Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Jan 3;92(1):75–82. doi: 10.1073/pnas.92.1.75

Chemical ecology: a view from the pharmaceutical industry.

L H Caporale 1
PMCID: PMC42819  PMID: 7816850

Abstract

Biological diversity reflects an underlying molecular diversity. The molecules found in nature may be regarded as solutions to challenges that have been confronted and overcome during molecular evolution. As our understanding of these solutions deepens, the efficiency with which we can discover and/or design new treatments for human disease grows. Nature assists our drug discovery efforts in a variety of ways. Some compounds synthesized by microorganisms and plants are used directly as drugs. Human genetic variations that predispose to (or protect against) certain diseases may point to important drug targets. Organisms that manipulate molecules within us to their benefit also may help us to recognize key biochemical control points. Drug design efforts are expedited by knowledge of the biochemistry of a target. To supplement this knowledge, we screen compounds from sources selected to maximize molecular diversity. Organisms known to manipulate biochemical pathways of other organisms can be sources of particular interest. By using high throughput assays, pharmaceutical companies can rapidly scan the contents of tens of thousands of extracts of microorganisms, plants, and insects. A screen may be designed to search for compounds that affect the activity of an individual targeted human receptor, enzyme, or ion channel, or the screen might be designed to capture compounds that affect any step in a targeted metabolic or biochemical signaling pathway. While a natural product discovered by such a screen will itself only rarely become a drug (its potency, selectivity, bioavailability, and/or stability may be inadequate), it may suggest a type of structure that would interact with the target, serving as a point of departure for a medicinal chemistry effort--i.e., it may be a "lead." It is still beyond our capability to design, routinely, such lead structures, based simply upon knowledge of the structure of our target. However, if a drug discovery target contains regions of structure homologous to that in other proteins, structures known to interact with those proteins may prove useful as leads for a medicinal chemistry effort. The specificity of a lead for a target may be optimized by directing structural variation to specificity-determining sites and away from those sites required for interaction with conserved features of the targeted protein structure. Strategies that facilitate recognition and exploration of sites at which variation is most likely to generate a novel function increase the efficiency with which useful molecules can be created.

Full text

PDF
75

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts A. W., Chen J., Kuron G., Hunt V., Huff J., Hoffman C., Rothrock J., Lopez M., Joshua H., Harris E. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3957–3961. doi: 10.1073/pnas.77.7.3957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1992 May 11;20 (Suppl):2013–2018. doi: 10.1093/nar/20.suppl.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barz W., Bless W., Börger-Papendorf G., Gunia W., Mackenbrock U., Meier D., Otto C., Süper E. Phytoalexins as part of induced defence reactions in plants: their elicitation, function and metabolism. Ciba Found Symp. 1990;154:140–156. doi: 10.1002/9780470514009.ch11. [DOI] [PubMed] [Google Scholar]
