3.98 7.24 0.0040
274.2688 + 13.8 Unknown species (possible formula C16H35NO2 [M + H]) 3.93 0.39 0.0028
378.1805 1 11.2 GlyCysAlaLys [M + H] 3.35 0.31 0.0008
288.2837 + 14.8 Unknown species (possible formula C17H37NO2 [M + H]) 3.24 5.52 0.0012
244.2583 + 14.9 Unknown species 3.18 4.87 0.0048
449.1437 + 13.9 Unknown species (possible formula C22H24O10 [M + H]) 3.16 0.20 0.0026
181.0784 1 9.9 Nicotinuric acid [M + H] 2.98 3.10 0.0021
271.1583 + 9.1 Unknown species 2.98 3.42 0.0020
203.1208 + 6.5 Unknown species 2.80 1.81 0.0053
773.4909 + 14.3 Unknown species (possible formula C48H68O8 [M + H]) 2.59 0.37 0.0058
317.1144 + 4.9 Unknown species 2.56 2.63 0.0035
393.217 + 11.5 Unknown species (possible formula C25H28O4 [M + H]) 2.54 0.25 0.0085
399.1325 + 13.6 Unknown species (possible formula C22H22O7 [M + H]) 2.47 0.38 8.80E-05
365.1478 + 13.9 Unknown species (possible formula C22H20O5 [M + H]) 2.40 0.42 0.0004
609.3597 + 13.1 Unknown species 2.38 4.23 0.0055
426.9059 + 0.7 Unknown species 2.30 2.27 0.0096
195.0689 + 3.9 Unknown species 2.26 1.58 0.0061
143.0008 + 0.7 Unknown species 2.23 0.47 0.0016
304.2046 + 7.5 Unknown species 2.09 0.38 0.0024
492.1783 1 3.8 AspAspGlyTrp [M + H] 2.01 2.66 0.0054
349.1164 1 12.0 Inosinic acid [M + H] 2.00 0.50 0.0023
341.0293 - 1.1 Trehalose [M-H] 3.02 1.98 0.0006
174.9552 - 0.7 Ureidosuccinic acid [M-H] 2.71 0.68 0.0035
304.9121 - 0.7 Unknown species 2.24 0.53 0.0069

Metabolites identified by LC-MSMS are shown in bold.
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with AUC reaching 0.934. Another much simplified model
can be derived from three variables with significant associ-
ation ( p < 0.01) in the previous full model:
MixModel2 = 0.9444 + 0.008692 · DDGW - 0.007243 · GCAK
-0.008314 · UDSA.

This combination model exhibited mildly compromised
sensitivity at 82.61% but with better specificity at 90.48%,
and the overall AUC reached 0.919. Other linear combina-
tions of the different variables did not have significant im-
provement over sensitivity and specificity.

FIG. 4. OPLS-DA score
plots for ESI-positive (top
panel) and ESI-negative (bot-
tom panel) models on the left,
and the prediction of post-
surgery samples in both mod-
els on the right.

FIG. 5. The loading S-plots showing the contribution of individual feature to the OPLS-
DA models derived from ESI-positive (left) and -negative (right) metabolomic datasets
comparing early BCa samples and normal samples. Features approaching top-right corner
in S-plots are significantly upregulated in BCa samples, whereas those on the bottom-left
corner are significantly downregulated in BCa samples. The final list of potential markers
filtered with additional intensity, RT-RSD%, and t-test significance criteria are marked
with red squares.
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FIG. 6. Variations of relative MS intensity of 6 identified metabolite markers in urine
from BCa, healthy, and post-surgery BCa patients. GCAK, NTUA, DDGW, ISNA, TRHL,
UDSA represent GlyCysAlaLys, nicotinuric acid, AspAspGlyTrp, inosinic acid, trehalose,
and ureidosuccinic acid, respectively. The boxes were drawn from the 25th to 75th per-
centiles in the intensity distribution. The median (50th percentile) is represented by the
horizontal line inside the box. Variation significance between groups are indicated by
***p < 0.01, **p < 0.05, *p < 0.1.

