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Ordinal symbolic analysis opens an interesting and
powerful perspective on time-series analysis. Here,
we review this relatively new approach and highlight
its relation to symbolic dynamics and representations.
Our exposition reaches from the general ideas up to
recent developments, with special emphasis on its
applications to biomedical recordings. The latter will
be illustrated with epilepsy data.

1. Introduction
Symbolic representation is an efficient technique in time-
series analysis. For a symbolic representation to be
useful, it must be simpler to analyse than the original
time series, while still retaining the information one is
interested in. This procedure is familiar from linear time-
series analysis, where data binning is the first step in
any statistical analysis. In this paper, we will focus on
nonlinear time-series analysis [1,2] because of the kind
of applications under investigation. Thus, our series will
be sequences of real numbers obtained by sampling a
complex dynamics and, more specifically, a biological
process evolving in time. This is the realm of dynamical
systems, the theory that models and studies time-varying
phenomena to characterize different behaviours.

Consider a discrete-time dynamical system, i.e. a
difference evolution law defined on a certain space
whose points represent the states of our system.
Given an initial state, the evolution law determines
unambiguously the state of the system, step by step, at
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any future time. The result is the trajectory of the initial state, with each state in the trajectory
being reached from the previous one in one time step. At first glance, the time-discrete approach
seems to be rather restrictive; however, the approach includes equidistant discretizations of
time-continuous dynamical systems as given by autonomous differential equation systems, and
Poincaré sections of time-continuous dynamical systems.

A working hypothesis of nonlinear time-series analysis is that the trajectory is unfolding in an
attractor, possibly a chaotic one (at least, after an initial transient), so that stationarity, existence
of an invariant measure and ergodicity may be taken for granted. Typical scopes of a nonlinear
time-series analysis include the reconstruction of the attractor (in particular, the determination of
fractal dimensions), and the computation of Lyapunov exponents.

Concurrently or alternatively, one may opt for a symbolic representation of the observations,
depending on the scope and actual possibilities of the data analysis. In this approach, the state
space is partitioned into a finite number of pieces, and the original trajectories are traded off
for trajectories with respect to that partition. These so-called coarse-grained trajectories turn out
to be realizations of a stationary random process with a finite alphabet. As a result, the analyst
can now gain information from the underlying system in a more accessible way. In particular,
recourse to symbol distributions and information-theoretical tools such as entropy and entropy-
like quantities have a long tradition in biomedicine since MacKay and McCulloch [3] studied the
information conveyed by neuronal signals. More recent contributions of symbolic representations
are concerned with heart rate complexity and variability [4–8].

In this paper, we are going to concentrate on ordinal symbolic representations, i.e. representations
whose symbols are ordinal patterns or, for that matter, permutations. Ordinal patterns were
introduced by C. Bandt and B. Pompe in their foundational paper on permutation entropy [9]. An
ordinal pattern of length L ≥ 2 (or ordinal L-pattern) is a permutation displaying the rank order
of L consecutive entries in a random or deterministic time series, while permutation entropy is
the Shannon entropy of the resulting probability distribution. Therefore, ordinal patterns are not
symbols ad hoc but they actually encapsulate qualitative information about the temporal structure
of the underlying data. Ordinal symbolic analysis, i.e. the analysis of ordinal representations,
has some practical advantages. First of all, it is in general acknowledged as being conceptually
simple and computationally fast. Furthermore, ordinal patterns, being defined by inequalities, are
relatively robust against observational noise. Let us mention in this regard that ordinal patterns
of deterministic signals are more robust than those of random signals due to a mechanism called
dynamic robustness [10, §9.1]. Another practical advantage is that the calculation of ordinal
patterns does not require a knowledge of the data range, which is very useful in real-world data
analysis. For practical and computational aspects of ordinal patterns, see [11,12].

Since its conception in 2002, ordinal symbolic representation has found a number of interesting
applications in science and engineering. (For a large collection of related papers with further
references, see [13].) Of this diversity, we are going to consider in the present paper only
applications to biomedical recordings. Bearing in mind the scientific and social impact of
biomedical research, and the constant need for ever better diagnostic tools, it is not surprising
that the analysis of electroencephalograms (EEGs) of patients with epilepsy was among the very
first applications of ordinal patterns and permutation entropy [14,15]. Since then ordinal symbolic
analysis has remained a popular method in biology and medicine, especially when it comes to
distinguishing abnormal from normal health conditions in real time. Specific examples include
epilepsy [16–24], anaesthesia [25–35], cardiology [36–41], event-related potential (ERP) analysis
[42,43], Alzheimer’s disease [44], sleep research [45] and brain–computer interfaces [46]. For a
review of biomedical (and econophysics) applications of permutation entropy, see also [47].

In the following review of ordinal symbolic dynamics, the interested reader will find an
account of the concepts, methods and potentialities of the ordinal symbolic analysis of biomedical
recordings. This is accompanied by illustrations using data from epilepsy research.

