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Abstract

Objective—The role of the thalamus in the genesis of attention deficit hyperactivity disorder 

(ADHD) remains poorly understood. The authors used anatomical MRI to examine the 

morphology of the thalamus in youths with ADHD and healthy comparison youths.

Method—The authors examined 46 youths with ADHD and 59 comparison youths 8–18 years of 

age in a cross-sectional case-control study. Conventional volumes and measures of surface 

morphology of the thalamus served as the main outcome measures.

Results—A mixed-effects model comparing whole thalamic volumes revealed no significant 

differences between groups. Maps of the thalamic surface revealed significantly smaller regional 

volumes bilaterally in the pulvinar in youths with ADHD relative to comparison subjects. Post hoc 

analyses showed that ADHD patients who received stimulants (N=31) had larger conventional 

thalamic volumes than untreated youths with ADHD, and maps of the thalamic surface showed 

enlargement over the pulvinar in those receiving stimulants. Smaller regional volumes in the right 

lateral and left posterior thalamic surfaces were associated with more severe hyperactivity 

symptoms, whereas larger regional volumes in the right medial thalamic surfaces were associated 

with more severe symptoms of inattention.

Conclusion—These findings demonstrate reduced pulvinar volumes in youths with ADHD and 

indicate that this same area is relatively enlarged in patients treated with stimulants compared to 

those untreated. Associations of hyperactivity scores with smaller regional volumes on the lateral 

thalamic surface and inattention scores with larger regional volumes on the medial thalamic 

surface suggest the differential involvement of thalamic subcircuits in the pathogenesis of 

differing ADHD symptoms.
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Contemporary theories of the pathogenesis of attention deficit hyperactivity disorder 

(ADHD) conceptualize symptoms of inattention, hyperactivity, and impulsivity as 

consequences of dysfunction in the cortico-striato-thalamo-cortical (CSTC) loops that 

subserve, among other processes, executive function and effortful control (1–3). Abnormal 

activation in these networks is thought to produce hypoarousal and inadequate suppression 

of both irrelevant sensory inputs and premature behavioral responses, which in turn manifest 

as the cardinal symptoms of inattention, hyperactivity, and impulsivity that define ADHD 

(3–6). Animal studies have shown that CSTC loops convey information from the cortex to 

the basal ganglia, then to thalamic nuclei, and then back to the cortex (7–9). In principle, 

disturbances in any of the structures along these CSTC pathways could produce abnormal 

information processing and ultimately the symptoms of ADHD (6, 10). Most anatomical 

imaging studies in youths with ADHD, however, have focused on the basal ganglia and 

cortex (11–17) and have largely neglected the thalamus, a key component of the larger 

CSTC network that relays basal ganglia output to the cortex and mediates information flow 

between cortical circuits (4, 18–22).

Neuropsychological and neuroanatomical imaging studies generally implicate the thalamus 

in the pathogenesis of ADHD. Trauma to the thalamus and basal ganglia, for example, can 

produce new-onset ADHD symptoms in children and adolescents (23). Functional imaging 

studies have shown that activation of distributed portions of CSTC circuits, including the 

thalamus, is abnormal in individuals with ADHD (6). Stimulant medications administered to 

adolescents with ADHD have been reported to alter portions of the EEG that originate in the 

thalamic reticular nucleus (24). These reports together provide compelling preliminary 

evidence for the presence of anatomical and functional abnormalities of the thalamus in 

persons with ADHD. To our knowledge, however, no studies have examined thalamic 

morphology in youths with ADHD. We present findings from the first high-resolution 

anatomical MRI study that tests the hypothesis that morphological features of the thalamus 

in youths with ADHD differ significantly from those of healthy comparison subjects.

Method

Participants

We studied a cohort of 105 children and adolescents, 8–18 years of age, including 46 youths 

who met DSM-IV criteria (25) for ADHD, combined type, and 59 comparison youths who 

were recruited randomly from a telemarketing list and matched to the patient group by 

postal code. Written informed consent was obtained from all parents, and all participants 

provided written assent. Participants’ demographic characteristics are summarized in Table 

1.