FIG. 7. ROC characterization of six identified metabolite markers in urine to differentiate
BCa and healthy cohorts. GCAK, NTUA, DDGW, ISNA, TRHL, UDSA represent Gly-
CysAlaLys, nicotinuric acid, AspAspGlyTrp, inosinic acid, trehalose, and ureidosuccinic
acid, respectively.
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Discussion

In recent years, the clinical urology field has seen a surge in
the development of urine-based noninvasive bladder cancer
markers as alternatives or as additions to the conventional
cystoscopic approaches (Grossfeld et al., 2001, Tetu, 2009).
Despite a wealth of attempts to develop new diagnostic
markers for BCa, none of the currently available USFDA-
approved assays, namely BTA Stat, BTA Trak, NMP22,
ImmunoCyt/uCyt, FDP, and UroVysion (Shariat et al., 2008,
Sullivan et al., 2010) is widely adopted in clinical use. As
suggested by recent meta-analyses, none of them is sensitive
or robust enough to replace conventional methods (Budman
et al., 2008, Giannopoulos et al., 2001, Mahnert et al., 2003,
Shariat et al., 2008, Sullivan et al., 2010, Urquidi et al., 2012,
Vrooman and Witjes, 2008).

Urine samples were chosen for its direct physical contact
with bladder tissue and for the purpose of developing a
convenient noninvasive assay. Several other studies have
employed nontargeted urinary metabolomics approaches to
detect BCa (Huang et al., 2011, Issaq et al., 2008, Jobu et al.,
2012, Pasikanti et al., 2010, Putluri et al., 2011, Srivastava
et al., 2010). However, many previous reports, particularly
those performed on NMR (Srivastava et al., 2010) or GC-MS
(Jobu et al., 2012, Pasikanti et al., 2010) resulted in insuffi-
cient metabolome coverage, and LC-coupled MS studies did
not improve the coverage significantly due to the limited
sensitivity of old model mass spectrometries (Issaq et al.,
2008, Putluri et al., 2011). In comparison, despite only 2.5 lL
of urine used in this study, the detection sensitivity has not
been sacrificed, as over 9000 unique UPLC-HRMS features
(present in 90% of all samples) were quantified in one single

FIG. 8. ROC characterization of
two multivariate MixModels to
differentiate BCa and healthy co-
horts, compared to the single best
metabolite candidate GCAK.

Table 3. Diagnostic Characteristics of Metabolite Marker Combinations

Marker AUC SE Cut-off 95% CI Sensitivity (%) Specificity (%)

GlyCysAlaLys 0.834 0.061 < = 18.34 0.716–0.953 82.61 76.19
Nicotinuric acid 0.774 0.071 > 4.75 0.635–0.913 82.61 66.67
Asp Asp Gly Trp 0.743 0.076 > = 14.04 0.595–0.891 65.22 80.95
Inosinic acid 0.720 0.078 < = 43.29 0.567–0.874 95.65 42.86
Trehalose 0.776 0.071 > 38.79 0.637–0.916 60.87 90.48
Ureidosuccinic acid 0.752 0.076 < = 42.68 0.603–0.900 60.87 85.71
MixModel 1 0.934 0.0344 > 0.3998 0.866 to 1.000 91.30 80.95
MixModel 2 0.919 0.0397 > 0.5651 0.841 to 0.997 82.61 90.48
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analysis, surpassing most previous reports. In addition, the
sample preparation was extremely simple and did not re-
quire extra steps of precipitation, extraction, or chemical
derivatization, leaving the technical variations as low as
possible. Sample analysis can be finished within 30 minutes
and the decision can be made rather quickly and objectively
without the expertise of experienced pathologists. In addi-
tion, the tiny volume of urine required by our metabolomics
approach allows it to be easily and routinely integrated with
other urine-based tests.

