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Abstract: Diffuse optical tomography (DOT) is a variant of functional near infrared spectroscopy and has
the capability of mapping or reconstructing three dimensional (3D) hemodynamic changes due to brain
activity. Common methods used in DOT image analysis to define brain activation have limitations because
the selection of activation period is relatively subjective. General linear model (GLM)-based analysis can
overcome this limitation. In this study, we combine the atlas-guided 3D DOT image reconstruction with
GLM-based analysis (i.e., voxel-wise GLM analysis) to investigate the brain activity that is associated with
risk decision-making processes. Risk decision-making is an important cognitive process and thus is an essen-
tial topic in the field of neuroscience. The Balloon Analog Risk Task (BART) is a valid experimental model
and has been commonly used to assess human risk-taking actions and tendencies while facing risks. We
have used the BART paradigm with a blocked design to investigate brain activations in the prefrontal and
frontal cortical areas during decision-making from 37 human participants (22 males and 15 females). Voxel-
wise GLM analysis was performed after a human brain atlas template and a depth compensation algorithm
were combined to form atlas-guided DOT images. In this work, we wish to demonstrate the excellence of
using voxel-wise GLM analysis with DOT to image and study cognitive functions in response to risk
decision-making. Results have shown significant hemodynamic changes in the dorsal lateral prefrontal cortex
(DLPFC) during the active-choice mode and a different activation pattern between genders; these findings
correlate well with published literature in functional magnetic resonance imaging (fMRI) and fNIRS studies.
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INTRODUCTION

Functional near-infrared spectroscopy (fNIRS) is a non-
invasive imaging technique which measures the hemody-
namic changes resulting from brain activity while the sub-
ject performs different mental tasks. Functional NIRS uses
near-infrared light at wavelengths between 650 and 900
nm to monitor local changes of blood supply due to corti-
cal activation by measuring changes of light absorption.
These absorption changes are mainly caused by concentra-
tion changes of oxygenated (HbO), and deoxygenated
(HbR), and total (HbT) hemoglobin. Compared to func-
tional magnetic resonance imaging (fMRI), which is a
major brain imaging technique, fNIRS has better temporal
resolution and is more cost-effective, less sensitive to
motion artifact, and most importantly, more portable for
office-based measurements. It has been shown that fNIRS
has great potential to be used in neurological and psychi-
atric applications [Irani et al., 2007].

Based on image formation methodology, fNIRS provides
two types of brain images: topographic and tomographic
images. The former one uses pairs of sources and detectors
to formulate spatially smoothed, two dimensional (2D)
maps of hemodynamic changes by linearly interpolating
the channel-wise fNIRS data [Cui et al., 2011; Takeuchi
et al., 2009]. The latter one, named diffuse optical tomogra-
phy (DOT), also uses multiple source-detector measure-
ments to capture cortical activities during mental tasks
[Boas et al., 2004; Koch et al., 2010; Tian et al., 2010, 2011;
White and Culver, 2010b]. Compared to topographic
images, DOT is rigorously reconstructed by solving inverse
problems based on physical and mathematical models;
reconstructed images consist of spatial distributions of
hemodynamic changes in either 2D or three dimensional
(3D) space. Regarding diverse optical image analysis meth-
ods, a classical way of defining brain activation induced by
stimulation tasks in DOT [Cazzell et al., 2012; Tian et al.,
2010, 2011] involves the following steps: (1) defining the
maximum activation period in a time series of HbO (and
HbR) readings from the fNIRS measurements; (2) recon-
structing temporally averaged DOT images over the chosen
activation period; (3) determining the region of brain acti-
vation by full width of half maximum (FWHM) in recon-
structed images; and (4) comparing the HbO values within
the defined activation region between the two states (i.e.,
“rest” versus “task”) with a paired t-test to determine if the
changes between the two states are statistically significant.
However, this method used for DOT has a few limitations:
(1) the maximum activation or post-activation period has to
be subjectively defined without much statistical or mathe-
matical basis; (2) reconstructed DOT images are 2D without
structural or anatomical information; (3) the sensitivity of
fNIRS measurements for DOT exponentially attenuates
with the increase of penetration depth, leading to a large
depth localization error of brain activation [Habermehl
et al., 2012] and preventing us from reconstructing accurate
3D DOT images.

To overcome the first limitation, many research groups
[Cui et al., 2011; Leff et al., 2011; Plichta et al., 2007;
Schecklmann et al., 2008; Schroeter et al., 2004; Tsujii and
Watanabe, 2009; Ye et al., 2009] have followed an analysis
method commonly used by fMRI researchers, namely, the
general linear model (GLM)-based analysis. It examines
whether or not the experimental fNIRS data and a
designed linear model are matched over the entire experi-
mental time course. This approach rests on a physiology-
based principle or model that hemodynamic signals meas-
ured in response to brain stimulation result from a convo-
luted effect between the stimulation task and
hemodynamic response function (HRF), where the latter
functions are already given. Thus, there is no need to sub-
jectively select the activation and/or post-activation period
to determine the activation regions in the brain. This is
why GLM-based analysis has been developed and popu-
larly used for topographic image analysis [Cui et al., 2011;
Tak et al., 2010, 2011; Ye et al., 2009]. To address the sec-
ond limitation in DOT, several studies have reconstructed
DOT images using MRI-based 3D human head structure
templates [Boas and Dale, 2005; Cooper et al., 2012; Custo
et al., 2010; Zhan et al., 2012] to greatly improve 3D visual-
ization and spatial localization/identification of activated
cortical regions under respective stimulations [Eggebrecht
et al., 2012; White and Culver, 2010a]. Regarding the third
limitation, several DOT reconstruction algorithms includ-
ing hard-prior usage [Boas and Dale, 2005], spatial variant
regularization (SVR) [Culver et al., 2003; Pogue et al.,
1999], and depth-compensation algorithm (DCA) [Niu
et al., 2010a, b] have been developed to compensate or
counter-balance the sensitivity of DOT that exponentially
attenuates with the increase of penetration depth to reduce
the localization error of brain activation with respect to the
depth. Although solutions to each of the given three limi-
tations are explored in positive directions, respectively, lit-
tle up-to-date publication has reported a convincing
methodology to improve or minimize all of the limitations.

In this study, we planned to combine our recent devel-
opment on DCA [Niu et al., 2010a, b] with brain template
guided DOT so as to improve the accuracy in localizing
the brain activation in 3D. We further combined 3D DOT
with GLM-based analysis (voxel-wise GLM analysis) to
form volumetric brain activation images under a specific
risk decision-making task, the Balloon Analog Risk Task
(BART). BART was intentionally chosen as a demonstra-
tive example in this study as it is a valid experimental pro-
tocol and has been commonly used in the field of
neuroscience as a behavioral measure to assess human
risk-taking actions and tendencies while facing risks. Back-
ground development, administration, and psychometrics
of BART were introduced and discussed in our previous
study [Cazzell et al., 2012], without using any novel image
process and analysis approaches developed in this study.
The novelty of this article rests on the combination of three
image processes, namely, (1) brain atlas-guided DOT, (2)
application of DCA to DOT image reconstruction, and (3)
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voxel-wise GLM analysis. This combined approach enables
us to optimally obtain reconstructed volumetric DOT
images with much improved spatial resolutions and 3D
visualization on a human brain template, which is particu-
larly useful for studying cognitive responses to risk
decision-making. To our knowledge, this is the first report
on brain atlas-guided, GLM-driven, volumetric DOT to
image the human frontal cortex in response to cognition-
related stimulations.