Diagnoses of ADHD were established using the Schedule for Affective Disorders and 

Schizophrenia for School-Age Children– Present and Lifetime Version (26) and a best-

estimate consensus procedure that considered all available clinical and diagnostic 

information (27). Additional instruments used included the ADHD Rating Scale (28), the 

Revised Children’s Manifest Anxiety Scale (29), and the Children’s Depression Inventory 

(30). Exclusion criteria for participants with ADHD were premature birth (gestation ≤36 

weeks) and lifetime diagnosis of any bipolar, psychotic, obsessive-compulsive, or tic 
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disorder. Exclusion criteria for comparison subjects were a lifetime or a current DSM-IV 

axis I disorder. Additional exclusion criteria for both groups were epilepsy, head trauma 

with loss of consciousness, lifetime substance abuse, developmental delay, or IQ below 80, 

as measured by the WISC-III (31), WAIS (32), or Kaufmann Brief Intelligence Test (33). 

Socioeconomic status was estimated using the Hollingshead Four-Factor Index of Social 

Status (34).

MRI Scanning and Image Analysis

High-resolution MR images were obtained using a single 1.5-T scanner (GE Signa, 

Milwaukee). Head position was standardized using canthomeatal landmarks. T1-weighted 

sagittal three-dimensional volume images were acquired using a spoiled gradient echo pulse 

sequence (repetition time=24 msec, echo time=5 msec, flip angle=45°, matrix=256×192, 

feld of view=30 cm, excitations=2, slice thickness=1.2 mm, contiguous slices=124).

Preprocessing—Image processing was performed on SunUltra10 workstations with the 

ANALYZE 7.5 software program (Biomedical Imaging Resource, Mayo Foundation, 

Rochester, Minn.). Operators were blind to participant characteristics and hemisphere 

(images were randomly flipped left to right prior to analysis). Large-scale variations in 

image intensity were removed (35), and images were reformatted to standardize head 

positioning prior to region definition (36). Axial slices were oriented parallel to both the 

anterior and posterior commissures, and sagittal slices were oriented parallel to standard 

midline landmarks (36).

Whole-brain volume—An isointensity contour function was used in conjunction with 

manual editing to isolate the cerebrum. This whole-brain volume measure included gray and 

white matter, ventricular CSF, cisterns, fissures, and cortical sulci. CSF was included using 

a connected components analysis. Whole-brain volume was used as a covariate in statistical 

analyses to control for scaling effects (37).

Thalamus definition—After excluding non-brain tissue, an anisotropic diffusion filter 

was applied to the remaining brain tissue to improve the discrimination of the lateral surface 

of the thalamus from the white matter of the internal capsule. The procedures for defining 

the thalamus were identical to those previously published (38, 39). The thalamus was 

segmented by sampling gray-scale values of the thalamus and internal capsule throughout 

the entire three-dimensional extent of each structure and then averaging the peaks for white 

and gray matter. An isointensity contour function applied at the calculated threshold and 

grown from a seed within the thalamus provided an initial definition of the structure that was 

then edited manually. The intra- and interrater intraclass correlation coefficients were 0.95. 

The thalamus was distinguished from the hypothalamus by a line defining the hypothalamic 

sulcus on sagittal views, which excluded portions of the geniculate nuclei from the analysis.

Surface morphometry—We calculated the distance from a voxelsized point on the 

surface of each participant’s thalamus to the corresponding point on the surface of the 

thalamus in a template brain. This previously validated method of surface analysis (40) was 

customized to accommodate independent analysis of right and left hemi-thalami. Briefly, a 
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rigid-body similarity transformation with global scaling was used to register the entire brain 

of each participant with the template brain, thereby eliminating the need to further adjust for 

differences in overall brain volume. The thalamus was then rigidly coregistered to the 

template thalamus. This second transformation created a “refined registration” in which 

isolated thalami could be compared. Each hemi-thalamus was warped to the corresponding 

anatomy of the template thalamus using a high-dimensional nonrigid warping based on 

fluid-flow dynamics that permitted point-to-point matching of homologous tissue between 

the two thalami. The warped images were then unwarped to the refined registration while 

maintaining these point-to-point correspondences, which permitted calculation of the 

distance of each point on the surface of the test thalamus from the corresponding point on 

the surface of the template thalamus.