  4. Bliska J. B., Galán J. E., Falkow S. Signal transduction in the mammalian cell during bacterial attachment and entry. Cell. 1993 Jun 4;73(5):903–920. doi: 10.1016/0092-8674(93)90270-z. [DOI] [PubMed] [Google Scholar]
  5. Brückner B. Regulation of gibberellin formation by the fungus Gibberella fujikuroi. Ciba Found Symp. 1992;171:129–143. doi: 10.1002/9780470514344.ch8. [DOI] [PubMed] [Google Scholar]
  6. Bunin B. A., Plunkett M. J., Ellman J. A. The combinatorial synthesis and chemical and biological evaluation of a 1,4-benzodiazepine library. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4708–4712. doi: 10.1073/pnas.91.11.4708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burg R. W., Miller B. M., Baker E. E., Birnbaum J., Currie S. A., Hartman R., Kong Y. L., Monaghan R. L., Olson G., Putter I. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother. 1979 Mar;15(3):361–367. doi: 10.1128/aac.15.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Busse W. W., Sosman J. Histamine inhibition of neutrophil lysosomal enzyme release: an H2 histamine receptor response. Science. 1976 Nov 12;194(4266):737–738. doi: 10.1126/science.185696. [DOI] [PubMed] [Google Scholar]
  9. Caporale L. H. Is there a higher level genetic code that directs evolution? Mol Cell Biochem. 1984 Sep;64(1):5–13. doi: 10.1007/BF00420923. [DOI] [PubMed] [Google Scholar]
  10. Clardy J. The chemistry of signal transduction. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):56–61. doi: 10.1073/pnas.92.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Crook N. E., Clem R. J., Miller L. K. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol. 1993 Apr;67(4):2168–2174. doi: 10.1128/jvi.67.4.2168-2174.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Daly J. W. The chemistry of poisons in amphibian skin. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):9–13. doi: 10.1073/pnas.92.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Desjarlais J. R., Berg J. M. Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2256–2260. doi: 10.1073/pnas.90.6.2256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dombrowski A. W., Bills G. F., Sabnis G., Koupal L. R., Meyer R., Ondeyka J. G., Giacobbe R. A., Monaghan R. L., Lingham R. B. L-696,474, a novel cytochalasin as an inhibitor of HIV-1 protease. I. The producing organism and its fermentation. J Antibiot (Tokyo) 1992 May;45(5):671–678. doi: 10.7164/antibiotics.45.671. [DOI] [PubMed] [Google Scholar]
  15. Doolittle R. F., Bork P. Evolutionarily mobile modules in proteins. Sci Am. 1993 Oct;269(4):50–56. doi: 10.1038/scientificamerican1093-50. [DOI] [PubMed] [Google Scholar]
  16. Eisner T., Meinwald J. The chemistry of sexual selection. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):50–55. doi: 10.1073/pnas.92.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ellenberger T. E., Brandl C. J., Struhl K., Harrison S. C. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell. 1992 Dec 24;71(7):1223–1237. doi: 10.1016/s0092-8674(05)80070-4. [DOI] [PubMed] [Google Scholar]
  18. Enyedi A. J., Yalpani N., Silverman P., Raskin I. Signal molecules in systemic plant resistance to pathogens and pests. Cell. 1992 Sep 18;70(6):879–886. doi: 10.1016/0092-8674(92)90239-9. [DOI] [PubMed] [Google Scholar]
  19. FERREIRA S. H. A BRADYKININ-POTENTIATING FACTOR (BPF) PRESENT IN THE VENOM OF BOTHROPS JARARCA. Br J Pharmacol Chemother. 1965 Feb;24:163–169. doi: 10.1111/j.1476-5381.1965.tb02091.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gadebusch H. H., Stapley E. O., Zimmerman S. B. The discovery of cell wall active antibacterial antibiotics. Crit Rev Biotechnol. 1992;12(3):225–243. doi: 10.3109/07388559209069193. [DOI] [PubMed] [Google Scholar]