MATERIALS AND METHODS

A flowchart shown in Figure 1 outlines major compo-
nents used in data/image processes to achieve brain atlas-
guided, GLM-driven, volumetric DOT images in response
to the risk decision-making task, BART. The overall devel-
opment consisted of two major steps: The first one was to
achieve reconstructed 3D DOT images from multi-channel
fNIRS measurements; the second one was to identify the
activated frontal regions induced by BART by performing
volumetric GLM analysis. Within Step one, a brain atlas
was used to guide DOT image reconstruction, with two
sub-steps: (i) forward solving measurement sensitivity (as
denoted by J matrix in Fig. 1) to absorption changes
within the interrogated brain regions, and (ii) inverse
reconstructing atlas-guided, volumetric DOT images due
to brain activation based on the fNIRS measurement data
and depth-compensated sensitivity matrix (as denoted by
J# in Fig. 1). After obtaining a time-series set of 3D DOT
images, in step two, we performed GLM-based analysis to
determine the activated cortical regions directly associated
with BART. Details on each step and sub-step are
described in the following subsections.

Participants and Measurement Protocol

A total of 40 healthy young adults (23 males and 17
females, age from 25 to 44 years old) were recruited by
Department of Bioengineering and College of Nursing at
the University of Texas at Arlington. The measurement
protocol to study risk decision-making was the Balloon
Analog Risk Task (BART) paradigm. BART is a computer-
ized measurement used to simulate actual risky behavior
in real world situations [Lejuez et al., 2002]. BART para-
digm was originally modified and used in an fMRI study
[Rao et al., 2008] and then further modified using
MATLABVR -based graphical user interface (GUI) for our
fNIRS study. Details regarding the fNIRS experimental
setup and BART paradigm can be found in Cazzell et al.
[2012] and are briefly introduced in this section.

BART paradigm consisted of two modes, namely, active
mode and passive mode, respectively. In the active mode,
participants could decide if he or she would like to keep
playing the risk task while in the passive mode, partici-
pants were forced to observe the computer performing the
balloon task. During the task, a simulated balloon was
inflated at each iteration with an increased explosion prob-
ability, as reported in Table I of Rao et al. [2008]. Two visi-
ble outcomes, win and lose, were shown on the computer
screen to each participant once an active or passive deci-
sion was made (Fig. 2a), resulting in different brain reac-
tions and responses.

In the win case, “You Win!!” appeared on the computer
monitor and the subjects collected the accrued money for
that balloon, as seen in Figure 2a. In the lose case, “You
Lose!!” appeared on the monitor and subjects lost any
accrued money for that balloon. Each BART paradigm
included 15 repeated balloon tasks (Fig. 2b), in either
active or passive mode. Each subject was measured with
the fNIRS brain imager in three consecutive temporal
phases: (1) at the resting state for 5 min as baseline, (2)
during �5-s BART performance when decision was made
by participant or computer, and (3) during 15-s post-stim-
ulation recovery. The last two phases were grouped as one
block and repeated 15 times (Fig. 2b). Before the fNIRS
measurements, all participants provided written informed
consent; this study was approved by the University of
Texas at Arlington Institutional Review Board.

Data Acquisition and Data Pre-processing

A commercially available, continuous wave (CW), DOT
brain imager (HD-DOT, CephalogicsVR ) was used with two
emission wavelengths at 750 nm and 850 nm, respectively,
for fNIRS data acquisition. An optode array consisted of
12 source fibers and 16 detector fibers that were placed on
each subject’s forehead (Fig. 3a), with a nearest source-
detector distance of 3.25 cm (Fig. 3b). The optode array
covered each subject’s frontal and prefrontal regions for
both hemispheres. Only the first nearest source-detector
measurements (Fig. 3b) were used in tomographic image

Figure 1.

Overall data process flowchart to achieve atlas-guided, GLM-

driven, volumetric DOT images. The overall process consisted

of two steps: brain atlas-guided 3D DOT reconstructions (Step

1) and voxel-wise GLM analysis (Step 2), respectively. Notation

of y represents the optical density changes in measurement

space; x is the changes in absorption in voxel space; J is the Jaco-

bian matrix derived from the head model; J# represents the

DCA-adjusted Jacobian matrix. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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reconstruction process; a full tomographic dataset con-
tained a total 36 source-detector pairs/measurements. The
multi-channel DOT system operated with a frame rate of
10.8 Hz.

The recorded fNIRS data were pre-processed for each
source-detector measurement with a band-pass filter at fre-
quencies between 0.03 and 0.2 Hz to remove the physio-
logical noise and low-frequency instrument baseline drift.
As previously described, each subject was asked to per-
form 15 repeated balloon tasks for each of the active and
passive decision-making modes. Filtered channel-wise
fNIRS data were averaged by 15 blocks to enhance the
signal-to-noise ratio, and the averaged block time was
approximately 20 s. Three participants (two males and one
female) were excluded as outliers because of large motion
artifacts or bad optode contact due to hair obstruction.

Atlas-Guided DOT Image Reconstruction

Pre-processed fNIRS data were then further processed
with brain atlas-guided tomographic image reconstruction
to form volumetric images at different temporal points.
The MRI-based human brain atlas used in this study was

the current standard Montreal Neurological Institution
(MNI) template, known as International Consortium for
Brain Mapping (ICBM) 152 MNI [Fonov et al., 2011].
ICBM152 MNI template was obtained by averaging the
MRI scans of 152 normal subjects (Fig. 4a). Each MRI scan
was normalized to MNI space using nine parameter affine
transformations. ICBM152 MNI template is freely avai-
lable at http://www. bic.mni.mcgill.ca /ServicesAtlases/
ICBM152NLin2009. ICBM 2009c Nonlinear Asymmetric
template was selected to generate the head model for this
study. Files included T1-weighted, T2-weighted and pro-
ton density-weighted images. The spatial resolution of the
ICBM152 template was 1 mm 3 1 mm 3 1 mm as a voxel
size with 229 3 193 3 193 voxels. ICBM152 template was
then converted to an ANALYZED format using ITK-SNAP
[Yushkevich et al., 2006] which is also freely avai-
lable (http://www.itksnap.org/pmwiki/pmwiki.php). Fur-
ther image analysis was performed in MATLAB (The
MathWorks, Natick, MA).