We applied a rigorous two-step procedure to select a thalamic template that was as close as 

possible (in the sense of least-squares mean) to the average shape of the thalamus for all our 

healthy comparison subjects. First, a preliminary reference was selected as the thalamus of 

the comparison subject who demographically was as representative as possible of all healthy 

comparison subjects. The thalami for all other comparison subjects were then normalized to 

this preliminary reference. The point correspondences on the thalamic surfaces were 

determined, and we computed the distance from the template surface for each of the 

corresponding points on the surfaces of the thalami for all other participants. Second, the 

thalamus for which all points across its surface were closest, in terms of least-squares mean, 

to the average of the computed distances was selected as the final template. As we have 

done previously, we used a single representative brain as a template rather than an averaged 

brain from many youths, because use of a single brain, which has sharp borders at the CSF-

gray matter or gray matter-white matter interface, improves the accuracy of registration (36, 

41, 42). Averaging images for a template blurs these boundaries and increases registration 

errors that are subtle but important when distinguishing subtle effects across populations. In 

addition, precise surface morphometry requires a brain with smooth gray and white matter 

surfaces that are devoid of topological defects, which cannot be reconstructed by averaging 

brains from many youths.

Statistical Analyses

Conventional volumes—Statistical analyses were performed in SAS, version 9.0 (SAS 

Institute, Inc., Cary, N.C.). We tested our a priori hypothesis that conventional measures of 

overall thalamic volume would differ across diagnostic groups by assessing the main effect 

of diagnosis in a mixed-models analysis with repeated measures over a spatial domain 

(volumes of each hemi-thalamus). The model included the within-subjects factor 

“hemisphere” with two levels (left and right), the between-subjects factor of diagnosis 

(ADHD=1 and comparison subjects=0), and the covariates of age, sex, and whole-brain 

volume. In addition to these independent variables, we considered all two- and three-way 

interactions of diagnosis, sex, hemisphere, and age, as well as the two-way interactions of 

whole-brain volume with hemisphere. Other variables included medication, IQ, and lifetime 

diagnoses of depression, oppositional-defiant disorder, and anxiety disorders. Statistically 

nonsignificant terms were eliminated via backward stepwise regression, with the constraint 

that the model at each step had to be hierarchically well formulated (i.e., all possible lower-

Ivanov et al. Page 4

Am J Psychiatry. Author manuscript; available in PMC 2015 January 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



order component terms of an interaction were included in the model, regardless of statistical 

significance). We considered p values <0.05 statistically significant. All p values were two-

sided.

Surface morphometry—The distances between points on the surface of the thalamus for 

each participant and the corresponding points on the template thalamus were compared 

statistically between groups using linear regression while covarying for age and sex. We 

color-coded p values at each voxel and displayed them across the surface of the template 

thalamus. We used the theory of Gaussian random fields (GRFs) to correct p values 

appropriately for the multiple comparisons performed across the thalamic surface (42).

Cytoarchitectonically Defined Thalamic Atlas

We superimposed a cytoarchitectonic atlas for the thalamus (43, 44) on our thalamic 

template to identify precisely the regions of significant differences in regional volumes 

between groups of subjects. The cytoarchitectonic atlas was coregistered to our thalamic 

template (40) using the same registration and warping procedures as employed for surface 

morphometry (above).

Results

Conventional Volumes

Hypothesis testing—The main effect of diagnosis indicated no significant differences 

across groups in overall conventional volumes of the thalamus.