  21. Gaffney T., Friedrich L., Vernooij B., Negrotto D., Nye G., Uknes S., Ward E., Kessmann H., Ryals J. Requirement of salicylic Acid for the induction of systemic acquired resistance. Science. 1993 Aug 6;261(5122):754–756. doi: 10.1126/science.261.5122.754. [DOI] [PubMed] [Google Scholar]
  22. Gardell S. J., Duong L. T., Diehl R. E., York J. D., Hare T. R., Register R. B., Jacobs J. W., Dixon R. A., Friedman P. A. Isolation, characterization, and cDNA cloning of a vampire bat salivary plasminogen activator. J Biol Chem. 1989 Oct 25;264(30):17947–17952. [PubMed] [Google Scholar]
  23. Gilbert W. Why genes in pieces? Nature. 1978 Feb 9;271(5645):501–501. doi: 10.1038/271501a0. [DOI] [PubMed] [Google Scholar]
  24. Gooding L. R. Virus proteins that counteract host immune defenses. Cell. 1992 Oct 2;71(1):5–7. doi: 10.1016/0092-8674(92)90259-f. [DOI] [PubMed] [Google Scholar]
  25. Gordon E. M., Barrett R. W., Dower W. J., Fodor S. P., Gallop M. A. Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J Med Chem. 1994 May 13;37(10):1385–1401. doi: 10.1021/jm00036a001. [DOI] [PubMed] [Google Scholar]
  26. Graham L. D., Haggett K. D., Jennings P. A., Le Brocque D. S., Whittaker R. G., Schober P. A. Random mutagenesis of the substrate-binding site of a serine protease can generate enzymes with increased activities and altered primary specificities. Biochemistry. 1993 Jun 22;32(24):6250–6258. doi: 10.1021/bi00075a019. [DOI] [PubMed] [Google Scholar]
  27. Henderson S., Rowe M., Gregory C., Croom-Carter D., Wang F., Longnecker R., Kieff E., Rickinson A. Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell. 1991 Jun 28;65(7):1107–1115. doi: 10.1016/0092-8674(91)90007-l. [DOI] [PubMed] [Google Scholar]
  28. Holzinger F., Frick C., Wink M. Molecular basis for the insensitivity of the Monarch (Danaus plexippus) to cardiac glycosides. FEBS Lett. 1992 Dec 21;314(3):477–480. doi: 10.1016/0014-5793(92)81530-y. [DOI] [PubMed] [Google Scholar]
  29. Horn W. S., Smith J. L., Bills G. F., Raghoobar S. L., Helms G. L., Kurtz M. B., Marrinan J. A., Frommer B. R., Thornton R. A., Mandala S. M. Sphingofungins E and F: novel serinepalmitoyl transferase inhibitors from Paecilomyces variotii. J Antibiot (Tokyo) 1992 Oct;45(10):1692–1696. doi: 10.7164/antibiotics.45.1692. [DOI] [PubMed] [Google Scholar]
  30. Hozumi N., Tonegawa S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3628–3632. doi: 10.1073/pnas.73.10.3628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Huang J. C., Garcia M. L., Reuben J. P., Kacsorowski G. J. Inhibition of beta-adrenoceptor agonist relaxation of airway smooth muscle by Ca(2+)-activated K+ channel blockers. Eur J Pharmacol. 1993 Apr 22;235(1):37–43. doi: 10.1016/0014-2999(93)90817-2. [DOI] [PubMed] [Google Scholar]
  32. Huff J. R. HIV protease: a novel chemotherapeutic target for AIDS. J Med Chem. 1991 Aug;34(8):2305–2314. doi: 10.1021/jm00112a001. [DOI] [PubMed] [Google Scholar]
  33. Imperato-McGinley J., Guerrero L., Gautier T., Peterson R. E. Steroid 5alpha-reductase deficiency in man: an inherited form of male pseudohermaphroditism. Science. 1974 Dec 27;186(4170):1213–1215. doi: 10.1126/science.186.4170.1213. [DOI] [PubMed] [Google Scholar]
  34. Irwin D. M., Robertson K. A., MacGillivray R. T. Structure and evolution of the bovine prothrombin gene. J Mol Biol. 1988 Mar 5;200(1):31–45. doi: 10.1016/0022-2836(88)90331-2. [DOI] [PubMed] [Google Scholar]