Based on MR images, four regions of interest (ROIs),
namely, scalp, skull, gray matter, and white matter, were
identified and segmented in this study. A binary mask of
the head was made and included in the ICBM template file
so that the boundary of scalp could be extracted. Binary
masks of skull, gray matter, and white matter were also gen-
erated after boundaries of scalp, skull, gray, and white mat-
ters were extracted from MR images, as shown in Figure 4b.
After binary masks were obtained, the segmented 2D
images were then stacked together to generate 3D volume
models (see Fig. 5a–d). Three-dimensional finite element
model (FEM) meshes (see Fig. 5e–h) were then generated by
a MATLAB-based mesh generator, iso2mesh (http://iso2-
mesh.sourceforge.net/cgi-bin/index.cgi). This mesh model
contained approximate 2 3 105 nodes, which corresponded
to approximately 106 linear tetrahedral elements. Each node

TABLE I. Optical properties of head tissues for model-

ing [Eggebrecht et al., 2012]

Scalp Skull
Gray

matter
White
matter

750
nm

850
nm

750
nm

850
nm

750
nm

850
nm

750
nm

850
nm

ma (mm21) 0.017 0.019 0.012 0.014 0.018 0.019 0.017 0.021
m
0

s (mm21) 0.740 0.640 0.940 0.840 0.836 0.673 1.191 1.011

Figure 2.

BART risk task paradigm and protocol for fNIRS. (a) Visualiza-

tion of BART outcomes from active or passive decision-making

modes. When balloon inflations are stopped, money is collected,

and participant sees “You Win!” When balloon explodes, money

is lost, and participant sees “You Lose!!” (b) Diagram showing

15 task blocks. Each block includes a 5-s activation period and

15-s recovery time. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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was labeled by one of the four ROIs, and all the nodes were
assigned with specific tissue optical properties, as listed in
Table I, which are found in published literature [Eggebrecht
et al., 2012] for both wavelengths.

Optode Placement on Human Head Model

The projection of optode locations measured from a sub-
ject’s head in real world (RW) coordinates to the human
brain atlas template, an affine transformation, was used
[Okamoto and Dan, 2005; Singh et al., 2005]. Briefly,
optode positions on a subject’s forehead were measured
by a 3D PatriotTM digitizer (Polhemus, Colchester, VT).

Moreover, we selected several anatomical landmarks
based on the EEG international 10–20 system of electrodes
placement as anchors for co-registration. The landmarks
were Nz (nasion), In (inion), AL (left ear), AR (right ear),
and Cz (central position) and also measured on the sub-
ject’s head by the 3D digitizer. The MNI coordinates of
10–20 scalp landmark positions on ICBM152 were obtained
from Cutini et al. [2011]. Then the transformation matrix
W was calculated. With the affine transformation matrix,
the optode locations on the MNI head template were
obtained by:

PMNIO
5PRWO

3W; (1)

where PRWO
represents the coordinates of fNIRS optodes in

the RW space; PMNIO
represents the coordinates of fNIRS

optodes in the MNI head template space; W is the trans-
formation matrix. Coordinates of projected optodes in z
axis were then further adjusted by projecting the trans-
formed optode locations in MNI space along the averaged
norm of patches from ICBM152 head model. The optodes
projected onto the surface of the head model are depicted
in Figure 6a and b. The region of interest (ROI) was deter-
mined as the volume covered by the optode array and up
to 40 mm in depth to minimize the computational com-
plexity, as shown in Figure 6c.

Forward Light Modeling

Photon migration in the ICBM152 head model was per-
formed using a FEM-based MATLAB package, NIRFAST
[Dehghani et al., 2008], to obtain the Jacobian matrix (also
called the sensitivity matrix) J. Matrix J represents changes
in measured signals induced by a small absorption pertur-
bation within the brain volume interrogated by the optode
pairs. The forward model for light propagation inside the

Figure 3.

Experimental setup and schematic representation of optode array. (a) Photograph of optode

placement on a subject’s forehead. (b) Optode arrangement for fNIRS data acquisition. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4.

ICBM 152 T1 MR image and its segmentation. (a) Axial view of

a T1-weighted MR image averaged over 152 normal subjects; (b)

segmented layers of the ICBM152 MNI template, corresponding

to (a). The layers with red and yellow colors represent the

scalp/muscle and skull, respectively. The layers with light green

and blue color are gray and white matter, respectively. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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human head uses Rytov approximation [Arridge, 1999]
and is then written as:

Dy5JhDx; (2)

where Dy represents a matrix of measured changes in opti-
cal density [i.e., OD 5 log ðinitial signal=changed signal Þ]
at all source-detector pairs between the initial baseline (y0)
and transient reaction to the BART paradigm (y), that is,

Dy5log ðy0Þ2log ðyÞ; Jh is the Jacobian matrix derived from
the voxel-wise ICBM152 head model; Dx represents a
matrix of changes in absorption at each node within the
3D atlas-based coordinates system.

Volumetric Image Reconstruction with DCA

The process of image reconstruction is to recover tempo-
ral changes of absorption due to the brain response to the

Figure 5.

Three-dimensional rendered views of different tissue types and FEM meshes. Three-dimensional

rendered volume of ICBM152 template for four tissue types: (a) scalp, (b) skull, (c) gray matter,

and (d) white matter; (e) to (h) demonstrate the 3D FEM meshes of scalp, skull, gray matter,

and white matter, respectively. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Figure 6.

3D FEM meshes co-registered with the fNIRS optodes and region of interest (ROI). Illustration of 3D

FEM meshes co-registered with the fNIRS optodes used in our BART study in (a) frontal and (b) dor-

sal views. (c) The region of interest (ROI) was defined by the volume enclosed in the light blue region.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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BART paradigm at each FEM node. With the DOT mea-
surement from multiple source-detector pairs, the inverse
image reconstruction problem was solved using Moore–
Penrose generalized approach [Arridge, 1999] with Tikho-
nov regularization:

Dx5JT
hðJhJT

h1kIÞ21Dy; (3)

where k is the regularization factor and was chosen as
1022 times the maximum of diagonal of the matrix JhJT

h and
I is the identity matrix. The depth compensation algorithm
(DCA) was used in this study to compensate for the fast
decay of sensitivity with the increase of depth. The details
on DCA can be found in Niu et al. [2010a, b] and is briefly
described here. Key point of DCA is to compensate for the
sensitivity decay by introducing a weighting matrix M,
which can counter-balance the sensitivity along the depth.
Accordingly, the measurement sensitivity matrix Jh within
the ICBM152 head model can be decomposed into layer-
based sub-matrices based on the distances from the scalp
surface to each node below the scalp. Then, the M matrix
is formed as:

M5ðdiag ðMðJhLÞ;MðJhL21Þ; . . . ;MðJh2Þ;MðJh1ÞÞÞg; (4)

where g is an adjustment power, and MðJhiÞrepresents the
maximum singular value for measurement sensitivity Jh at
the ith layer, where i 5 1. . . L; L represents the layer num-
ber counted from superficial (the surface of scalp which
was covered by the optode array) to deep layers. The
adjustment power, c, in Eq. (4) can control the compensat-
ing weight in M; g is an empirical parameter with an opti-
mal range of 1.2–1.6 that was demonstrated by Niu et al.
[2010a, b]. Note that g 5 1.4 was used in this study.
Accordingly, an adjusted sensitivity matrix J±

h is defined as
J�h5J�hM to be used in the inverse calculation. After replac-
ing J�h by J�h in Eq. (3), we expressed the image reconstruc-
tion equation after DCA was applied as follows:

D x
�

5J�h
TðJ�hJ�h

T1kIÞ21Dy5MJT
hðJhM2JT

h1kIÞ21Dy: (5)

Consequently, determination of absorption changes at
two wavelengths led to reconstructed images of relative
changes in HbO (DHbO), HbR (DHbR), and HbT (DHbT)
concentrations, based on spectral decomposition of the
extinction coefficients of HbO and HbR for both wave-
lengths [Boas and Dale, 2005].