Post hoc analyses—Significant covariates in the model included whole-brain volume 

(F=24.32; df=1, 99, p<0.001), indicating the presence of significant scaling effects in the 

thalamus; hemisphere (F=9.90; df=1, 104, p<0.002), reflecting significantly larger volumes 

in the left hemisphere for all participants; and sex (F=7.55; df=1, 99, p<0.007), 

demonstrating sex-specific differences in thalamic volumes across the whole sample. The 

main effect for age was not significant, and the absence of a diagnosis-by-age interaction 

indicated the stability of findings across the age range of the youths studied (Table 2). The 

effects of stimulant medication, evaluated by including stimulant treatment as an 

independent variable in the linear regression, revealed that patients who were receiving 

stimulants at the time of scanning had larger thalamic volumes than did untreated patients, 

although this difference fell short of statistical significance (F=3.84, df=1, 98, p=0.053).

Morphological Features of the Thalamic Surface

Hypotheses testing—Relative to comparison subjects, youths with ADHD exhibited 

significantly smaller regional volumes corresponding to the anterior, posterior, and ventral 

lateral surfaces of the right hemi-thalamus and the posterior surface of the left hemi-

thalamus. Using the thalamic atlas template, these morphological differences between the 

groups were localized in the right anterior and lateral posterior nuclei and the lateral portion 

of the pulvinar bilaterally. GRF-corrected analyses showed that the differences in regional 

morphology were concentrated predominantly in the lateral pulvinar bilaterally (Figure 1).
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Post Hoc Analyses

Medication effects—Youths with ADHD who were receiving stimulant medications at 

the time of scanning had significantly larger regional volumes over the posterior dorsal, 

ventral, and anterior dorsal thalamic surfaces bilaterally compared to untreated patients. The 

thalamic atlas template further localized these regions to the anterior nucleus and pulvinar 

bilaterally. GRF-corrected maps revealed larger regional volumes in stimulant-treated 

youths predominantly in the pulvinar, closely overlapping previously identified locations of 

smaller regional volumes in the ADHD group relative to the comparison group. These 

findings did not change when we compared youths with ADHD on and off stimulants after 

excluding the five participants with ADHD who were taking both stimulant and 

nonstimulant medications and one participant who had taken stimulants in the past but had 

been off them for 19 months before the scan. Additionally, GRF-corrected analyses 

demonstrated smaller regional volumes of the right anterior nucleus and the pulvinar 

bilaterally in untreated patients with ADHD relative to comparison subjects (Figure 2). 

Thus, we obtained the finding of smaller regional volumes in both the posterior and anterior 

thalamic surfaces in the ADHD group relative to the comparison group when we compared 

healthy youths either to all patients with ADHD or to untreated patients only.

Surface maps for the subgroup of youths with ADHD for whom we collected sufficient data 

on duration of treatment with stimulants (N=17) revealed that a longer duration of treatment 

was associated with smaller regional volumes in the right lateral and medial posterior 

thalamic surfaces (Figure 3). GRF-corrected analyses localized these correlations 

predominantly to the right lateral and medial pulvinar, a location that did not overlap with 

the main effects of diagnosis or stimulant treatment.

Correlations with symptom severity—More severe hyperactivity accompanied smaller 

regional volumes in the lateral and posterior thalamic regions bilaterally, which were 

localized in the ventral anterior, ventral lateral, ventral posterior, lateral posterior, and 

pulvinar nuclei. GRF-corrected maps showed that these differences were concentrated on 

the ventral lateral nucleus bilaterally and the left lateral posterior nucleus. In contrast, 

greater inattention scores accompanied larger regional volumes in the right posterior and 

medial thalamus and in the left anterior and lateral thalamic regions, corresponding to the 

right pulvinar, medial dorsal, left central medial, ventral lateral, and lateral posterior nuclei. 

GRF-corrected maps localized these differences to the right pulvinar and the medial dorsal 

nuclei (Figure 4), extending beyond the locations of the main effects near the pulvinar, 

where regional volumes were smaller in the ADHD group.