In order to present the material in a systematic and comprehensive way, the rest of this
paper is organized as follows. In §2, we give an overview of dynamical systems, symbolic
dynamics and symbolic representations. We intend hereby not only to set the mathematical
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framework to symbolic representations, but also to integrate ordinal representations in the bigger
picture. Section 3 presents some methods of visualizing the ordinal pattern distributions of a
time series. Visualization is a useful way of displaying information so that interesting events
can be easily recognized, as well as a complement to other, more quantitative tools. The latter,
in the form of ordinal pattern-based complexity quantifiers, are considered in §4. They include
permutation entropy along with other entropy-like measures such as symbolic transfer entropy,
sorting information transfer, complexity coupling coefficients, transcript-based entropies and
information directionality indices, regularity parameters, etc. The applicability and efficiency of
most of them is still the subject of intense research, as evidenced by the many recent references
given in the text. The paper ends with a summary in §5.

2. Symbolic dynamics
The beginning of symbolic dynamics is usually traced back to Hadamard’s [48] coding of closed
geodesics by symbolic words. From the time when Morse & Hedlund [49] first used the name
‘symbolic dynamics’ to present days, it has developed to a stand-alone field with a strongly
formalized theory and widespread applications, in particular to time-series analysis. For the
history of symbolic dynamics, see also [50], and for an overview of applications, see [51].

In the following subsections, we provide a somewhat formal account of symbolic
representations via symbolic dynamics. The aim is to highlight the relationship between symbolic
representations and their original time series in the setting of nonlinear dynamics, as well as to
put ordinal symbolic representations in the right mathematical perspective.

(a) Symbolic representation of time series
To motivate symbolic dynamics, consider the dynamics generated by a self-map f of a subset Ω

of a (low-dimensional) Euclidean space. The dynamics is introduced in the state space Ω via the
repeated action of f on Ω . Given ω0 ∈ Ω , the (forward) orbit or trajectory O+

f (ω0) of ω0 under f is
defined as

O+
f (ω0) = ( f n(ω0))n∈N0 = (ω0, f (ω0), f 2(ω0), . . .),

where N0 = {0, 1, 2, . . .}, f 0(ω) = ω and f n(ω) = f ( f n−1(ω)). In the particular case that f is invertible,
one can also consider the full orbit (. . . , f −2(ω0), f −1(ω0), ω0, f (ω0), f 2(ω0), . . .). Since in time-series
analysis data acquisition starts necessarily at a finite time, we consider henceforth only the general
case of forward orbits. The name ‘orbit’ clearly hints to the interpretation of the iteration index
n as discrete time: each application of f on the point ωn = f (ωn−1) ∈ Ω updates the state of the
system.

Furthermore, to obtain interesting pay-offs one often supposes that Ω is endowed with a
probability measure μ, modelling the distribution of the states of a system. In this extended
setting, the time evolution of the system should preserve the probability of the ‘events’
(measurable subsets of Ω), i.e. μ is supposed to be f -invariant in the sense that μ( f −1B) = μ(B)
for any event B.

If a dynamics is complicated, we might content ourselves with a ‘blurred’ picture of the orbit
behaviour. This can be done as follows. Divide Ω into a finite number of disjoint pieces Ai,
i = 0, 1, . . . , k − 1, and keep track of the trajectory of ω ∈ Ω with the precision set by the partition
α = {A0, . . . , Ak−1}. Specifically, we assign to ω a sequence

S(ω) = (Sn(ω))n∈N0 = (i0, i1, . . . , in, . . .),

the nth entry in ∈ {0, 1, . . . , N − 1} telling us in which element of α the iterate f n(ω) is to be found.
We call S(ω) the itinerary (or address) of ω with respect to the partition α. Formally,

Sn(ω) = in if and only if f n(ω) ∈ Ain ,

for all n ∈ N0. Note that S(ω) depends, in general, on the partition α chosen, so we write Sα(ω) =
(Sα

n(ω))n∈N0 whenever convenient to stress that dependency. In principle, the relation between
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points ω and their symbolic representations will be many-to-one, i.e. several orbits may have
the same symbolic representation, unless α is a generating partition (or a generator): given an
f -invariant probability measure μ, the partition α is said to be a generator of f if on a set of
probability 1 the relation between states ω ∈ Ω (hence, orbits O+

f (ω)) and their itineraries Sα(ω) is
1-to-1.

In the case that the partition α is not generating, one can still use the symbolic representations
for practical purposes. For example, one can use the statistics of the different symbols along single
symbolic time series or samples thereof to characterize different dynamical behaviours or regimes
of the data source. Another typical approach to the same objective is to calculate the entropy of
the symbolic representation. Since this is a finite-alphabet message, one may resort to Shannon
entropy or, of course, to other fancier proposals such as permutation entropy (see below).

(b) Entropy
It turns out then that the maps Sα

n : Ω → {0, 1, . . . , k − 1}, sending ω to the nth component of
its itinerary Sα(ω), define a stationary stochastic process (Sα

n)n∈N0 , called the symbolic dynamics
of f with respect to the partition α, for which elements Ai, 1 ≤ i ≤ N − 1, are supposed to be
measurable. The joined probability functions are given by (or derived from)

Pr(Sα
0 = i0, Sα

1 = i1, . . . , Sα
n = in) = μ(Ai0 ∩ f −1Ai1 ∩ . . . ∩ f −nAin ). (2.1)

We denote this random process by Sα . In this way, the symbolic representations Sα(ω) = (i0, i1, . . .)
become realizations of the stochastic process Sα .