General Linear Model

The general linear model (GLM) is a hypothesis-driven
model to define brain activation with rigorous statistical
analysis, which was initially used in fMRI and then in fNIRS
data analysis in recent years [Cui et al., 2011; Leff et al., 2011;
Plichta et al., 2007; Schroeter et al., 2004; Tsujii and Wata-
nabe, 2009; Ye et al., 2009]. The GLM-based analysis exam-
ines whether or not the experimental data and a designed

linear model are matched over the entire experimental time
course. The basic principle of GLM is expressed as:

Y5
Xn

i51

Xi3bi1e; (6)

where Y is the data matrix containing the observed signals
at various time points at single voxel; Xi is the ith designed
or modeled hemodynamic response matrix (or the ith
regressor) with components explaining the observed data/
signal; bi is the amplitude or parameter defining the contri-
bution of Xi to the observed data; the subscript i denotes
the number of regressors used in the model; e is the error
matrix containing the difference between the observed data
Y and predicted data by the model of

Xn

i51
Xi3bi. In any

fNIRS study, the observed data could be changes of hemo-
dynamic parameters, including DHbO, DHbR, and DHbT.
Only DHbO was used as the observed data for further data
analysis in this study as the magnitudes of DHbR were
much smaller than those of DHbO.

In general, design of regressors is based upon the experi-
mental protocol, including the timing and duration of the
stimulation given. In this study, the BART paradigm
included a baseline, a �5-s performance or stimulation
period, followed by a 15-s recovery period. During the
BART performance in active mode, two kinds of stimula-
tions occurred: the first was the stimulation due to deciding
and performing balloon inflations (decision-making/per-
formance phase); the second was the stimulation due to
reaction to “win” or “lose” outcome (reaction phase). To
investigate the brain responses to these two different stimu-
lations during BART, we selected a mixed block/event-
related design [Petersen and Dubis, 2012] to model the two
stimulations associated with BART. The first regressor was
created using a blocked design, having a boxcar of 5 s to
cover the decision-making/performance phase (regressor 1;
blue dotted line in Fig. 7a). The second regressor was for-
mulated with an event-related design, with a short period
of boxcar of 0.5 s to reflect the reaction phase (regressor 2;
red dotted line in Fig. 7a) when subjects observed the win/
lose outcomes. Both regressors were calculated by convolv-
ing the stimulation function and a given HRF [Rajapakse
et al., 1998] to represent respective responses in the brain, as
illustrated in Figure 7a.

After the regressors were constructed, the time course of
DHbO at each voxel within the human head template,
which was reconstructed using brain atlas-guided DOT,
was fitted by Eq. (6) using ordinary least squares (OLS)
estimation [Monti, 2011]. The optimal parameters, bi’s,
were calculated as:

bi5ðXi
TXiÞ21Xi

TY; (7)

where i 5 1, 2 were in response to the decision-making/
performance phase and to the reaction phase, respectively
(see Fig. 7a; regressors 1 and 2). The t-statistics were then
calculated by:
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t5
cTbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ðeÞcTðXTXÞ21c

q ; (8)

where c represents the contrast vector (c 5 [1,0] for decision-
making/performance phase and c 5 [0,1] for reaction phase);
the denominator in Eq. (8) represents the standard error of
cTb [Penny et al., 2003]. This process was performed voxel
by voxel to identify the specific cortical regions which were
activated by two separate stimulations (decision-making/
performance phase and reaction phase) due to BART. In gen-
eral, an assumption within GLM is that any noise/error
shown at one time point is not correlated with that at
another time point. The degree of freedom to compute the
statistical significance in the t-test can be calculated by the
number of observations minus the number of regressors if
this assumption is met. However, this assumption does not
hold for most cases in fMRI time-series analysis [Friston
et al., 1995; Worsley and Friston, 1995] as well as in our
study. This can lead to biased t-statistics and affect accuracy
of the conclusions. To correct this issue, we have applied the
autocorrelation calculation which was introduced by Wors-
ley and Friston [1995]. The effective degree of freedom v to
compute the P-value in t-distribution was calculated as:

v5
trace ðRVÞ2

trace ðRVRVÞ ; (9)

where V is the autocorrelation matrix, and R represents
the residual matrix and is expressed as:

R5I2XðXTXÞ21XT: (10)

Then, the t-statistics were calculated by:

t5
cTbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2cTðXTXÞ21XTVXðXTXÞ21c

q ; (11)

where r2 is the variance of the estimated parameter for
each voxel and was calculated by [Worsley and Friston,
1995]:

r25
ðRYÞTðRYÞ
trace ðRVÞ : (12)

As this study involved multiple participants, inter-subject
variation would exist. Thus, we further performed the
random-effects analysis [Huettel et al., 2009; Penny et al.,
2003]. In principle, random-effects analysis contains two
stages of analysis operations: single-subject analysis and
group-level analysis, respectively, as demonstrated in Fig-
ure 7b. In this study, for the first-level (i.e., single-subject)
analysis, we generated a contrast map of b-values or/and t-
statistics on the voxel-wise atlas template for each subject.
For the second level (i.e., group-level) analysis, the one-

sample, t-test on b-values was performed voxel by voxel

within the reconstructed image volume over all the partici-

pants. The outcome of this group-level random-effects anal-

ysis gave rise to statistically meaningful brain activation

maps for both phases in response to BART stimulation.

Figure 7.

Schematic illustrations of an experimental design of BART and the

random-effect analysis. (a) A schematic of protocol and regressor

design of BART. The time course contains a 5-s baseline, a 5-s

BART performance, followed by a 15-s recovery time. The boxcar

marked with blue dotted line represents the blocked design of

stimulation in response to the decision-making/performance phase;

the boxcar marked with red dotted line represents the event-

related stimulation associated with the reaction phase. Blue and

red curves represent the respective brain responses which were

convoluted between the BART stimulation and HRF. (b) A sche-

matic diagram of two-stage random-effects analysis, presented in a

similar way shown in [Huettel et al., 2009]. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.

com.]
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RESULTS

Spatial Distribution of Total Measurement

Sensitivity

Figure 8 demonstrates the spatial distribution of total
measurement sensitivity matrix with and without DCA
compensation; each element of the total measurement sen-
sitivity was calculated by:

Jtotal
n 5

XNM

m51

Jm;n; (13)

where NM is the total number of measurements (or of
source-detector pairs), Jm;n is the DCA-compensated and
uncompensated sensitivity at node n to the measurement
m, and Jtotal

n represents the DCA-compensated and uncom-
pensated sensitivity at node n to all the measurements.
Figures depicted here were normalized and scaled
between minimum (0) and maximum (1) sensitivity, and
also smoothed by a Gaussian kernel over 3 3 3 pixels (1.5
mm 3 1.5 mm per pixel) only for visualization. In actual
data or image analysis, no space-blurring procedure was
used on either image reconstruction or brain activation sta-
tistics (t-map). Figure 8a and b depicts the sagittal and
axial views of the spatial distribution of total measurement
sensitivity. The slices seen in the middle and right col-
umns were cut along the locations shown on the left col-
umn of Figure 8a and b. These figures clearly show that

without depth compensation, the regions with higher mea-
surement sensitivity (i.e., larger than 50% of maximum
measurement sensitivity) were mainly located near the
skull and cerebrospinal fluid (CSF); the measurement sen-
sitivity peak was close to the surface of the scalp.