Regarding the diagnostic performance of our metabo-
lomics method, the multivariate OPLS-DA models showed
100% discrimination power to separate BCa patients from
healthy donors. One of the most promising markers that
contributed significantly to the OPLS-DA model, the tetra-
peptide GlyCysAlaLys, achieved a specificity of 82.61%
with a sensitivity of 76.19% that results an AUC at 0.834. A
linear combination discriminant model using all five markers
can further reach the AUC at 0.934, while a simplified
combination of GlyCysAlaLys, AspAspGlyTrp and ur-
eidosuccinic acid also have an improved AUC of 0.919.
Given these merits, this urinary metabolomics-based ap-
proach showed great application potentials as alternative or
supplement diagnostic procedure to cystoscopic tests. Future
large-scale retrospective or prospective studies are needed to
test the true clinical utility of these metabolites as bladder
cancer biomarkers.

The present study indicated that the cancer group has el-
evated levels of urinary nicotinuric acid and trehalose. Ni-
cotinuric acid (NTUA or acyl glycines) is an endogenous end
product of nicotinate and nicotinamide metabolism and is
also a minor metabolite of fatty acid beta-oxidation. NTUA
has been detected at very low level in urine samples (Gron-
wald et al., 2011). Our report is the first to show elevated
levels of NTUA in urine samples from BCa patients. Tre-
halose is a nonreducing sugar with antioxidant property that
is usually found in extracellular space. However, very little
was known about its connection to cancer pathology. Our
dataset also found inosinic acid and ureidosuccinic acid were
downregulated in urine samples from BCa patients. Inosinic
acid (or inosine 5’-phosphate, IMP) is involved in purine
metabolism. It is converted by inosine-5’-monophosphate
dehydrogenases (IMPDHs) in a rate-limiting step for the de
novo biosynthesis of guanine nucleotides. IMPDHs have
been shown to play vital roles in the development of malig-
nancy such as myeloma, neuroblastoma, colorectal cancer,
prostate cancer, and have long been considered as an at-
tractive target for anticancer intervention (Chen and Pan-
kiewicz, 2007).

However, the possible alterations of the substrates of
IMPDHs were never investigated, and there has been no re-
port of possible association of IMP or IMPDHs to BCa yet.
Ureidosuccinic acid (or carbamoylaspartic acid) is an inter-
mediary product in both aspartate and pyrimidine synthesis.
Ureidosuccinic acid can be detected in urine (van Kuilenburg
et al., 2004) and was previously reported to associated with
prostate cancer progression (Sreekumar et al., 2009). Our
data also found concentration alteration of two tetrapeptides
(GlyCysAlaLys and AspAspGlyTrp) in urine of BCa pa-
tients. Many small oligopeptides, including tetrapeptides, are
bioactive molecules often showing affinity to a wealth of
binding partners involving in intra- and extracellular signal-

ing. Unfortunately, the identities of these two tetrapeptides
were never reported before, and the source of these two small
peptides cannot be specified at this point, as suggested by
Blastp search which retrieved multiple proteins IDs that
contains these two short sequences. Therefore, further studies
are needed to interpret the biological links between those
compounds and BCa pathogenesis and progression.

Conclusion

This work aims to discover urinary metabolite constituents
from early bladder cancer patients that have potential to be
used as sensitive and specific BCa diagnostic biomarkers.
Here we first described an integrated UPLC-HRMS workflow
to characterize urinary metabolome. Over 9000 unique
UPLC-HRMS features were identified and quantified, mak-
ing this study one of the most comprehensive survey of the
human urinary metabolome compared to other state-of-art
urinary metabolomics reports. Multivariate OPLS-DA clas-
sification models were built to successfully differentiate BCa
patients from healthy cohorts. Given such a rich source of
urinary metabolites, we further identified many BCa specific
markers and identified six unique metabolites that have not
been reported previously as diagnostic biomarkers for blad-
der cancer. Linear regression models were also built using
combinations of identified markers to further improve diag-
nostic performance for detecting BCa.
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