Thus far, we set out from a (measure-preserving) dynamical system, possibly with a complex
dynamics, and have coarse-grained the dynamics (via a finite partition of the state space) to obtain
a stationary random process—a seemingly simpler environment.

In information theory, perhaps the most important quantity one can attach to a stationary
random process (also called information source in this setting) is its entropy, which measures the
average information per unit time conveyed by the outcomes of the process. For an account of
entropy see, for example, [52].

Owing to (2.1), the Kolmogorov–Sinai entropy of f with respect to the partition α,

hμ( f , α) = − lim
n→∞

1
n

∑
μ(Ai0 ∩ · · · ∩ f −n+1Ain−1 ) log μ(Ai0 ∩ · · · ∩ f −n+1Ain−1 ), (2.2)

and the Shannon entropy of the random process Sα ,

h(Sα) = − lim
n→∞

1
n

∑
Pr(Sα

0 = i0, . . . , Sα
n−1 = in−1) log Pr(Sα

0 = i0, . . . , Sα
n−1 = in−1),

coincide:
hμ( f , α) = h(Sα). (2.3)

As the logarithm base we take Euler’s number e. The other usual choice is base 2. Clearly, the
information we obtain from the original dynamical system via the random process Sα depends
on the partition α. The famous Kolmogorov–Sinai theorem, however, says that if the partition γ

is a generator of f then
hμ( f , γ ) = max

α
hμ( f , α),

where the maximum on the right-hand side is taken over all finite partitions of Ω . Consideration
of the case with no generating partitions requires this maximum to be substituted by a supremum
to get a partition-independent quantity, called the Kolmogorov–Sinai (KS) entropy of f ,

hμ( f ) = sup
α

hμ( f , α),

which turns out to be an invariant for the concept of equivalence in dynamical systems. As a
result of (2.3), if γ is a generating partition, then

h(Sγ ) = hμ( f ),

and, therefore, all the information derived from it will be intrinsic to the system (and only then!).
The KS entropy hμ( f ) measures the (pseudo-)randomness of the dynamics generated by f .
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Figure 1. (a) Graph of the tent map. (b) Graphs of the identity map and of f , f 2 for f (x)= 4x(1 − x) determining the ordinal
partition π 1,3 of [0, 1], vertical dashed lines separate subintervals with ordinal patterns (0, 1, 2), (0, 2, 1), (2, 0, 1), (1, 0, 2) and
(1, 2, 0).

As a simple example, consider the tent map Λ : [0, 1] → [0, 1] defined as

Λ(ω) = 1 − |1 − 2ω| =
⎧⎨
⎩

2ω if 0 ≤ ω ≤ 1
2 ,

2(1 − ω) if 1
2 < ω ≤ 1.

See figure 1a for its graph. It is known that the Lebesgue measure λ (i.e. the usual concept of
length on the real axis) is invariant under Λ. If we choose the partition α = {A0, A1}, where

A0 = [0, 1
2 ] and A1 = ( 1

2 , 1]

(to which subset the middle point belongs is irrelevant), then the symbolic representation of any
orbit under Λ will be a binary sequence. Moreover, it can be proved that α is a generator of Λ,
that is, the relationship between the initial conditions ω0 ∈ [0, 1] and the binary sequences Sα(ω0)
is 1-to-1 (except for a countable subset of points). For instance, if Sα(ω0) = (0, 1, . . .), then ω0 ∈
A0 ∩ Λ−1A1 = [0, 1

2 ] ∩ ( 1
4 , 3

4 ) = ( 1
4 , 1

2 ]. More generally, the knowledge of k bits of Sα(ω0) locates ω0
within a dyadic interval [m/2k, m + 1/2k] of length 2−k, 0 ≤ m ≤ 2k − 1, and every further digit in
Sα(ω0) halves the previous interval, pinpointing ω0 up to a precision 2−(k+1). The corresponding
KS entropy of the tent map can be calculated by means of the generator α,

hλ(Λ) = −λ(A0) log λ(A0) − λ(A1) log λ(A1) = − 1
2 log 1

2 − 1
2 log 1

2 = log 2.

This is the maximum randomness a variable (or an independent and identically distributed
process) with two outcomes can have, the prototype being the tossing of a fair coin.

Generators happen to exist under rather general conditions, though they are explicitly known
only for a few maps. In some cases, they can be constructed numerically. In any case, as already
pointed out in the previous section, the scope of symbolic dynamics is usually more modest.
In general, no invariant characterization of the underlying dynamics is sought, but a method to
classify or filter out different dynamical behaviours. In such cases, the computation of partition-
dependent complexity measures, such as h(Sα), might be sufficient.

(c) The ordinal view
In the general setting of symbolic dynamics, we have considered a finite partition of the state
space leading to a symbolization. Now we are going the other way around. The symbols will be
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ordinal patterns of length L ≥ 2, describing the order structure of vectors taken from a time series.
The main idea is to assign to a real vector v = (x0, x1, . . . , xL−1) a permutation. We say that v

has the ordinal (L-)pattern o(v) = r = (r0, . . . , rL−1) if

xr0 ≤ xr1 ≤ · · · ≤ xrL−1 ,

where, in case xi = xj, we agree to set ri < rj if i < j. Since {r0, . . . , rL−1} is a reshuffling of the
integers {0, . . . , L − 1}, the ordinal pattern r of a vector v can be identified with the permutation
sending i to ri, 0 ≤ i ≤ L − 1.