Possible confounders—In analyses of conventional volumes and surface morphology, 

we did not discern appreciable effects of age, comorbid disorders (see Table 2, as well as 

Figures S1 and S2 in the data supplement that accompanies the online edition of this article), 

duration of stimulant treatment (not shown), or IQ (not shown), which suggests that these 

variables did not unduly influence our findings.
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Discussion

Regional volumes were significantly reduced over the pulvinar bilaterally in youths with 

ADHD, despite the presence of normal overall thalamic volumes. These morphological 

abnormalities were not associated with the effects of naturalistic stimulant medication 

treatment or the presence of comorbid conditions in the ADHD group. In addition, 

conventional thalamic volumes in youths with ADHD treated naturalistically with stimulants 

tended to be larger than in untreated individuals (p=0.053), and regional volumes in those 

treated with stimulants were significantly larger in the pulvinar bilaterally. Finally, smaller 

regional thalamic volumes in the ventral lateral nucleus bilaterally and the left lateral 

posterior nucleus were associated with more hyperactivity, and larger regional volumes in 

the right pulvinar and medial dorsal nuclei were associated with more inattention.

The absence of a significant main effect for diagnosis in analyses of conventional thalamic 

volumes likely derives from the insensitivity of our ability to detect abnormalities in 

conventional volumes of a heterogeneous brain region such as the thalamus when the 

anatomical abnormalities in that region are restricted to a small number of substructures. 

Several studies, however, have reported significant group differences in conventional 

volumes of the hippocampus (36), the putamen (45, 46), the globus pallidus (47), the frontal 

cortex (47, 48), and the cerebellum (47, 49) in youths with ADHD relative to comparison 

subjects. Thus, examination of both conventional thalamic volumes and morphological 

features of the thalamic surface is appropriate in the study of ADHD.

The Ro le of the Thalamus in the Pathogenesis of ADHD

We used the cytoarchitectonically defined thalamic atlas (43) to determine precisely the 

regional morphological features on the surface of the thalamus overlying specific thalamic 

nuclei and to interpret morphological alterations in the context of the known thalamic 

connectivity derived from studies in humans. This atlas allowed us to map anatomical 

findings in youths with ADHD onto larger anatomical circuits that subserve specific 

cognitive processes. These morphological findings suggest that the pulvinar and ventral 

lateral nuclei are involved in the pathophysiology of ADHD.

The pulvinar nucleus—The pulvinar projects to the frontal and parietal association 

cortices (50), two thalamocortical pathways that support attentional processes. These circuits 

are important for stimulus seeking and for distinguishing between contextually relevant and 

irrelevant somatosensory stimuli (51). Within this overall thalamocortical network, the 

pulvinar integrates and coordinates responses to auditory and visual stimuli (52–54). 

Morphological disturbances in the pulvinar in youths with ADHD therefore may contribute 

to difficulties in allocating and directing attentional resources toward salient stimuli.

The pulvinar also connects with limbic structures, including the amygdala (55–59). We 

previously reported morphological disturbances in the basolateral complex of the amygdala 

(36), and others have reported abnormal amygdala activation (60, 61) in individuals with 

ADHD. The basolateral complex of the amygdala supports emotional regulation, fear 

conditioning, and the attribution of affective valence to sensory stimuli (62–64). Therefore, 

disturbances of the thalamolimbic network could interfere with emotional learning and the 
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regulation of affect, thereby contributing to the emotional dysregulation and affective 

illnesses that affect many children with ADHD (65, 66).

The ventral lateral nucleus—The ventral lateral nucleus receives projections from the 

cerebellum and connects reciprocally with the basal ganglia, motor cortex, and premotor 

cortices to form a sensorimotor network that drives the acquisition and implementation of 

learned motor behaviors (67–69). Smaller regional volumes in the ventral lateral nucleus 

could therefore contribute to the gross and fine motor disturbances and the slower 

processing speed that have been documented in children with ADHD (70–74).

Effects of Stimulant Medications on Thalamic Morphology

Surface maps show that the pulvinar was significantly larger bilaterally in treated compared 

with untreated youths with ADHD. These areas closely overlapped regions where volumes 

were smaller in youths with ADHD, which suggests that stimulant treatment may help 

attenuate morphological abnormalities in the thalamus in individuals with ADHD. If that is 

true, then the absence of statistically significant differences in conventional volumes of the 

thalamus in youths with ADHD relative to comparison subjects may be partially explained 

by these hypothesized effects of stimulant treatment. Alternatively, youths with ADHD who 

had larger thalami may for unknown reasons have been preferentially treated with 

stimulants. The effects of stimulants on local morphology should be more definitively 

determined in a longitudinal randomized controlled trial that would obviate any possible 

selection biases that may have confounded treatment effects in this cross-sectional, 

naturalistic study.

The duration of stimulant treatment was inversely correlated with regional volumes in the 

right lateral and medial posterior hemi-thalamus. These regions did not overlap those where 

the main effects of an ADHD diagnosis or where the main effects of stimulants were 

located. These findings suggest that stimulants may have differing short- and long-term 

morphological effects on differing thalamic nuclei. Treatment with stimulants for any 

duration was associated with larger volumes in the dorsal anterior, posterior, and ventral 

posterior surfaces bilaterally, whereas progressively longer treatment was associated with 

progressively smaller regional volumes in the right lateral and medial posterior surfaces. 

Alternatively, youths with ADHD who received stimulants for longer durations may have 

differed systematically and in unknown ways from those who received stimulants for shorter 

durations, producing only an apparent association of regional volumes with duration that 

was not actually caused by longer exposure to stimulant medication. Moreover, we must 

emphasize that the association of treatment duration with thalamic morphology should be 

interpreted with caution, as treatment duration is exceedingly difficult to estimate reliably. 

Treatment is often interrupted by medication holidays and lapses in compliance that are not 

documented or recalled, and pharmacological agents and their dosing often vary widely over 

time.

We do not know what neurobiological mechanisms produced the local morphological 

differences we observed between the ADHD and comparison groups and that seemed to 

have attenuated those differences in the stimulant-treated youths with ADHD. Previous 
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reports of depleted levels of dopamine and norepinephrine suggest that disturbances in 

catecholamine transmission may contribute to the pathogenesis of ADHD (75). Stimulants 

are thought to attenuate ADHD symptoms by inhibiting presynaptic dopamine and 

norepinephrine transporters and thereby potentiating dopamine and norepinephrine 

neurotransmission. Both dopamine and norepinephrine have powerful influences on the 

physiology and cellular morphology of the prefrontal cortex, basal ganglia, and thalamic 

portions of CSTC circuits (76–79). In humans, multiple thalamic nuclei, including the 

pulvinar, receive dopamine and norepinephrine inputs (80–83), so theoretically stimulants 

should increase cathecholaminergic transmission within the thalamus, although this has not 

been shown definitively. Nevertheless, numerous preclinical studies in rodents have shown 

that repeated exposure to stimulants increases the length of dendrites and the density of 

dendritic spines within the basal ganglia, limbic system, and frontal cortices (84–86). We 

speculate that stimulants may have a similar effect in the thalamus. Alternatively, the 

stimulant-induced cellular and functional changes in the prefrontal cortex (79) or basal 

ganglia could in turn alter cellular activity and dendritic architecture within the thalamus. 

The effects of stimulants on catecholamines have also been shown to alter the number of 

astrocytes in the striatum (87), cells that regulate the energetics of neuronal excitation (88). 

Stimulants could have similar effects on thalamic astrocytes.

The Differential Association of Thalamic Nuclei With ADHD Symptom Domains

Smaller regional volumes in the ventral lateral nucleus bilaterally and the left lateral 

posterior nucleus were associated with more severe hyperactivity, whereas larger regional 

volumes in the right pulvinar and the medial dorsal nucleus were associated with more 

severe inattention. The localization of these differences is consistent with reports that the 

projections of the ventral lateral nucleus to the striatum participate in the control of motor 

actions (4, 89) and that the pulvinar, through its cortical connections, may be involved in 

alerting and in the allocation of attention (52–54). Smaller regional volumes in the lateral 

thalamus suggest the presence of disturbances in networks related to motor functions, 

possibly producing more severe symptoms of hyperactivity. Larger regional volumes in the 

pulvinar may represent alterations in systems that subserve attention, either exacerbating the 

symptoms of inattention or compensating for functional disturbances in attention-related 

networks located outside the thalamus.

