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Abstract

Virtually all psychiatric traits are genetically complex. This article discusses the genetics of 

complex traits in psychiatry. The complexity is accounted for by numerous factors, including 

multiple risk alleles, epistasis, and epigenetic effects, such as methylation. Risk alleles can 

individually be common or rare, and can include, for example, single nucleotide polymorphisms 

(SNPs) and copy number variants (CNV) that are transmitted or are new mutations, and other 

kinds of variation. Many different kinds of variation can be important for trait risk, either together 

in various proportions, or as different factors in different subjects. Until recently, our approaches 

to complex traits were limited, and consequently only a small number of variants, usually of 

individually minor effect, were identified. Currently, we have a much richer armamentarium that 

includes the routine application of genomewide association studies (GWAS) and next-generation 

high throughput sequencing (NextGen); and the combination of this information with other 

biologically relevant information, such as expression data. We have also seen the emergence of 

large meta-analysis and mega-analysis consortia. These developments are extremely important for 

psychiatric genetics, have moved the field forward substantially, and promise formidable gains in 

the years to come as they are applied more widely.
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Introduction

This article reviews the genetics of complex traits -- traits that do not follow the Mendelian 

inheritance patterns of dominant, recessive, or sex-linked – a category encompassing nearly 

all psychiatric traits. The complexity is accounted for by numerous factors, including 

multiple risk alleles; epistatic (i.e., gene-gene interaction) effects; and epigenetic effects, 

such as methylation. Risk alleles can individually be common or rare, and can include, for 

example, single nucleotide polymorphisms (SNPs) and copy number variants (CNV) that are 
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transmitted or are new mutations, and other kinds of variation. Many of the different kinds 

of variation can be important for a trait, either together, or as different factors in different 

subjects. Until recently, our approaches to complex traits were limited, and consequently 

only a small number of variants, usually of individually minor effect, were identified. 

Currently, we have a much richer armamentarium that includes the routine application of 

genomewide association studies (GWAS) and next-generation high throughput sequencing 

(NextGen). We have also seen the emergence of large meta-analysis consortia; and studies 

combining genetic polymorphism data with large datasets regarding, for example, gene 

expression in target tissues. These developments are extremely important for psychiatric 

genetics, have moved the field forward substantially, and promise formidable gains in the 

years to come as they are applied more widely.

We can take schizophrenia as an illustration. This trait has been known to be moderately to 

highly heritable for almost 50 years. Yet “traditional” approaches – genetic linkage studies, 

candidate gene studies based on biological hypotheses, targeted sequencing studies – yielded 

few replicated risk variants. This started to change with the recognition that velocardiofacial 

syndrome (VCFS), which is marked by an easily discernible (if complex and variable) 

cytogenetic finding, shares phenotypic features with schizophrenia (1); with the first wave of 

GWAS; with the identification of genomewide-significant (GWS) evidence for association 

in meta-analysis of multiple large datasets (2), and then the discovery of strong evidence of 

many risk alleles individually of small effect in mega-analysis studies incorporating the data 

from many individual GWAS studies in single large analyses (3), (4). Now, a CNV 

component is well-supported (5, 6) and there is evidence of new mutation (7).

Genomewide studies

Because we do not fully understand the biology of any psychiatric traits, most of the genes 

that are involved cannot be predicted a priori. There are now three general methods used to 

identify risk genes without prior knowledge of risk mechanisms. They query the entire 

genome and use statistical methods of inference. Genomewide linkage studies are the 

traditional approach to identifying risk loci. These family-based studies require the 

investigation of polymorphic markers that span the genome, allowing identification of 

chromosomal risk regions where markers are co-inherited with the phenotype of interest. 

Genomewide association studies (GWAS) require very closely spaced markers, typically a 

million or more as implemented presently (vs. as few as 400 highly polymorphic markers for 

linkage) usually studied in unrelated individuals. The intention is to genotype enough 

markers such that there is at least one marker within linkage disequilibrium-distance of any 

point in the genome. Current genotyping arrays accomplish this, but there are gaps, 

especially in genetically older populations that have lower average linkage disequilibrium 

across the genome, e.g. African-ancestry individuals. Use of tiling arrays to detect copy 

number variants is a related genomewide approach. A third method, based on deep 

sequencing of entire exomes or genomes, is now taking hold as sequencing prices decline.

Successful genomewide linkage studies (e.g., the one that identified the X-chromosomal 

location of a risk gene for Brunner’s syndrome, a very rare single-gene disorder associated 

with violent behavior and cognitive deficits (8)) give the chromosomal locations of risk loci 
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but generally do not identify specific genes. ‘Accordingly, many were left only with large 

regions rather than genes or risk alleles. In contrast, successful GWAS and sequencing 

studies can implicate specific genes and risk alleles immediately. The enthusiasm of a prior 

era for linkage studies of complex traits was borne largely of a lack of other genomewide 

methods, and was only partially rewarded. There are several examples of genes being 

identified based on linkage regions (notably, the identification of an MAOA mutation as the 

cause of Brunner’s syndrome (9), and of GABRA2 variation as influencing alcohol 

dependence risk and related endophenotypes (10)); but also many examples where there was 

no such identification. This can be attributed in part to insufficiently powered linkage 

studies, the inapplicability of the common disease/common variant model that underlies 

traditional linkage, and genetic differences between familial forms of an illness and their 

nonfamilial forms. The difficulty in identifying a gene out of a linkage peak, together with 

the expense of recruiting families with multiple affected individuals and the now-easy 

access to genotyping microarrays for GWAS, has led to a dramatic decline in the use of 

linkage for complex traits.

Genomewide association studies (GWAS)

The mythical “ideal” genetic study design might be to obtain DNA from cases and controls, 

sift through the entire genome, and identify the differences. When all other sources of 

differences between the samples are accounted for, the distinctions that are left must account 

for the genetic part of the difference between the particular case and control samples for the 

phenotype that differentiates them. This is the basic idea of the GWAS. The first major 

GWAS was published in 2005 (11) and identified polymorphic variants associated with age-

related macular degeneration. The study included a total of only 146 subjects, and it 

employed a genotyping microarray that included 106,000 markers that would today be 

considered unacceptably sparse. In contrast, the GWAS of today more typically employs 

thousands of samples and millions of markers, imputed (12) as well as directly genotyped. 

The results have changed our understanding of complex trait genetics: at the start of the 

GWAS era, many expected that the method would identify the variants responsible for a 

large part of the genetic risk for most complex traits (13). They should have, if the “common 

disease/common variant” model was a good approximation of reality.

But risk alleles identified by GWAS for complex traits characteristically account for only a 

small percentage of the predicted genetic risk. There have been numerous discussions of the 

explanation of the “missing heritability.” While this question still cannot be answered 

definitively, an understanding of some of the important factors has emerged. One factor is 

the nature of the variants studied in GWAS, which are considered “common” variants. The 

risk for complex traits was once thought to be most likely composed of the cumulative risk 

from a set of common variants. In fact, the more usual result for GWAS has been the 

identification of risk alleles with odds ratios of 1.2 or less. There are exceptions, but these 

are fairly rare. Initially, investigators concentrated on variants that met Bonferroni-adjusted 

criteria for genomewide significance, often taken as p<5×10−8, which is a reasonable 

threshold to identify individual risk alleles that can reproducibly be shown to be associated 

to a trait. However, there many other true risk variants among those that fail to meet this 

criterion, and it has been shown that when large sets of such variants are taken into account, 
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a much larger portion of trait heritability can be accounted for (14). Another source of 

“missing heritability” is that part accounted for by rare variants (RVs), which we can define 

as alleles having a frequency <1%. The effects of RVs that individually have a large effect 

on risk (but are relatively unimportant on a population level because they are rare) are 

important for some traits, as has been revealed by sequencing studies discussed below.

GWAS has been successful at identifying risk variants for psychiatric traits in most 

situations where the method has been applied. The early years were disappointing for such 

important traits as schizophrenia and bipolar affective disorder (15), but we now know that 

well powered studies (2) can detect risk loci for those traits; unfortunately, for adequate 

power, they may require tens of thousands of subjects, studied in meta-analysis. Interpreting 

the results presents additional challenges; what to do with a list of genes, each with only a 

small effect on phenotype, is not obvious.

A brief note about population differences and population stratification is warranted. When 

candidate genes studies of psychiatric traits were more common, especially in the early days, 

failures to replicate often seemed to be the rule rather than the exception. There are 

numerous explanations for this, including small sample size, phenotypic heterogeneity, and 

random chance (16). Another contributor, though, was population stratification – i.e. 

different ancestral populations often have different allele frequencies at marker loci simply 

because they are different populations (17, 18). This may have nothing to do with the trait 

under study, or indeed with any detectable phenotypic trait. At first, this could only be 

controlled by matching or by using family-controlled designs (such as the transmission-

disequilibrium test, or TDT (19)) but the development of statistical methods to control for 

stratification in samples of unrelated subjects, notably, the structured association (20, 21) 

and genomic control (22) methods, revolutionized the field. It has turned out to be critically 

important to control for stratification in GWAS, and a set of methods has been developed to 

control for population differences in GWAS as well, most notably principle components 

methods (23). As much as the technical development of dense genotyping microarrays, these 

methods are responsible for the development of useful GWAS.

GWAS Data Beyond Single SNP Analysis: Networks and Risk Scores

Numerous approaches have been suggested to aid in interpreting the output of the SNP 

association content of GWAS studies. The GWS results are, so to speak, the tip of the 

iceberg; but beyond that, since these studies often are at the very limit of adequate power, 

any given study will identify only a small subset of alleles that truly affect the phenotype 

under study. If the risk contribution of all identified variants is summed, the result is much 

less than the predicted heritability of the disorder – the “missing heritability” problem 

discussed above. Then where is the rest of the genetic risk? Many variants that are true risk 

variants do not meet GWS. This has been demonstrated in several ways. In a 2010 paper 

(24), it was demonstrated that the cumulative contribution to risk of a large set of SNPs for a 

complex trait (height) could greatly increase the amount of heritability explained. This 

approach has also been applied to psychiatric traits, estimating, e.g., the amount of risk 

variance for schizophrenia accounted for by common SNPs (25). The amount of risk for 

schizophrenia accounted for by each chromosome was proportional to its length – evidence 
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for the large number of common variant risk alleles. The genetic risk score (GRS) approach 

(26) compiles data from a set of polymorphic markers with a statistical cutoff much less 

stringent than what is required to determine individual statistical significance. The GRS is 

valuable in understanding the composition of the genetic risk for a trait, and in 

demonstrating overlapping genetic contributions to different traits (schizophrenia and 

bipolar affective disorder, in the above-referenced article).

So far we can account for some of the measured heritability with common SNPs identified 

as significant via GWAS; and by more through incorporation of the many SNPs that cannot 

be individually identified as significant (14). This essentially exhausts the possible 

contribution of common SNP variants acting individually. We can also consider RVs, 

common variants that are not SNPs, and the interactive effects of different variants (e.g., 

epistasis) (27). Studies of multiple SNP interactions are limited by the need to control for 

multiple comparisons -- a statistical issue, and also a computational challenge. We can also 

look to epigenetic variation (modifications to DNA – such as methylation - that do not affect 

basepair sequence, but which affect gene expression) (28). Tangible results have come from 

deep sequencing studies and studies of copy number variation, described below. Epigenetic 

studies relevant for behavioral traits face the obstacle that for these kinds of studies it would 

be preferable to study DNA derived from the organ of interest, i.e., brain.

Additional information can be obtained via pathway (29) or network (30) analysis. In 

pathway analysis, the contributions of possible risk variants at sets of genes that are 

biologically related are considered to identify associations on a higher-order, presumably 

functional, level, compared to single SNP associations. This has been applied to several 

psychiatric traits, for example, schizophrenia (31) and opioid dependence (32). GWAS data 

can be combined with expression data, to focus on variants that have specific detectable 

functional effects (33). Using additional biological data together with GWAS or sequence 

data can create valuable leverage. For example, one study using this approach demonstrated 

that GWAS-identified schizophrenia risk loci tend to be brain-expressed (34). Gene co-

expression network analysis was applied to comparison of brains from subjects with autism 

and controls (35), first with expression array data and identification of modules of genes that 

tend to be co-expressed in autism; then combined with autism GWAS data, which associated 

an expression module (expression [RNA] data) with a set of risk variants (GWAS DNA 

data). Study of autism co-expression networks at different brain regions and time points 

considered together with risk genes identified previously (“spatiotemporal convergence”) 

led to implication of a set of glutamatergic projection neurons in a specific brain region (36). 

Studies using these kinds of designs have shown great utility and are increasing rapidly, as 

are statistical methods to incorporate different kinds of annotation data flexibly (37). The 

use of brain expression data for the study of psychiatric traits is, however, substantially 

limited by the availability of suitable postmortem material.

Pharmacogenomics

Pharmacogenomics relates gene variants to differences in drug response; really strong 

examples relevant to treatment in psychiatry have been lacking until recently. GADL1 

variation was demonstrated to have a strong effect on lithium response in a Chinese sample 
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(38) – a finding that appears likely to be population-specific, on the basis of population-

based allele frequency differences. Kranzler et al (39) showed that a GRIK1 (the kainate 

GluK1 receptor subunit gene) SNP predicts clinical response to topiramate in European-

American heavy drinkers. Drug response phenotypes are likely to be much less complex that 

psychiatric diagnosis phenotypes – in some cases a great deal of clinical variation hinges on 

a single genetic variant, which could be the point of interaction between the drug and a 

particular biological target. These findings have clear clinical implications for the relevant 

populations.

Some of the strongest GWAS results relevant to psychiatry come from substance 

dependence traits, consistent with their pharmacogenetic nature. For example, a region of 

chromosome 15 containing a cluster of genes encoding nicotinic receptors, has been 

associated to nicotine dependence and related traits (such as number of cigarettes smoked 

per day and risk of lung cancer) in numerous studies (e.g., ref. (40–42)). An alcohol 

dependence GWAS showed association of a functional ADH1B variant with trait in 

European-Americans with p=1.17×10−31 (43). Even in these cases, the identified specific 

risk alleles account for only a small part of the genetic risk.

The Psychiatric Genomics Consortium

The Psychiatric Genomics Consortium is a large collaboration conducting meta- or mega-

analyses of large GWAS datasets of psychiatric traits – some of their work has been 

discussed above. They have been highly successful at moving the field forward, especially 

for schizophrenia and bipolar affective disorder, two initial foci. Use of very large sample 

sizes – tens of thousands of individuals – has made it possible to map numerous GWS loci 

down to very low individual odds ratios. But in as much as they combine samples from 

many research groups incorporating different methods for ascertainment and diagnosis, they 

have little flexibility with diagnosis definition, needing to settle on a common consensus that 

can be used for all contributed studies. Also, because they include as many available 

samples as possible, opportunities for external replication are greatly limited. In 2013, the 

PGC reported 22 GWS risk loci for schizophrenia (44), which they updated to 108 in 

2014(45) as new samples were added to the analysis. Availability of such large samples has 

led to numerous other findings, including, for example, study of the genetic overlap between 

disorders for which substantial genetic and phenotypic information is available (46).

Studies based on DNA sequencing

GWAS microarrays can identify only the single nucleotide variants included on the arrays 

by design, and certain CNVs. Some genotyping arrays include RVs, but other RVs that are 

present in very few individuals, or even single individuals because they are new mutations, 

require sequencing for discovery. Both of these kinds of variation are known to be important 

for some psychiatric complex traits, but their overall importance cannot yet be determined. 

RVs, and in some cases CNVs, can be identified via sequencing.

There are two basic sequencing strategies: hypothesis-based sequencing of targeted regions 

and the broader strategy of covering the whole genome or exome, analogous to GWAS. 

With targeted sequencing, the study is tethered to prior knowledge, but when a gene is 
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strongly implicated – e.g. by prior linkage or common-variant associations – it can be 

productive, as for a post-genetic linkage study that identified RVs at the CHRNA4 (α4 

nicotinic acetylcholine receptor) locus that was protective with respect to nicotine 

dependence (47). Similar results were reported for RVs at the CHRNB4 locus (48). Taken 

individually, RVs rarely provide enough information to demonstrate genetic association. 

Therefore, various gene-based and binning approaches, where, for example, sets of variants 

predicted to have functional effects are considered together, are generally employed (49, 

50).

Exome sequencing can also be used to discover RVs. Whole exome sequencing (WES) was 

first used in 2009 for clinical diagnosis (51); it is now in common clinical use. Many proven 

disease-causing variants reside in exonic sequences -- generally missense or nonsense 

variants, insertions and deletions, and variants that affect splicing – so WES is a reasonable 

step to take after GWAS. This approach trades knowledge of non-exomic regions for the 

increased power of a larger sample. New mutations may be detected readily by sequencing 

an affected subject and both parents; variants not present in either parent are new mutations. 

WES of subjects with autism (e.g., refs. (52–55) showed an increased burden of gene 

variants expected to disrupt protein function in affected individuals. On the other hand, WES 

has shown that, while moderately-rare variants are unlikely to be very important in 

schizophrenia (56), new mutations (with multiple de novo events detected in affected 

individuals at several specific loci) may be (7). WES has also been useful in the study of 

cancer, where somatic mutations specific to tumors can be characterized, e.g., for 

meningiomas (57). These are valuable for subtyping and selecting treatments.

Sequencing complete genomes is much more data-intensive than exome sequencing. This is 

especially evident since the ENCODE project (58) demonstrated the importance of 

intergenic regulatory regions, so that it is apparent that WES alone will not be sufficient to 

identify all of the important genetic variants. The cost of this method is dropping, and it has 

seen application for some complex genetic traits. While this method has value in identifying 

new disease-influencing variants (59), it is still more widely used in studies of somatic 

DNA.

Gene-environment interaction; Higher-order genetic variation

Gene-by-environment (GxE) interaction refers to environmental effects on a phenotype that 

differ depending on the subject’s genotype, and is an important factor in determining risk for 

some psychiatric phenotypes. Whether such effects can be discovered reliably is a subject of 

debate (60, 61); however some GxE effects have been observed quite consistently. 

Interaction between variation in SLC6A4 (the serotonin transporter protein gene) and stress-

related phenotypes is a case in point. In a prospective, longitudinal study of a representative 

birth cohort, Caspi et al. (62)) found that subjects with one or two copies of the “short” allele 

of a common SLC6A4 functional polymorphism (which has acquired the trivial name 5-

HTTLPR), reported more symptoms related to depression following stressful life events 

than individuals homozygous for the “long” allele. The “short” allele has been shown to be 

less functionally active than the “long” under several models (starting with Lesch et al (63)). 

There have since been numerous studies of GxE effects for this variant in different 
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populations; Kaufman et al. (21) reported similar results, but in an adolescent population. 

PTSD is in some ways a model for the study of GxE effects in psychiatric illness, as a 

specific environmental stressor is required for the emergence of the trait. Further, 5-

HTTLPR is a promising candidate for PTSD risk (e.g., refs. (64, 65). More generally, GxE 

studies of different candidate loci have proliferated, and have apparently started to explain 

the biological mechanism by which these effects occur (66).

Higher-order genetic variation – copy number variation of comparatively long stretches of 

DNA – is a major component of human genetic variation (67), and is important for the 

genetic risk of some psychiatric traits. Both bipolar affective disorder and schizophrenia are 

characterized by increased de novo CNVs (5). Initially CNV studies were done primarily 

with costly tiling arrays. This method has been supplanted for the time being by interpreting 

intensity differences in SNP genotyping microarrays. While this is a less reliable method, 

the lower cost has made it possible to use larger samples. Studies using many key methods 

are summarized in Table 1.

Conclusion

Complex trait genetics research has benefited greatly from the introduction of a new set of 

laboratory and analytic methods over the past several years, most notably GWAS and high-

throughput NextGen sequencing. GWAS illustrates a progression in itself – increasing 

densities of SNPs in available arrays, imputation methods that increase effective analyzable 

SNP density, and the use of larger samples– both in individual studies, and in meta- and 

mega-analysis. The result has been a fundamental advance in our understanding of the 

genetics of complex traits, including behavioral traits, as longstanding theories have become 

testable and have proven insufficient – for sample, the “common disease-common variant” 

hypothesis. There is no common genetic architecture for the set of psychiatric traits. The 

complexity of major psychotic disorders such as schizophrenia and bipolar affective disorder 

is high, despite their high heritability. Some substance dependence traits, which are basically 

pharmacogenetic traits, are more straightforward. Thus, relatively important individual risk 

loci have been identified for alcohol and nicotine dependence. New mutation has been 

revealed as an important disease mechanism for autism spectrum disorders (52).

GWAS, although less in fashion presently than in the years following its introduction, has 

identified risk-influencing loci in nearly every case where the method has been applied, 

albeit sometimes requiring very large samples. This method is an important step in our 

understanding of the genetic etiology of a complex trait. Many key psychiatric traits still 

have not yet been subjected to GWAS -- e.g., methamphetamine dependence – and until the 

GWAS is done, little can be said about the contribution of common variants or indeed about 

the overall genetic architecture of the trait.

As GWAS of most major complex traits are completed and expanded, some but not all of 

the heritability of each trait is typically accounted for. What is the next step? Genome or 

exome sequencing is required to identify many RVs and all new mutations that may 

individually have a large effect on phenotype (in an individual if not on the population 

level). Sequencing can also identify other kinds of variants, e.g., CNVs. Whether the 
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cumulative effect of RVs is more or less important than the cumulative effect of common 

variants for any individual psychiatric trait is a topic for future research. While the 

laboratory cost of sequencing is dropping rapidly, data management and analysis costs are 

falling more slowly, and as such constitute an increasing proportion of the cost of using 

whole genome sequence data. Combining genetic data from GWAS or sequencing with 

other biologically important data has been very fruitful in identifying relevant networks and 

prioritizing possible risk variants.

Beyond GWAS and whole genome sequencing we must consider epigenetics – 

modifications to DNA other than changes in the nucleotide sequence, which can affect 

function and be either acquired or transmitted. This is a very important factor in regulating 

gene expression, and is a key facet in understanding cancer biology. The application of 

epigenetics to psychiatric traits is limited because optimally it involves study of the tissue of 

greatest importance for a given trait, and there is a lack of suitable human brain tissue for 

study. Interesting findings have emerged from peripheral tissues – for example, childhood 

maltreatment has been shown to impact methylation throughout the genome (68), which 

could have effects on gene regulation and risk for a variety of illnesses later in life. Use of 

stem cells may provide a solution to this problem. All in all, there is every reason to expect 

that in the coming years, complex traits research will be as productive as the highly 

successful recent past.
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Table 1

Studies illustrating key methods, mostly pertaining to psychiatric traits

Study Year Phenotype Design Key findings

Brunner et al. (8) 1993 Violence, cognitive deficits Genetic linkage
Risk gene mapped to region of MAOA 
and MAOB genes on the X chromosome

Pritchard et al.(20) 2000 n/a Structured association

SNP marker sets can be used to 
ascertain and correct for population 
structure

Edenberg et al.(10) 2004 Alcohol dependence, EEG
Gene identification from linkage 
peak

GABRA2 alleles associated to alcohol 
dependence

Caspi et al.(62) 2003 Depression (symptoms) GxE

SLC6A4 allele predisposed to 
depression in the presence of 
environmental stressors

Gelernter et al.(43) 2014
Alcohol dependence 
(symptom count) GWAS

Association with ADH1B and other 
alcohol-metabolizing enzyme loci

Yang et al.(24) 2010 Height
Use of large sets of SNPs to 
predict risk (“Visscher analysis”)

45% of height variant explained by 
large set of GWAS genotypes

Shi et al.(2) 2009 Schizophrenia Large consortium GWAS
Chromosome 6p22.1 markers associated 
with schizophrenia

O’Roak et al.(55) 2012 Autism
Exome sequencing of family 
trios

De novo risk mutations, many or which 
map to β-catenin/chromatin remodeling 
protein network, associated with autism 
risk
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