Conversely, with DCA applied, regions with higher
measurement sensitivities have moved downward toward
the cortical areas. Moreover, Figure 8c shows a much
improved total measurement sensitivity distribution on the
anterior cortical surface when DCA is applied, while much
lower measurement sensitivities (less than 50% of maxi-
mum) are observed within the same cortical surface if no
compensation is administered. These results clearly sug-
gest that DCA could potentially benefit the recovery of
brain activation on cortical regions with much better depth
localization and spatial resolution. It is noteworthy that
Figure 8 exhibits an asymmetric pattern of distribution of
total measurement sensitivity. Although it was assumed
that the optodes placed on the right and left side of each
subject’s head were symmetrical, Figure 8b and c clearly
illustrates asymmetry of the optode distribution between
the right and left hemispheres due to possible optode
placement variations. Thus, it is not unusual to observe
non-uniform or/and non-symmetric patterns of total
measurement sensitivity distributions between two
hemispheres.

Active Versus Passive Mode in BART Paradigm

Figure 9a and b shows the activation images generated
at the group level when performing the active and passive
BART modes. To compare the results with those reported
in an fMRI study [Rao et al., 2008] and fNIRS study [Caz-
zell et al., 2012], subjects were not divided by genders;
that is, a total of 37 subjects were grouped and only the
outcomes from the two modes were considered as factors.
Axial and coronal views of activation maps were sliced
along the locations depicted on Figure 9c. Two cross-
sections were crossed near the dorsolateral prefrontal cor-
tex (DLPFC) where the activations related to BART were
mostly revealed, based on the observations by Cazzell
et al. [2012].

To obtain the brain activation images, changes of HbO
concentrations in response to passive and active modes
were reconstructed by brain atlas-guided 3D DOT. Group-
level, brain activation images (i.e., t-maps) were generated
by random-effects analysis; a threshold of false discovery
rate (FDR) [Genovese et al., 2002] corrected P< 0.01 was
used to identify brain activation areas associated with
BART. No cluster size threshold was used in our study.
For subjects who performed the active mode of BART par-
adigm in the decision-making phase, both left and right
hemispheres exhibited activations in DLPFC or Brodmann
area (BA) 9 (see upper row of Fig. 9a). Bilateral brain acti-
vations were also revealed on BA 9 and 46 when subjects
observed the win/lose outcomes in the reaction phase (see

Figure 8.

Spatial distribution of measurement sensitivity. Spatial distribu-

tions of compensated and un-compensated sensitivities are

shown in (a) sagittal view and (b) axial view, and also shown on

(c) the anterior cortical surface. Notice that color scales shown

in figures are normalized to the maximum value. [Color figure

can be viewed in the online issue, which is available at wileyonli-

nelibrary.com.]
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bottom row of Fig. 9a). The response intensities in the lat-
ter phase were a little weaker but more spread as com-
pared to those in the former phase. In addition, the axial
and coronal views exhibit that the activations occurred
mostly within the cortical regions, exactly where the brain
activation in response to BART should take place. Con-
versely, no brain activations were shown when subjects
performed the passive mode of BART, in both decision-
making and reaction phase, as illustrated in Figure 9b.
Specifically, no activations were present in either axial or
coronal views.

Gender Difference in Active Mode

To further confirm our developed methodology, we also
compared the differences of brain activation associated
with BART between male and female participants in active
mode. We targeted the comparisons only in active mode
as no brain activation was observed in passive mode, as
presented in Figure 9b. Voxel-wise GLM was performed
for each gender group (male: N 5 21; female: N 5 16) after
time-dependent volumetric DHbO images were recon-

structed. Two regressors in GLM analysis were generated
for decision-making and reaction phases. Random-effects
analysis was then performed to identify brain activations
for each gender at the group level; the activation threshold
was set to be FDR corrected P< 0.01.

During the decision-making/performance phase, we
observed bilateral brain activations on DLPFC located on
BAs 9 and 46 for both “win” and “lose” cases in female
subjects (see Fig. 10a and b). Bilateral brain activations
were also seen on DLPFC in male subjects for “win” and
“lose” cases (see Fig. 10c and d). In “female win” and
“male lose” cases, we also noticed similar brain activations
in BA 10/46 on the left DLPFC, as shown in Figure 10a
and d. These results implied that the brains behaved simi-
larly for both genders when they dealt with the BART par-
adigm in the decision-making/performance phase. This
implication might be expected as the subjects did not
know the outcomes yet during their performance of
BART.

During the reaction phase, we observed strong bilateral
cortical activations on or near DLPFC in both male and
female subjects (Fig. 11a and c) in the “win” case.

Figure 9.

Brain activation images stimulated by active and passive BART.

Brain activation maps from subjects performing BART (a) in

active mode and (b) in passive mode. Threshold was set as

P< 0.01 (FDR corrected). Axial and coronal views of brain acti-

vations were sliced along the locations shown in (c). Color

scales in figure represent the t value. Notice that “R” represents

the right and “L” represents the left side of the brain. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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However, in the “lose” case, female participants exhibited
clear, bilateral brain activations on DLPFC (Fig. 11b), while
male subjects displayed strong, unilateral activation on the
left DLPFC, with little activation on the right DLPFC
(Fig. 11d).

Improvement of Depth Sensitivity by DCA

Earlier in Results section (spatial distribution of total
measurement sensitivity section), we presented the
improvement of measurement sensitivity distribution for
deeper tissue (see Fig. 8). Specifically, to demonstrate the
improvement of depth localization when DCA was
applied, we used a risk decision-making paradigm
(BART), as an example, and accordingly investigated the
spatial distribution of activation voxels which were
derived from voxel-wise GLM analysis across all partici-
pants. We analyzed the brain responses to BART only in
active mode as no brain activation was observed in pas-
sive mode, as previously reported in active versus passive
mode in BART paradigm sub-section (see Fig. 9). For each
subject, the activated voxels induced by BART were identi-
fied and selected by GLM analysis, and then the corre-

sponding atlas-guided 3D DOT image was binarized in
the following format:

Vi5
1 where voxel i was activated

0 otherwise
;

(
(14)

where Vi represents the ith voxel after GLM analysis in
the atlas-guided, 3D image domain. In this way, we
were able to generate a brain activation image in a
binary form for each subject, followed by summation of
such binary activation maps from all the participants.
The outcome of this process resulted in a group-
summarized brain activation image by showing the over-
lapped activation voxels among all the participants, as
illustrated in Figure 12. Note that the color scale in Fig-
ure 12 represents the number of overlapping times at
each voxel from all the participants. Since the number of
final participants was 37, the maximum overlapping
number should be 37. Figure 12a and c clearly demon-
strates that the brain activations in all subjects were
mostly located in extracerebral regions (as seen from
axial, sagittal and coronal views) when DCA was not
used for 3D DOT reconstruction. No obvious activations

Figure 10.