  35. Iwanami Y. Myrmicacin, a new inhibitor for mitotic progression after metaphase. Protoplasma. 1978;95(3):267–271. doi: 10.1007/BF01294455. [DOI] [PubMed] [Google Scholar]
  36. Johnson M. S., Overington J. P., Blundell T. L. Alignment and searching for common protein folds using a data bank of structural templates. J Mol Biol. 1993 Jun 5;231(3):735–752. doi: 10.1006/jmbi.1993.1323. [DOI] [PubMed] [Google Scholar]
  37. Jones T. R., Charette L., Garcia M. L., Kaczorowski G. J. Selective inhibition of relaxation of guinea-pig trachea by charybdotoxin, a potent Ca(++)-activated K+ channel inhibitor. J Pharmacol Exp Ther. 1990 Nov;255(2):697–706. [PubMed] [Google Scholar]
  38. Jorgensen J. L., Reay P. A., Ehrich E. W., Davis M. M. Molecular components of T-cell recognition. Annu Rev Immunol. 1992;10:835–873. doi: 10.1146/annurev.iy.10.040192.004155. [DOI] [PubMed] [Google Scholar]
  39. Kahan J. S., Kahan F. M., Goegelman R., Currie S. A., Jackson M., Stapley E. O., Miller T. W., Miller A. K., Hendlin D., Mochales S. Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J Antibiot (Tokyo) 1979 Jan;32(1):1–12. doi: 10.7164/antibiotics.32.1. [DOI] [PubMed] [Google Scholar]
  40. Kashman Y., Gustafson K. R., Fuller R. W., Cardellina J. H., 2nd, McMahon J. B., Currens M. J., Buckheit R. W., Jr, Hughes S. H., Cragg G. M., Boyd M. R. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem. 1992 Jul 24;35(15):2735–2743. doi: 10.1021/jm00093a004. [DOI] [PubMed] [Google Scholar]
  41. King V. F., Garcia M. L., Himmel D., Reuben J. P., Lam Y. K., Pan J. X., Han G. Q., Kaczorowski G. J. Interaction of tetrandrine with slowly inactivating calcium channels. Characterization of calcium channel modulation by an alkaloid of Chinese medicinal herb origin. J Biol Chem. 1988 Feb 15;263(5):2238–2244. [PubMed] [Google Scholar]
  42. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A., Scolnick E. M., Sigal I. S. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4686–4690. doi: 10.1073/pnas.85.13.4686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Kosterlitz H. W., Hughes J. Peptides with morphine-like action in the brain. Br J Psychiatry. 1977 Mar;130:298–304. doi: 10.1192/bjp.130.3.298. [DOI] [PubMed] [Google Scholar]
  44. Lam P. Y., Jadhav P. K., Eyermann C. J., Hodge C. N., Ru Y., Bacheler L. T., Meek J. L., Otto M. J., Rayner M. M., Wong Y. N. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science. 1994 Jan 21;263(5145):380–384. doi: 10.1126/science.8278812. [DOI] [PubMed] [Google Scholar]
  45. Lingham R. B., Hsu A., Silverman K. C., Bills G. F., Dombrowski A., Goldman M. E., Darke P. L., Huang L., Koch G., Ondeyka J. G. L-696,474, a novel cytochalasin as an inhibitor of HIV-1 protease. III. Biological activity. J Antibiot (Tokyo) 1992 May;45(5):686–691. doi: 10.7164/antibiotics.45.686. [DOI] [PubMed] [Google Scholar]
  46. Liu J., Farmer J. D., Jr, Lane W. S., Friedman J., Weissman I., Schreiber S. L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991 Aug 23;66(4):807–815. doi: 10.1016/0092-8674(91)90124-h. [DOI] [PubMed] [Google Scholar]
  47. McKeon F. When worlds collide: immunosuppressants meet protein phosphatases. Cell. 1991 Sep 6;66(5):823–826. doi: 10.1016/0092-8674(91)90426-y. [DOI] [PubMed] [Google Scholar]
  48. McManus O. B., Harris G. H., Giangiacomo K. M., Feigenbaum P., Reuben J. P., Addy M. E., Burka J. F., Kaczorowski G. J., Garcia M. L. An activator of calcium-dependent potassium channels isolated from a medicinal herb. Biochemistry. 1993 Jun 22;32(24):6128–6133. doi: 10.1021/bi00075a002. [DOI] [PubMed] [Google Scholar]