Note that the L! permutations of {0, 1, . . . , L − 1} elements, endowed with the composition

r ◦ s = (r0, . . . , rL−1) ◦ (s0, . . . , sL−1) = (sr0 , . . . , srL−1 ),

build an algebraic group called the symmetric group of degree L, which we denote by SL. This fact
is used in the quantification of the coupling between time series, as we will discuss later on.

The ordinal representation of a time series is given via ordinal patterns of delay vectors. Given
a real time series (xn)∞n=0 and some natural number T ∈ N = {1, 2, 3, . . .} called delay time, to each
n ∈ N0 one assigns the ordinal patterns o(vT,L(n)) of the time delay vectors

vT,L(n) = (xn, xn+T, . . . , xn+(L−1)T).

In order to relate this symbolization to measurements taken from a possibly more than one-
dimensional state space, let X be an ‘observable’ defined on the state space as a measurable real-
valued function. If (ωn)n∈N0 is an orbit in Ω , one is interested in the ‘measured’ time series

(xn)n∈N0 = (X(ωn))n∈N0 .

With
vT,L

X (ω) = (X(ω), X( f T(ω)), . . . X( f (L−1)T(ω)),

one gets
vT,L(n) = vT,L

X ( f n(ω)),

for all n ∈ N0. Thus, a so-called ordinal partition of Ω ,

π
T,L
X = {Pr 	= ∅ : r ∈ SL},

where
Pr = {ω ∈ Ω : o(vT,L

X (ω)) = r}
is obtained by classifying points according to ordinal patterns. The symbols obtained from this
partition can be considered as the ordinal patterns themselves.

In the situation of ‘directly measuring’ the states of Ω , the points ωi and xi are coinciding,
which means that X is the identity map. Figure 1b shows how in such a situation the
corresponding ordinal partition π1,L can be determined graphically for L = 3 (and likewise for
other T and moderate values of L) for the logistic map f (ω) = 4ω(1 − ω), 0 ≤ ω ≤ 1. The function
graphs of the identity map, of f and its second iterates are shown. Since ordinal patterns can only
change at points where at least two of the three functions provide the same value, one has only to
check such points in order to get the boundary of the partition pieces. In this concrete situation,
π1,3 = {P(0,1,2), P(0,2,1), P(2,0,1), P(1,0,2), P(1,2,0)} with

P(0,1,2) =
(

0,
1
4

)
, P(0,2,1) =

(
1
4

,
5 − √

5
8

)
, P(2,0,1) =

(
5 − √

5
8

,
3
4

)
,

P(1,0,2) =
(

3
4

,
5 + √

5
8

)
, P(1,2,0) =

(
5 + √

5
8

, 1

)
,

where the boundary points are neglected.
Note for further reference that no point has the pattern (2, 1, 0). Such ordinal L-patterns, which

cannot be materialized by a deterministic dynamics, are called forbidden patterns and, as shown



7

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140091

.........................................................

in [53,54], they are the rule rather than the exception. Forbidden patterns have been used to
discriminate noisy deterministic signals from white noise [55,56].

Remark 2.1. When associating an ordinal pattern with a data vector vT,L(n), the case of equal
components was dealt with in a special way, having in mind continuously distributed data. In the
case of data digitized with a low resolution, it was proposed by Bian et al. [57] to assign single
symbols to vectors with equality of special components.

(d) Permutation entropy
As before, let μ be an invariant probability measure under f . For L = 2, 3, . . . and T ∈ N and some
given ‘observable’ X, one is interested in the L-permutation entropies with respect to X defined by

hL,T
μ,X = − 1

L − 1

∑
A∈π

T,L
X

μ(A) log μ(A), (2.4)

as complexity measures.
In the special situation that T = 1 all order relations of the elements of an orbit are coded by

the ordinal L-patterns, L = 2, 3, . . .. Here we call

h∗
μ,X = lim sup

L→∞
h1,L
μ,X

the permutation entropy of f with respect to X [58,59].
It can be proved that, under mild mathematical conditions (namely, that f is a piecewise,

strictly monotonic self-map of a one-dimensional interval), h∗
μ( f ) = h∗

μ,id( f ) coincides with hμ( f ),
the KS entropy of f [58], where id is the identity map, i.e. the states of Ω are directly measured.
Moreover, when X separates orbits in a certain sense [60], the sequence of ordinal partitions
{π1,L

X : L = 2, 3, . . .} determines the KS entropy, i.e.

lim
L→∞

h(Sπ
1,L
X ) = hμ( f ) (2.5)

and
hμ( f ) ≤ h∗

μ,X. (2.6)

Let us remark that, in general, none of the ordinal partitions π
1,L
X is generating for a given map

f and that, by Taken’s embedding theorem and variants of it, the set of X with the separation
property mentioned above is large in a certain sense [59,60]. For a comprehensive discussion of
the equality between the permutation and the KS entropies, see [59,60]. A different approach to
permutation entropy, which turns out to be equivalent to the KS entropy, was studied in [61].

(e) Practical aspects
In the previous subsections, we have dealt with some formal underpinnings of symbolic
representations in general, and ordinal symbolic representations in particular, and their
connections to random processes and dynamical systems. In practice though, when analysing
empirical data output by a, say, physical or biological system, much of the above framework is
missing or hidden to the analyst. Let us mention some typical issues in this regard.

— Although the working hypothesis is that the system is deterministic, the evolution law of
the observed dynamics is virtually always unknown.

— Real datasets are finite and very often too short for good statistical estimations of
probability distributions. In biological systems, time series need to be short to guarantee
stationarity.

— Other usual features of experimental data that one should take into account are noise,
instability, and temporal multi-scalarity.
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Note that these shortcomings are common to any sort of time-series analysis, whether linear or
nonlinear. Additionally, symbolic representations introduce parameters in the analysis through
the coarse-graining partition. This calls for a stability analysis of the results with respect to the
parameters in some applications.

Ordinal time-series analysis is based on the ordinal pattern distribution obtained from the data.
Moreover, on the model side, the data are supposed to be output by a nonlinear dynamical system.
In doing so, we approximate probabilities by relative frequencies under the assumption that
the considered orbits are ‘typical’. These relative frequencies are called empirical probabilities in
linear time-series analysis, and natural measures in nonlinear analysis. They are by construction
ergodic (which means precisely that one may equate probabilities and time averages). Usually
nonlinearity is checked by means of surrogate tests (e.g. [8]).

However, a purely descriptive data analysis is common as well. The above approach
emphasizes (one-dimensional) time series which are the outputs of a possibly higher dimensional
system, leading in particular to the problem of system reconstruction. The delay time T is chosen
according to some criterion [2,62]. In the standard nonlinear time-series analysis, there are a
number of criteria for choosing the parameter L (the so-called embedding dimension), perhaps the
most popular being the false nearest neighbours method [63]. In ordinal time-series analysis, the
usual criteria are computational cost and statistical significance in view of the amount of data
available.

3. Ordinal pattern distributions of empirical data

(a) Ordinal patterns distributions
As noted above, the basic ingredients in ordinal time-series analysis are the ordinal patterns of a
chosen length L for some delay time T. Given a finite time series

(xn)N−1
n=0 = (x0, x1, . . . , xn, . . . , xN−1)

of length N, a first important indicator is the distribution of relative frequencies

ν(r) = #{r ∈ SL : o(vT,L(n)) = r, 0 ≤ n ≤ N − 1 − (L − 1)T}
N − (L − 1)T

(3.1)

of ordinal L-patterns r observed in a time series or in a (time-dependent) sample of it.
These frequencies have been employed in a variety of classification studies. For example, single

ordinal pattern frequencies have been considered in electrocardiograms [37,38]. Schindler et al.
[24] and Rummel et al. [64] have observed higher numbers of forbidden ordinal patterns during
epileptic seizures, and Ouyang et al. [19] have shown a significant growth of forbidden ordinal
patterns before absence seizures in rats.

Further insights into biomedical data have been obtained by considering ordinal pattern
distributions or special properties of them. Particularly, frequencies of single ordinal patterns are
of some interest. For example, Graff et al. [40] have discussed the recently found physiological
phenomenon of heart rate asymmetry on the basis of ordinal pattern frequencies, providing
new views on this topic. In particular, they present a study which shows significant frequency
differences for some ordinal 4-patterns and their time reversals in the heart rate data of
healthy subjects.

Taking into consideration the symbolic nature of the data obtained and the kind of problem
considered, many ideas of nominal statistics and information theory can be applied. For example,
Keller & Wittfeld [16] have employed a generalized correspondence analysis in order to visualize
changes in the similarity between the ordinal pattern of EEG components, and Cammerota &
Rogora [36] have introduced a symbolic independence test for investigating atrial fibrillation on
the basis of heart rate data.

Below we will discuss commonly used quantifiers based on ordinal pattern distributions of
whole time series or parts of them.
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Table 1. Different representations of ordinal patterns for L= 3.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r (2, 1, 0) (2, 0, 1) (1, 0, 2) (1, 2, 0) (0, 2, 1) (0, 1, 2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(u1(r), u2(r)) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

number representation y(r) 0 1 2 3 4 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Useful representations of ordinal patterns
Besides extracting information from given data via certain quantifiers, the visualization of ordinal
pattern distributions can provide interesting insights into the dynamics of time series and systems
behind them and is recommended as the first step of analysis. We want to use two visualization
methods here. For this, we first describe a natural enumeration of ordinal patterns with some
convenient properties.

Given an ordinal L-pattern r = (r0, r1, . . . , rL−1), for l = 1, . . . , L − 1 let

ul(r) = #{j < l : rj < rl}.
It is easy to see that r can be reconstructed from (u1(r), . . . , uL−1(r)) and that each finite sequence
in {0, 1} × {0, 1, 2} × · · · × {0, . . . , L − 1} corresponds to an ordinal pattern. From this, similarly to
Keller et al. [65], one obtains that the assignment

r → y(r) :=
L−1∑
l=1

ul(r)
L!

(l + 1)!
(3.2)

is a bijection from the set of ordinal L-patterns onto {0, 1, . . . , L! − 1}. We call y(r) the number
representation of r. Table 1 illustrates the bijection described for L = 3.