Brain activation images stimulated by active BART in different gen-

ders during performance phase. Brain activation maps were

obtained in response to active BART mode when female subjects

(N 5 21) performed BART in (a) the “win” case, (b) in the “lose”

case, and when male subjects (N 5 16) performed BART in (c) the

“win” case, and (d) in the “lose” case. These activation maps had

the statistical threshold of FDR corrected P< 0.01. The axial and

coronal views of brain activations were sliced along the location

shown in Figure 9c. The color scales represent the t value. Notice

that “R” represents right and “L” represents left side of the brain.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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within cerebral regions were observed for all partici-
pants. Conversely, Figure 12b and d clearly exhibits
much improvement in depth localization, namely, most
selected activations are presented within cortical regions
for almost all participants when DCA is applied for 3D
DOT reconstruction.

Quantitatively, we also performed the voxel-wise com-
parisons between GLM-derived activation images with
and without DCA applied. The percentages of total vox-
els representing the brain activation volumes within the
cortical/cerebral regions were calculated for both cases,
as listed in Table II. From the Table, we observed that
approximately 3–4% of total activated voxels (4.2% in
decision-making/performance phase and 3.4% in reac-
tion phase) were located within the cerebral region,
while approximately 96% of total activated voxels
(95.8% in decision-making/performance phase and
96.6% in reaction phase) were located at the extra-
cerebral region when the conventional 3D DOT recon-
struction (without DCA adoption) was performed. Dra-
matic improvement was found when reconstruction
with DCA was used: 91–92% of total activated voxels
resided within the cortical regions. It is noteworthy that
approximate 8% (7.7% in decision-making/performance

phase and 8.8% in reaction phase) of activated voxels
were still outside the brain region even when DCA was
applied in 3D DOT reconstruction. One possible expla-
nation could be related to the selection of adjusted
power factor c as it controls the compensation power
and depth sensitivity. We expect the results to improve
further if optimization of c can be further developed.
Another possible reason to have brain activation voxels
extended beyond the cerebral regions is due to the dif-
fuse nature of light in tissue. Light scattering in tissue
consistently makes reconstructed DOT images with
smooth or non-sharp edges, extending the image boun-
daries beyond the true or actual edges of the objects or
activated brain areas.

DISCUSSION

In this article, we presented the ICBM152 template
guided DOT combined with DCA to image hemodynamic
changes induced by BART with improved 3D visualization
and localization. Moreover, we combined human brain
atlas-guided 3D DOT with GLM analysis to generate volu-
metric brain activation images under BART paradigms.

Figure 11.

Brain activation images stimulated by active BART in different gen-

ders during reaction phase. Brain activation maps were obtained in

response to active BART mode when female subjects (N 5 21) saw

the outcome (a) in the “win” case, (b) in the “lose” case, and

when male subjects (N 5 16) saw the outcome (c) in the “win”

case, and (d) in the “lose” case. These activation maps had the sta-

tistical threshold of FDR corrected P< 0.01. The axial and coronal

views of brain activations were sliced along the locations shown in

Figure 9c. Color scales in the figure represent the t value. Notice

that “R” represents right and “L” represents left side of the brain.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Compared to conventional FWHM-based analysis in DOT,
GLM-based analysis allows for simultaneous modeling of
the mixed stimulations so as to distinguish brain signals/
activations in response to different tasks. Atlas-guided 3D
DOT techniques recently have been established by several
research groups. For example, studies including computa-
tional simulations [Boas and Dale, 2005; Zhan et al., 2012]
and in vivo human data [White and Culver, 2010a, b] have
demonstrated great improvements in spatial resolution as
well as in quantification. In addition, quantitative spatial
comparisons between DOT and fMRI showed good corre-
lation and match between the two imaging modalities
[Eggebrecht et al., 2012], indicating great capability of 3D
DOT to be used for studies on brain cortical activities.

The major drawback of 3D DOT is its poor depth local-
ization due to the exponential attenuation of measurement
sensitivity with increase of penetration depth. Although an
increase in source-detector separation has been reported to
enhance depth sensitivity [Dehghani et al., 2009], mathe-
matical models to increase the sensitivity for deep layer/
tissue have also been proposed to benefit the image qual-
ity of DOT. Boas et al. [Boas and Dale, 2005] proposed the
cortical (or brain) constraint method where DOT voxels
located outside the brain/cortical regions were forced to
have a sensitivity of zero. This method implied that
changes in absorption occurred only within the brain/cort-
ical regions. The spatially variant regularization (SVR)
technique, which spatially regularized higher sensitivities

Figure 12.

Group-level Atlas-guided images of overlapped activation voxels

across all participants. Shown are a axial, coronal, and sagittal

views of brain activations across all participants during decision-

making/performance phase (a) without DCA and (b) with DCA

used. Axial, coronal, and sagittal views of brain activations across

all participants during reaction phase (c) without DCA and (d)

with DCA used. Color scales shown represent the number of

overlapping times at each voxel from all the participants. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

TABLE II. Total activation voxels and their partitions in cerebral and extra-cerebral regions

Total voxels
Voxels within cerebral region

(ratio to the total voxels)
Voxels in extra-cerebral region

(ratio to the total voxels)

Reg1 Reg2 Reg1 Reg2 Reg1 Reg2

Without DCA 16,043 14,668 673 (4.2%) 495 (3.4%) 15,370 (95.8%) 14,173 (96.6%)
With DCA 24,431 22,697 22,550 (92.3%) 20,701 (91.2%) 1,881 (7.7%) 1,996 (8.8%)

Reg1: Decision-making/Performance; Reg2: Reaction.
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near the superficial depth and provided more homogenous
spatial and depth sensitivity, has been used for human
[Dehghani et al., 2009; White and Culver, 2010a, b] and
animal [Culver et al., 2003] DOT studies. Moreover, Zhan
et al. [2012] recently demonstrated the improvement of
DOT image quality based on computational simulations
when a whole-brain spatial constraint and SVR were used
simultaneously. Our recently developed depth compensa-
tion algorithm (DCA) is another approach to improve the
measurement sensitivity along the penetration depth by
mathematically counter-balancing the fast decay of sensi-
tivity in deeper layers. Each method may have a different
outcome and its own advantage; the comparison of differ-
ent methods to improve the depth localization was not the
scope of this study.