Limitations

Several limitations of this study should be mentioned. First, our study design did not allow 

us to determine the direction of causality in the associations of regional thalamic volumes 

with diagnosis or stimulant treatment. Second, the use of the thalamic atlas has inherent 

inaccuracies in the exact boundaries that it ascribes to thalamic subnuclei, and our analyses 

of the thalamic surface assign the source of morphological differences to the most 

superficial nucleus, when in fact it may derive instead from abnormalities in deeper 

underlying nuclei. Third, the imaging methods we used cannot alone identify the cellular 

and molecular bases for our morphological findings, which would require studies using 

either different imaging modalities or postmortem histological analyses. Finally, the 

multiple statistical tests in our exploratory analyses increased the likelihood of type I error, 

although we minimized false positive findings through the use of conservative statistical 
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thresholds and GRF-based corrections of p values for the multiple comparisons performed 

(90).

Conclusions

Our findings provide new evidence that abnormalities at the level of the thalamus are 

involved in the pathogenesis of ADHD. Our findings additionally suggest that the 

therapeutic effects of stimulants may attenuate these morphological abnormalities, possibly 

via the local changes that they produce in dendritic architecture and cellular composition 

within CSTC circuits. Finally, we hypothesize that the hyperactivity and inattention 

symptoms of ADHD derive from abnormalities in different thalamic nuclei that may reflect 

the differential involvement of both pathogenic and compensatory processes.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Main Effect for ADHD Diagnosis and Cytoarchitectonically Defined Thalamic Atlasa

a In the left panel, each row of images shows the statistical maps and thalamic atlas in 

varying rotational views. The color bar indicates the color coding for p values associated 

with the main effect of ADHD diagnosis, ranging from p<0.0001 in red (increased regional 

volumes) to p<0.0001 in purple (reduced regional volumes). The theory of Gaussian random 

fields (GRFs) was used to correct the maps for the multiple statistical comparisons 

performed. The maps show significantly smaller regional thalamic volumes predominantly 

in the pulvinar bilaterally in youths with ADHD relative to comparison subjects. A=anterior; 

L=lateral; M=medial; P=posterior. The right panel shows the cytoarchi-tectonically defined 

thalamic atlas. Ce=central medial nucleus; LD=lateral dorsal nucleus; LP=lateral posterior 

nucleus; MD=medial dorsal nucleus; MGN=medial geniculate nucleus; NA=nucleus 
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anterior; Pu=pulvinar nucleus; VA=ventral anterior nucleus; VL=ventral lateral nucleus; 

VP=ventral posterior nucleus.
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FIGURE 2. 
Comparison of Local Morphological Features of the Thalamus in Youths With ADHD On 

and Off Stimulant Medications and Comparison Subjectsa

a The left panel shows regional thalamic volumes in stimulant-treated (N=31) relative to 

untreated (N=15) youths with ADHD. The right panel shows regional thalamic volumes in 

untreated youths with ADHD (N=15) relative to healthy comparison subjects (N=59). These 

maps demonstrate that youths with ADHD receiving stimulants exhibit significantly larger 

regional volumes predominantly in the right pulvinar relative to their untreated counterparts, 

whereas untreated youths with ADHD exhibit significantly smaller regional volumes in the 

pulvinar bilaterally relative to comparison subjects. The color bar indicates the color coding 

for p values associated with the main effect of stimulant treatment at the time of the scan, 

ranging from p<0.0001 in red (increased regional volume) to p<0.0001 in purple (reduced 

regional volume). GRF=Gaussian random field; A=anterior; L=lateral; M=medial; 

P=posterior.
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FIGURE 3. 
Correlation of Local Morphological Features of the Thalamus With the Duration of 

Stimulant Treatmenta

a In the left panel, surface maps demonstrate correlations of regional morphological features 

of the thalamus with the duration of stimulant treatment in the ADHD subgroup (N=17). The 

scatterplot at upper right demonstrates that the duration of stimulant treatment was inversely 

correlated with regional volumes on the right lateral thalamic surfaces (r=−0.49, p<0.05) in 

youths with ADHD (N=17). The scatterplot at lower right demonstrates that duration of 

stimulant treatment was inversely correlated with regional volumes on the right posterior 

thalamic surfaces (r=−0. 57, p<0.05) in youths with ADHD (N=17). The surface maps 

indicate that youths with ADHD who were treated longer with stimulants had smaller 

regional volumes. The color bar depicts the statistical significance of the correlation 

coefficients, ranging from p<0.0001 in red (positive correlations) to p<0.0001 in purple 

(inverse correlations). Regions where these correlations were most pronounced and survived 
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Gaussian random field (GRF) correction are probed (white circles). Distance is calculated in 

millimeters from the surface of the template thalamus. A=anterior; L=lateral; M=medial; 

P=posterior.
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FIGURE 4. 
Correlation of Local Morphological Features of the Thalamus With Severity of ADHD 

Symptomsa

a In the upper left panel, surface maps demonstrate correlations of regional morphological 

features of the thalamus with severity of hyperactivity symptoms in the ADHD group 

(N=46). In the upper right panel, surface maps demonstrate correlations of regional 

morphological features of the thalamus with severity of inattention symptoms in the ADHD 

group (N=46). The scatterplot at lower left demonstrates that current hyperactivity scores on 
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the ADHD Rating Scale are inversely correlated with regional volumes on the right lateral 

thalamic surfaces (r=−0.23, p<0.05) in youths with ADHD (N=46). The lower center 

scatterplot demonstrates that current hyperactivity scores on the ADHD Rating Scale are 

inversely correlated with regional volumes on the left posterior thalamic surfaces (r=−0.31, 

p<0.05) in youths with ADHD (N=46). The lower right scatterplot demonstrates that current 

inattention scores on the ADHD Rating Scale are positively correlated with the regional 

volumes on the right medial thalamic surface (r=0.35, p<0.05) in youths with ADHD 

(N=46). The surface maps indicate that youths with ADHD with higher hyperactivity scores 

have smaller regional volumes, whereas youths with ADHD with higher inattention scores 

have larger regional volumes. The color bar depicts the statistical significance of the 

correlation coeffcients, ranging from p<0.0001 in red (positive correlations) to p<0.0001 in 

purple (inverse correlations). Regions where these correlations were most pronounced and 

survived Gaussian random field (GRF) correction are probed (white circles). Distance is 

calculated in millimeters from the surface of the template thalamus. A=anterior; L=lateral; 

M=medial; P=posterior.
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TABLE 2

Statistical Model for Conventional Thalamus Volumes in Youths With ADHD and Comparison Youthsa

Factor

Analysis

F df p

Attention deficit hyperactivity disorder   0.43 1,99   0.510

Age   0.17 1,99   0.680

Sex   7.55 1,99   0.007

Whole-brain volume 24.32 1,99 <0.001

Hemisphere (left > right)   9.90 1,104   0.002

Age-by-sex interaction   7.27 1,99   0.008

Oppositional defiant disorder   0.10 1,98   0.750

Depression   0.37 1,98   0.550

Stimulant medication use   3.84 1,98   0.050

a
Main effects were estimated in a mixed-effects model analysis of variance with repeated measures over a spatial domain (volume of each hemi-

thalamus, which is also the dependent variable in the model). The independent variables included lifetime diagnosis (attention deficit hyperactivity 
disorder group or comparison group), age, sex, whole-brain volume, lifetime diagnoses of depression or oppositional defiant disorder, and current 
treatment with stimulant medication.
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