In order to see that the number representation of ordinal patterns obtained in this way is rather
natural and well adapted to the analysis of a time series, consider a time series (xn)n∈N0 of real
numbers. For T ∈ N and n ∈ N0, let a sequence

uT(n) = (uT,1(n), uT,2(n), . . .) ∈ {0, 1} × {0, 1, 2} × · · ·
be defined by

uT,l(n) = #{i : 0 ≤ i < l, xn+Ti ≤ xn+Tl},
for l ∈ N. Fixing some L, then by construction

uT,l(n) = ul(o(vT,L(n))),

for all l = 1, 2, . . . , L − 1; hence
∑L−1

l=1 uT,l(n)(L!/(l + 1)!) ∈ {0, 1, . . . , L! − 1} is the number
representation of the ordinal pattern of vT,L(n) (compare (3.2)). Division by L! provides the
number

yT,L(n) :=
L−1∑
l=1

uT,l(n)
(l + 1)!

∈ [0, 1], (3.3)

converging to

yT(n) :=
∞∑

l=1

uT,l(n)
(l + 1)!

∈ [0, 1],

for L → ∞. Both yT(n) and the sequence uT(n) contain all information about the ordinal structure
of the delay vectors vT,L(n), L ∈ N, and can therefore be considered as the ‘infinite ordinal pattern’
of the time series at time n for delay time T. Note that for white noise processes the ‘infinite ordinal
patterns’ considered as numbers in [0, 1] are theoretically equidistributed on [0, 1].

Figure 2 shows the well-known Feigenbaum diagram (a) together with some related graphics
(b) based on ordinal symbolic analysis. Recall that in the Feigenbaum diagram typical orbits
of the quadratic map x 
→ rx(1 − x) on the interval [0, 1] are drawn in the vertical direction
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Figure 2. Complexity of the quadratic family: (a) the Feigenbaum diagram, (b) the ordinal version of the Feigenbaum diagram
and (c) the corresponding Lyapunov exponents (black), permutation entropy h1,10 (light grey) and the conditional entropies of
ordinal patterns (dark grey).

in dependence on r. We took equidistant values of the parameter r between 3.5 and 4 and
kept in each case the iterates x1001, x1002, . . . , x2000 of some randomly chosen initial point
x0. In the second graphic instead of the iterates themselves their ordinal patterns y1,7(1001),
y1,7(1002), . . . , y1,7(2000) as numbers in [0, 1] are shown. Note that for many values of r one sees a
very thin ‘attractor’, better unveiling determinism than in the Feigenbaum diagram.

Another interesting visualization of dynamical structure is provided by recurrence plots, which
have ordinal analogues showing interesting details of the recurrence structure of a time series.
Such order-recurrence plots have been considered by Groth [43] and Schinkel et al. [42] and
applied to ERP data, particularly with the success of reducing the number of trials necessary.

(c) Illustration by two electroencephalographic examples
To illustrate ordinal pattern distributions in real-world data, we consider two datasets from the
European Epilepsy Database [66] (figures 3 and 4). The upper plot (a) in both figures represents
raw EEG data recorded at a sampling rate of 256 Hz; in each the duration of an epileptic seizure
is marked in grey. Figure 3 illustrates scalp data of a 52-year-old female patient with epilepsy
caused by inflammation. The data were recorded from electrode F4, and the seizure is a partial
one registered during sleep stage I. Figure 4 illustrates scalp data of a 54-year-old female patient
with epilepsy caused by hippocampal sclerosis. Here the data were recorded from electrode C4
and the seizure is a complex partial one registered during sleep stage II. The following plots are
aimed at reflecting changes in EEG data before and during the seizure by visualization of ordinal
pattern distributions.
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Figure 3. EEG example 1. (a) Original time series with epilepsy caused by inflammation (epileptic seizure is marked in grey),
(b) corresponding time series of ordinal patterns (T = 1, L= 7) as numbers in [0, 1], (c) relative frequencies of the six ordinal
3-patterns (cf. table 1) in a sliding window of 2 s with partitioning in the vertical direction (ordinal pattern distribution, T =
1, L= 3) and (d) permutation entropy (T = 1, L= 3) for a sliding window of 2 s.
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Figure 4. EEG example 2. (a) Original time series with epilepsy caused by hippocampal sclerosis (epileptic seizure is marked in
grey), (b) corresponding time series of ordinal patterns (T = 1, L= 7) as numbers in [0, 1], (c) relative frequencies of the six
ordinal 3-patterns (cf. table 1) in a sliding window of 2 s with partitioning in the vertical direction (ordinal pattern distribution,
T = 1, L= 3) and (d) permutation entropy (T = 1, L= 3) for a sliding window of 2 s.
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Plot (b) represents the numbers y1,7(n) ∈ [0, 1] (see (3.3)) coding ordinal patterns in dependence
on the time n. Since the representation is very truncated in the time direction, time-localized
ordinal pattern distributions and changes in the distribution are well illustrated.

In plot (c), for T = 1 the relative frequencies of all ordinal 3-patterns in a sliding window of 2 s
are represented. The plot has to be read as follows: enumerate the curves including the baselines at
1 and 0 from above to below by 0, 1, . . . , 6. Then, in the window starting at n, the relative frequency
of the ordinal pattern with number k = 0, 1, . . . , 5 according to table 1 is the vertical distance of the
kth and k + 1th curve at time n.

Interesting aspects shown by figures 3 and 4 are the changes in ordinal pattern distribution at
the beginning of epileptic seizures, and at 2240 s (figure 3b) and 1870 s (figure 4b) accompanied by
changes (figure 3) in relative frequencies of up patterns (0) and down patterns (5), respectively.
Although in figure 3 the EEG returns relatively quickly to the ‘normal’ level, in figure 4 the
‘relaxation’ seems to take much longer.

4. Ordinal complexity quantifiers
We proceed to present a few quantifiers or classifiers in ordinal symbolic representations that
have been employed in the literature to characterize and/or discriminate different dynamical
behaviours. Such quantities are also called indicators or markers.

(a) Permutation entropy
(i) The original concept

Historically, the first ordinal dynamic indicator was the permutation entropy of order L
constructed with the frequencies (3.1) and to be considered as an estimator of (2.4),

hT,L = − 1
L − 1

∑
r∈ST,L

ν(r) log ν(r). (4.1)

Indeed, (4.1) with L = 2, 3, 4 has already been used in the foundational paper of permutation
entropy [9] to analyse speech signals.

It did not take long for further applications to appear. Indeed, just 2 years later Keller & Lauffer
[14] discussed changes in brain dynamics related to vagus stimulation on the basis of permutation
entropy of EEG data. About the same time, Cao et al. [15] used hT,L to find that the EEGs of patients
with epilepsy are usually less complex during epileptic seizures than in the normal state. Since
then permutation entropy has remained a popular biomarker of epileptic seizures. Thus, Veisi
et al. [23] discussed the classification of normal and epileptic EEGs, Nicolaou & Georgiou [21]
considered permutation entropy for automatic detection of epileptic seizures and Li et al. [17] even
used it for predicting them. Also note that Ouyang et al. [20] applied permutation entropy and a
special dissimilarity measure for detecting changes in the dynamics of data from rats with absence
epilepsy, and Bruzzo et al. [18] included the problem of vigilance changes in the discussion of
distinguishing epileptic and normal EEG epoches.

In anaesthesia, permutation entropy of EEG data is being used or tested increasingly as an
anaesthetic depth measure for evaluating anaesthetic drug effects ([27,29,31]; for the concept
of multi-scale permutation entropy, see below and [28,34,35]) or for distinguishing between
consciousness and unconsciousness [26,33]. In particular, the performance of permutation
entropy has been compared with that of other measures such as approximate entropy, sample
entropy and index of consciousness with mainly good or best results [26,27,29–32,34,35]. Note
that in [32] local field potentials were considered instead of EEGs, and that good results with
permutation entropy were obtained after some burst suppression correction. Burst suppression
patterns occur in EEGs in inactivated brain states.

Nicolaou & Georgiou [45] report that different sleep stages correspond to significantly different
permutation entropies in the pertinent EEG segments, showing potential in automatic sleep stage
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classification. Moreover, permutation entropy has been used in a brain–computer interface system
for mental task classification [46] and in exploring heart rate variability [39,57]. In Cysarz et al. [39],
three specially constructed symbolic representations and ordinal representations were considered
in order to reflect changes in the cardiac autonomic nervous system during head-up tilt with
nearly the same results.

It is not surprising that permutation entropy and similar measures are applied to physical data
because such data are characterized by special underlying patterns often related to certain states
of a system (e.g. spike-and-wave patterns related to epilepsy, special sleep patterns such as sleep
spindles, and burst suppression patterns related to inactivated brain states, or Wolff–Parkinson–
White patterns in abnormal electrocardiograms). It seems that ordinal patterns are appropriate
for capturing structures containing such patterns and also abrupt changes in their distributions.
Here because of the assumed nonlinear nature of the systems behind the data, the idea of pattern
complexity is indicated.

Again in figures 3 and 4, note that plots (d) reflect changes in the permutation entropy h1,3

computed in sliding windows of 2 s. Relations to the plots (b,c) are obvious.

(ii) Variants of permutation entropy

There are some quantifiers similar to the permutation entropy. Liu & Wang [67] have defined a
fine-grained permutation entropy. In contrast to a modification of permutation entropy by Bian et al.
[57] based on considering extra symbols in the case of equal components of the corresponding
delay vector as mentioned above, they divide ordinal patterns into more symbols regarding
distances between vector components.

The use of different delay times in permutation analysis gives some scale-dependent
information on a time series. Another approach for gaining such information is the multi-scale
permutation entropy invented by Li et al. [31] in anaesthesia. Here a given time series is averaged
within non-overlapping windows of different lengths, and the permutation entropy is determined
as a function of the window length. Then a special measure combining this information is
compared with usual permutation entropy. The authors report that transitions between light and
deep anaesthesia are better reflected by the new measure.

For the analysis of Alzheimer’s disease, Morabito et al. [44] combine the new approach with
the idea of pooling ordinal patterns from different EEG channels, first considered in [14]. Here the
distribution of all ordinal patterns obtained, independent of their source, is investigated.

(b) Similar quantifiers
In the case that h1,L stabilizes for increasing L’s one can even take h1,L for sufficiently large L
to estimate the permutation entropy of the data source. Note in this connection that algebraic
correction terms to finite size effects can be found in [68,69]. Numerical simulations show
that, even in the simple case of logistic maps, where permutation entropy and KS entropy
coincide, the stabilization mentioned is very slow. For this reason, Unakafov & Keller [70] (for
T = 1) have considered the conditional entropy of successive ordinal L-patterns, providing better
approximation convergency to KS entropy. The latter is illustrated for the logistic family by
figure 2c, where the Lyapunov exponent, h1,10 and the conditional entropy of successive ordinal
10-patterns are plotted in black, grey and dark grey, respectively. Having in mind that, by Pesin’s
theorem, the KS entropy is 0 if the Lyapunov exponent is negative and equal to the Lyapunov
exponent (cf. [71]), these graphics show that the KS entropies, hence the permutation entropies,
and considered conditional entropies are nearly the same. h1,10 shows the same tendency as the
other quantities but is significantly larger.

Finally, we refer to measures based on counting monotone changes in time series and applied
to EEG data in Keller et al. [72]. Such measures can quantify ‘roughness’ of data and are, for
example, used for a robust estimation of the Hurst exponent of a fractional Brownian motion.
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(c) Ordinal coupling quantifiers
There are, of course, ordinal versions of other entropies and information-theoretical quantities
(such as conditional entropies and mutual informations), mainly describing coupling. We do not
want to go into detail here since this would fill a complete other paper.

One of the most notorious coupling measures is symbolic transfer entropy (actually a conditional
mutual information), introduced by Staniek & Lehnertz [73], which is used to measure the
information directionality in coupled time series. Symbolic transfer entropy, which can be
considered as an ordinal variant of transfer entropy [74] has been used in Li & Ouyang [75]
to study the interaction between epilepsy foci. It has been developed in different directions by
Kugiumtzis [76,77] (transfer entropy on rank vectors, partial transfer entropy on rank vectors),
Pompe & Runge [78] (momentary sorting information transfer) and Nakajima & Haruna [79]
(symbolic local information transfer).

Along these lines, coupling complexity coefficients and information directionality indicators have
also been proposed by means of the so-called ‘transcripts’ between two coupled ordinal symbolic
representations [80,81]. Transcripts exploit the algebraic structure of the permutations [82,83] and
are useful also for statistical reasons: whereas all combinations of two L-patterns provide (L!)2

possible combinations, the corresponding transcript representation aggregates them to only L!
combinations. Biomedical applications of transcripts and coupling complexity coefficients can be
found in Bunk et al. [84] and Amigó et al. [80] and Monetti et al. [83], respectively. Biomedical
applications of the transcript-based directionality indicators is a topic of current research.

Finally, there are other ordinal indicators tailored to specific purposes. Such is the case for
the regularity parameters introduced in Amigó et al. [85] to differentiate among different phases in
coupled map lattices and also to apply to the analysis of multi-channel magnetoencephalograms
recorded on human scalps.

5. Summary
Ordinal symbolic representation provides an interesting and promising approach to the analysis
of complex time series, with a fast increasing number of biomedical applications and beyond.
The potential of the method in biomedicine ranges from the detection of dynamical state
changes of a system through the distinction of its states to state classification, mainly in
epileptology, anaesthesia and cardiology. The applicability of ordinal time-series analysis has
been demonstrated by many examples.

Let us summarize next some features of ordinal symbolic representations that distinguish them
from other symbolic representations and make them special.

1. To find appropriate partitions in symbolic dynamics, one has to look for natural
levels subdividing the range of measurements. In many practical situations, there is
no clear indication of such levels. By contrast, ordinal patterns provide a kind of
universal partitioning with standard symbols, moreover without knowing the range
of measurements. Yet, partitions are not given a priori on the state space but based
on the dynamics. The latter is not a practical problem, though, since one is only
interested in ordinal patterns as the symbols obtained from the data in a simple way.
There are situations, however, in which ordinal methods might be inapplicable without
adjustments. For example, close delay vectors can provide very different ordinal patterns,
this being a reason for the ordinal pattern modification proposed by Liu & Wang [67].

2. The symbols in ordinal symbolic dynamics are easily interpretable. For example, one has
‘upward’ and ‘downward’ ordinal patterns and ordinal patterns describing monotone
changes. There are moreover symmetries in the ordinal pattern distributions related to
time and data range reversal. Both can be exploited when considering special order-
related aspects of data analysis; for example, for describing roughness by change statistics
[86] and for quantifying the phenomenon of heart rate asymmetry [40] described above.
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3. Finding convenient generating partitions in dynamical systems is an unsolvable problem
in many cases. However, as noted above, the KS entropy can be approximated on the base
of ordinal partitions for sufficiently large pattern length L. This is important at least from
a conceptual view point, but in practice L can be too large to estimate the KS entropy
accurately. Nevertheless, ordinal analysis with a small L is useful in descriptive data
analysis. The fact that conditional variants of permutation entropy seem better estimators
of the KS entropy than the original concepts is certainly worth further research [70].

4. As permutations, ordinal L-patterns are elements of the symmetric group of degree L.
This additional algebraic structure of the symbols allows applications to the analysis of
coupled dynamics [80,81].

Ordinal symbolic analysis is a relatively new field and many methods are not consolidated yet.
Future research should particularly focus on the development of statistical models and methods
aimed at showing the significance and reliability of the results obtained by ordinal analysis.
There is moreover some need for systematic studies comparing different complexity and coupling
measures, on both the ordinal and metric level.
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