We acknowledge that the sensitivity of DOT measure-
ments was mainly limited by the hardware itself and the
nature of light attenuation within tissue. Because of severe
loss of detected optical signals from deep tissue, the recon-
structed brain activities were often projected toward the
superficial layer. We mathematically applied DCA for the
Jacobian matrix to counter-balance the sensitivity in depth
and also to suppress the hyper sensitivity near the surface.
We have demonstrated that 3D DOT reconstruction with
DCA did improve the depth localization based on com-
puter simulations as well as the experimental data [Lin
et al., 2014; Niu et al., 2010a, b], rather than constrain the
reconstructed activities at a particular depth. Furthermore,
a recent study has demonstrated how DCA alters sensitiv-
ity at different depths [Tian and Liu, 2014]. A similar fig-
ure is given in Supporting Information Figure S1,
illustrating that higher sensitivities reside more toward
extracerebral regions, that is, the skull and scalp, without
DCA applied, while compensated sensitivities (with DCA)
distribute more ideally for imaging the brain activations.

Comparison with Previous Studies

As we mentioned before, we have modified BART para-
digm previously used in fMRI research by Rao et al.
[2008]. Our BART protocol closely followed Rao et al.’s
design although there were slight differences in passive
mode. In Rao et al.’s design, participants merely pressed
the button to keep inflating the balloon during the proto-
col while computer decided the end points and outcomes
including win or lose. In our passive BART paradigm, par-
ticipants only pressed the button once at the beginning of
each block and then observed the computer performing
BART. Each balloon was automatically inflated until the
computer stopped the task in win case or balloon
exploded in lose case. In terms of data analysis, we have
used the atlas-guided, GLM-driven, 3D DOT in this study
to determine brain activation regions, which is similar to
Rao et al.’s study. However, Rao et al. used the BOLD sig-
nals as contrast while we targeted changes in hemoglobin
concentrations, especially DHbO in this study. Moreover,

due to the limited interrogation depth in fNIRS, our study
focused on the hemodynamic changes only on BA 9, 10,
and 46 while fMRI investigated the whole brain. Although
difference exists between these two studies, our results
here in this article show strong bilateral activations on
DLPFC in active mode regardless of participants’ gender
while no activation was observed on DLPFC in passive
mode. These results are highly consistent with those con-
cluded in Rao et al.

Closer comparisons were made between this study and
the one reported by Cazzell et al. [2012] in fNIRS research.
Cazzell et al. have recently compared gender differences
in brain activation maps and hemodynamic responses in
HbO when subjects responded to BART. It is noteworthy
that Cazzell et al. focused on the brain responses without
separating the BART performance phase (balloon inflation)
from the reaction phase (i.e., seeing either “you win” or
“you lose”). The comparisons herein were made only for
the overall stimuli. In Cazzell’s study, although brain acti-
vation maps were determined by FWHM of HbO spatial
patterns, the study concluded strong bilateral brain activa-
tions on DLPFC in active mode which was consistent with
our results shown in Figure 9. In passive mode, we
observed no activation on DLPFC in this study (see Fig. 9),
whereas slight brain activations were exhibited on DLPFC
in Cazzell et al. although they were relatively weaker com-
pared to those in active mode. For the comparison of over-
lapped reactions to two outcomes between genders, the
study reported by Cazzell et al. concluded strong bilateral
brain activations on DLPFC in both “win” and “lose” cases
for female subjects and in win “case” for male subjects.
This conclusion is relatively consistent with our findings
given here, as seen in Figure 11a to c. For male subjects,
while the results by Cazzell et al. demonstrated strong
bilateral changes on DLPFC in the “win” case, the changes
exhibited a strong decease (or deactivation) in DHbO on
the right DLPFC (see Fig. 8 in [Cazzell et al., 2012]). How-
ever, the brain activation/deactivation maps obtained in
the “lose” case for male subjects in this study displayed
somewhat different patterns or distributions: the FWHM-
derived results from Cazzell et al. revealed more diffuse
deactivation patterns which were distributed closer to
DLPFC (BA 46) bilaterally, while GLM-derived results
given in this study exhibited more unilateral activation on
the left frontal region, located near both BA 9 and 46 (see
Fig. 11d).

The agreement and disagreement between the brain acti-
vation maps derived by two types of data analysis methods
need to be understood in order to select a more accurate
approach for improved DOT-based brain imaging. The dis-
agreement could result from the following factors: (1)
Image reconstruction process in this study was based on
human brain atlas-guided 3D DOT after depth-
compensation and voxel-wise GLM analysis were per-
formed, while the earlier study by Cazzell et al. used
non-atlas-guided, 2D DOT with no depth compensation or
statistical parametric analysis. In Cazzell et al.’s study, 2D-
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DOT images were thresholded by FWHM of reconstructed
HbO amplitudes and approximately projected onto the
anatomical human brain template according to the
approach given by Homan et al [Homan et al., 1987]. Dis-
tinct differences in distribution of brain activation patterns
are highly likely to exist because of different reconstruction
algorithms, co-registration methods, and the anatomical
brain template used between the two methodologies. (2)
Because of the difference in image processing algorithms,
the two methods rest on two hidden hypotheses: the cur-
rent method given in this article uses the conventional
GLM model commonly used in fMRI, assuming that voxel-
wise HbO signals can be modeled well by convolving the
stimulation function with the HRF. Also, in this study, we
used a mixed block/event-related design [Petersen and
Dubis, 2012] to model the two stimulation phases that were
directly associated with BART. This mixed design in princi-
ple allowed us to separate the brain responses between the
decision-making/performance phase and the reaction
phase. Conversely, the FWHM-based image processing
method by Cazzell et al. to determine the activation maps
relied on the level of reconstructed maximum activation, so
the activation patterns were more affected by the level of
maximum activation. Furthermore, the 5-s post-stimulation
window used for 2D reconstruction by Cazzell et al. indeed
included the brain responses to the performance phase (see
Fig. 7a) on top of the responses to the reaction phase. Thus,
it is not surprising that the reconstructed brain activation
maps derived by two data analysis methods are somewhat
different. It is reasonable to state that the activation maps

studied by Cazzell et al. reflected brain responses to convo-
luted stimulation tasks, while the activation maps shown in
this article present brain responses to two separate or de-
convoluted stimulation tasks (i.e., performance phase and
reaction phase).

To perform more comparative analysis, we re-analyzed
BART data using the same atlas-guided 3D DOT recon-
struction approach without GLM analysis, followed by
FWHM-based thresholding to define the brain/cortical
activation regions. The reconstructed DHbO images were
temporally averaged over a time period of 5 s post
decision-making phase, as Cazzell et al. did. Figure 13
shows the FWHM-thresholded activation images for
female and male participants in “win” and “lose” cases
after averaging DHbO amplitudes across female and male
participants. In female and male “win” cases, compared to
GLM-derived activation images (given in Fig. 11a and c),
we observed similar bilateral activation patterns on DLPFC
near both BAs 9 and 46 (see Fig. 13a and c). In female
“lose” case, the FWHM-derived method shows strong
brain activations near BA 9 and 46 bilaterally, but with
larger activation areas extended to BA 10 (see Fig. 13b),
while results by GLM-derived method revealed a more
localized activation pattern, as shown in Figure 11b. More-
over, in male “lose” case, we observe noticeable activation
on left DLPFC and deactivation on right DLPFC from
FWHM-derived activation images (see Fig. 13d), whereas
GLM-derived activation images showed strong activation
on left DLPFC in both performance and reaction phases,
particularly with a more localized activation area during

Figure 13.