  49. Merrifield B. Solid phase synthesis. Science. 1986 Apr 18;232(4748):341–347. doi: 10.1126/science.3961484. [DOI] [PubMed] [Google Scholar]
  50. Monaghan R. L., Tkacz J. S. Bioactive microbial products: focus upon mechanism of action. Annu Rev Microbiol. 1990;44:271–301. doi: 10.1146/annurev.mi.44.100190.001415. [DOI] [PubMed] [Google Scholar]
  51. Olson G. L., Bolin D. R., Bonner M. P., Bös M., Cook C. M., Fry D. C., Graves B. J., Hatada M., Hill D. E., Kahn M. Concepts and progress in the development of peptide mimetics. J Med Chem. 1993 Oct 15;36(21):3039–3049. doi: 10.1021/jm00073a001. [DOI] [PubMed] [Google Scholar]
  52. Ondetti M. A., Rubin B., Cushman D. W. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science. 1977 Apr 22;196(4288):441–444. doi: 10.1126/science.191908. [DOI] [PubMed] [Google Scholar]
  53. Ouzounis C., Sander C., Scharf M., Schneider R. Prediction of protein structure by evaluation of sequence-structure fitness. Aligning sequences to contact profiles derived from three-dimensional structures. J Mol Biol. 1993 Aug 5;232(3):805–825. doi: 10.1006/jmbi.1993.1433. [DOI] [PubMed] [Google Scholar]
  54. Patchett A. A., Harris E., Tristram E. W., Wyvratt M. J., Wu M. T., Taub D., Peterson E. R., Ikeler T. J., ten Broeke J., Payne L. G. A new class of angiotensin-converting enzyme inhibitors. Nature. 1980 Nov 20;288(5788):280–283. doi: 10.1038/288280a0. [DOI] [PubMed] [Google Scholar]
  55. Patthy L. Modular design of proteases of coagulation, fibrinolysis, and complement activation: implications for protein engineering and structure-function studies. Methods Enzymol. 1993;222:10–21. doi: 10.1016/0076-6879(93)22004-y. [DOI] [PubMed] [Google Scholar]
  56. Pease L. R., Schulze D. H., Pfaffenbach G. M., Nathenson S. G. Spontaneous H-2 mutants provide evidence that a copy mechanism analogous to gene conversion generates polymorphism in the major histocompatibility complex. Proc Natl Acad Sci U S A. 1983 Jan;80(1):242–246. doi: 10.1073/pnas.80.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Pech M., Höchtl J., Schnell H., Zachau H. G. Differences between germ-line and rearranged immunoglobulin V kappa coding sequences suggest a localized mutation mechanism. Nature. 1981 Jun 25;291(5817):668–670. doi: 10.1038/291668a0. [DOI] [PubMed] [Google Scholar]
  58. Pennica D., Holmes W. E., Kohr W. J., Harkins R. N., Vehar G. A., Ward C. A., Bennett W. F., Yelverton E., Seeburg P. H., Heyneker H. L. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature. 1983 Jan 20;301(5897):214–221. doi: 10.1038/301214a0. [DOI] [PubMed] [Google Scholar]
  59. Pert C. B., Snyder S. H. Opiate receptor: demonstration in nervous tissue. Science. 1973 Mar 9;179(4077):1011–1014. doi: 10.1126/science.179.4077.1011. [DOI] [PubMed] [Google Scholar]
  60. Poole R. J. Cellular signaling machinery: conservation from plant stomata to lymphocytes. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3125–3126. doi: 10.1073/pnas.90.8.3125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Rizo J., Gierasch L. M. Constrained peptides: models of bioactive peptides and protein substructures. Annu Rev Biochem. 1992;61:387–418. doi: 10.1146/annurev.bi.61.070192.002131. [DOI] [PubMed] [Google Scholar]
  62. Rossman M. G. Evolution of glycolytic enzymes. Philos Trans R Soc Lond B Biol Sci. 1981 Jun 26;293(1063):191–203. doi: 10.1098/rstb.1981.0072. [DOI] [PubMed] [Google Scholar]
  63. Sheridan R. P., Venkataraghavan R. A systematic search for protein signature sequences. Proteins. 1992 Sep;14(1):16–28. doi: 10.1002/prot.340140105. [DOI] [PubMed] [Google Scholar]