FWHM-derived activation maps in active mode for different gen-

ders. FWHM-derived brain activation maps in response to active

BART mode from female group (N 5 21) (a) in the “win” case,

(b) in the “lose” case, from male group (N 5 16) (c) in the “win”

case, and (d) in the “lose” case. Color scales in figures represent

DHbO in M. Notice that “R” represents right and “L” represents

left side of the brain. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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the reaction phase. Based on the comparative study, we
conclude that our newly developed, brain atlas-guided,
GLM-based 3D DOT reconstruction algorithm should lead
to more accurate brain activation maps with better spatial
and depth resolution as well as with stronger statistical
analysis reliability as compared to the FWHM-derived
method.

Atlas-Guided DOT in Brain Research

In this study, we used a human head atlas to anatomi-
cally guide the 3D DOT reconstruction. Anatomically
guided DOT reconstruction has been used in brain
research within the fNIRS community to overcome the
major drawback of DOT, namely, lack of structural infor-
mation. Two major approaches, atlas anatomical-guided
[Custo et al., 2010] and subject-specific anatomical-guided
3D DOT [Cooper et al., 2012; Eggebrecht et al., 2012], have
been intensely presented in the field recently. Although
subject-specific anatomical-guided 3D DOT demonstrated
accurate localization of brain activation compared with
fMRI [Eggebrecht et al., 2012], the expected localization
errors when using atlas-guided DOT could result from: (1)
differences between subject specific anatomy and atlas
anatomy, and (2) registration errors between subject space
and atlas space, including measurement variations of
optode locations in subject space by a 3D digitizer. Studies
on the comparisons between these two approaches have
been presented by Custo et al. [2010] and Cooper et al.
[2012]. Custo et al. compared the reconstruction results
derived from the two approaches using three subjects. The
spatial and numerical (i.e., overlapping between two
reconstructions up to 93%; Dice’s coefficient up to 0.86
[Custo et al., 2010]) results concluded that accurate cortical
activation locations can be obtained by fNIRS and 3D DOT
when using an atlas-based head model to guide image
reconstruction. Another supporting report by Copper et al.
also concluded that atlas-guided 3D DOT could provide
reasonably accurate localization of brain activation based
on their computational simulation results. Based on these
conclusions and our study shown in this article, therefore,
we highly recommend using considering atlas-guided 3D
DOT as a useful neuroimaging tool when investigating
brain functions and stimulated activities in cortical
regions.

Limitation of the Study and Future Work

Although we have demonstrated that atlas-guided
voxel-wise GLM analysis allows us to simultaneously
model the mixed task-evoked brain activations with a bet-
ter statistical power, this proposed methodology is still
limited by: (1) the scattering nature of light in tissues,
which results in reduction of spatial resolution and depth
accuracy, and (2) mixed signals between the brain activa-
tions and artifacts from the superficial layers, that is, the

scalp and skull. The latter aspects have been studied using
superficial signal regression [Gregg et al., 2010] and adapt-
ive filtering [Tian et al., 2011; Zhang et al., 2007] to isolate
the brain signals; the GLM-based analysis also has the
capability to resolve this problem positively [Tian and Liu,
2014]. However, for all the methods mentioned above, it
still remains difficult if the fluctuations of brain activations
and superficial artifacts follow the same or similar tempo-
ral patterns/frequency. Therefore, a combination of GLM-
based analysis and adaptive filtering/linear regression
with a high-density optode array is possibly an optimal
approach to improve depth and localization accuracies of
DOT for functional brain imaging.

It is also well known that utilization of more source–
detector (S–D) pairs in a high-density optode array for 3D
DOT reconstruction will benefit the quality of recon-
structed images. In this study, we selected only the first-
nearest S–D pairs for image reconstruction because the
noise levels from the second-nearest S–D pairs (separated
by 4.8 cm) were too high. For future studies, we will mod-
ify the current probe geometry and form a high-density
optode array so that the second and possibly third nearest
S–D measurements can be performed for improved 3D
DOT reconstruction.

The purpose of using a band pass filter from 0.03 to 0.2
Hz on raw data was to remove (1) high-frequency physio-
logical interference due to respiration (>0.2 Hz) and car-
diac (>1 Hz) signals and (2) low-frequency (<0.03 Hz)
system drift. Utilization of a band-pass filter has been a
common image pre-processing procedure for reconstruct-
ing DOT by numerous research groups [Boas et al., 2004;
Eggebrecht et al., 2012; Fekete et al., 2013; Ferradal et al.,
2014; Folley and Park, 2005; Gagnon et al., 2012; Tian
et al., 2012; Zhang et al., 2011]. It might be true that when
GLM is applied by deconvolving HbO (and HbR) signals
with a given HRF, a band-pass filter may not be necessary
as the temporal HbO/HbR profiles are fitted in a least
squares sense with the model. However, uses of a band-
pass filter will help reduce any possibly large noises, par-
ticularly for HbO or HbR signals at the individual subject
level. To consider an optimal action, it may be beneficial
to select a lower high-pass cutoff frequency (such as 0.01
Hz) for future studies to avoid any possible distortion of
time course induced by high-pass filtering.

It is expected that a fixed HRF may not be applicable to
all functional changes occurring in the brain. However, to
use variable HRFs for different functional changes in dif-
ferent regions of the brain, further research is needed to
define specific HRFs for respective tasks or functions.
Finding activation-dependent HRFs is beyond the scope of
this study and is left for future studies.

CONCLUSION

The main focus of this study was to demonstrate the
excellence of integrating three DOT data/image process

r Lin et al. r

r 4264 r



techniques to better define and identify the brain activations
for fNIRS-based functional brain imaging. The three techni-
ques were (1) atlas-guided DOT, (2) depth compensated
algorithm, and (3) voxel-wise GLM analysis, which together
allowed us to image hemodynamic changes induced by a
specific risk decision-taking task, BART, with improved 3D
visualization and depth localization. The results shown in
this study demonstrated that human brain atlas-guided
DOT provided better visualization and helped greatly to
localize brain activation regions. Voxel-wise GLM analysis
was developed and used complementarily with 3D DOT for
functional brain imaging, leading to good agreement with
an fMRI study. Such integration of GLM analysis with
volumetric DOT also provided excellent statistical analysis
reliability and improved spatial localization, as well as
allowed us to separate two convolved brain activities in
response to performance and reaction stimulations in the
BART paradigm. In addition, the current study offered
convincing evidence that atlas-guided volumetric DOT with
voxel-wise GLM analysis has strong potential for studies of
cognition-related brain activities. It is evident that recon-
structed 3D DOT images seen on a brain atlas template can
be easily compared and confirmed with published litera-
tures in fMRI studies, if further validation is desired.
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