  64. Slater E. E., MacDonald J. S. Mechanism of action and biological profile of HMG CoA reductase inhibitors. A new therapeutic alternative. Drugs. 1988;36 (Suppl 3):72–82. doi: 10.2165/00003495-198800363-00016. [DOI] [PubMed] [Google Scholar]
  65. Smith A. B., 3rd, Hirschmann R., Pasternak A., Akaishi R., Guzman M. C., Jones D. R., Keenan T. P., Sprengeler P. A., Darke P. L., Emini E. A. Design and synthesis of peptidomimetic inhibitors of HIV-1 protease and renin. Evidence for improved transport. J Med Chem. 1994 Jan 21;37(2):215–218. doi: 10.1021/jm00028a001. [DOI] [PubMed] [Google Scholar]
  66. Strader C. D., Sigal I. S., Register R. B., Candelore M. R., Rands E., Dixon R. A. Identification of residues required for ligand binding to the beta-adrenergic receptor. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4384–4388. doi: 10.1073/pnas.84.13.4384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Südhof T. C., Goldstein J. L., Brown M. S., Russell D. W. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985 May 17;228(4701):815–822. doi: 10.1126/science.2988123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Tanzi R., Gaston S., Bush A., Romano D., Pettingell W., Peppercorn J., Paradis M., Gurubhagavatula S., Jenkins B., Wasco W. Genetic heterogeneity of gene defects responsible for familial Alzheimer disease. Genetica. 1993;91(1-3):255–263. doi: 10.1007/BF01436002. [DOI] [PubMed] [Google Scholar]
  69. Thompson W. J., Fitzgerald P. M., Holloway M. K., Emini E. A., Darke P. L., McKeever B. M., Schleif W. A., Quintero J. C., Zugay J. A., Tucker T. J. Synthesis and antiviral activity of a series of HIV-1 protease inhibitors with functionality tethered to the P1 or P1' phenyl substituents: X-ray crystal structure assisted design. J Med Chem. 1992 May 15;35(10):1685–1701. doi: 10.1021/jm00088a003. [DOI] [PubMed] [Google Scholar]
  70. Torphy T. J., Undem B. J. Phosphodiesterase inhibitors: new opportunities for the treatment of asthma. Thorax. 1991 Jul;46(7):512–523. doi: 10.1136/thx.46.7.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Vacca J. P., Dorsey B. D., Schleif W. A., Levin R. B., McDaniel S. L., Darke P. L., Zugay J., Quintero J. C., Blahy O. M., Roth E. L-735,524: an orally bioavailable human immunodeficiency virus type 1 protease inhibitor. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4096–4100. doi: 10.1073/pnas.91.9.4096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Valentino K., Newcomb R., Gadbois T., Singh T., Bowersox S., Bitner S., Justice A., Yamashiro D., Hoffman B. B., Ciaranello R. A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7894–7897. doi: 10.1073/pnas.90.16.7894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Vinson C. R., Sigler P. B., McKnight S. L. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science. 1989 Nov 17;246(4932):911–916. doi: 10.1126/science.2683088. [DOI] [PubMed] [Google Scholar]
  74. Wiley R. A., Rich D. H. Peptidomimetics derived from natural products. Med Res Rev. 1993 May;13(3):327–384. doi: 10.1002/med.2610130305. [DOI] [PubMed] [Google Scholar]
  75. Woodward S. R., Cruz L. J., Olivera B. M., Hillyard D. R. Constant and hypervariable regions in conotoxin propeptides. EMBO J. 1990 Apr;9(4):1015–1020. doi: 10.1002/j.1460-2075.1990.tb08204.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Zychlinsky A., Kenny B., Ménard R., Prévost M. C., Holland I. B., Sansonetti P. J. IpaB mediates macrophage apoptosis induced by Shigella flexneri. Mol Microbiol. 1994 Feb;11(4):619–627. doi: 10.1111/j.1365-2958.1994.tb00341.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES