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Abstract

Objective—To determine if granulocyte colony-stimulating factor (G-CSF) could prevent loss of 

spermatogenesis induced by busulfan chemotherapy via protection of undifferentiated 

spermatogonia, which might serve as an adjuvant approach to preserving male fertility among 

cancer patients.

Design—Laboratory animal study.

Setting—University.

Animals—Laboratory mice.

Intervention(s)—Five week-old mice were treated with a sterilizing busulfan dose and with 7 

days of G-CSF or vehicle treatment and evaluated 10 weeks later (experiment 1) or 24 hours after 

treatment (experiment 2).

Main Outcome Measure(s)—Experiment 1 - testis weights, epididymal sperm counts, testis 

histology. Experiment 2 - PLZF immunofluorescent co-staining with apoptotic markers. 

Molecular analysis of G-CSF receptor expression in undifferentiated spermatogonia.

Results—Ten weeks after treatment, busulfan-treated mice that also received treatment with G-

CSF exhibited significantly better recovery of spermatogenesis and epididymal sperm counts than 

animals receiving busulfan alone. G-CSF led to increased numbers of PLZF+ spermatogonia 24 

hours after treatment that was not accompanied by changes in apoptosis. To address the cellular 
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target of G-CSF, mRNA for the G-CSF receptor, Csf3r, was found in adult mouse testes and 

cultured Thy1+ (undifferentiated) spermatogonia, and cell-surface localized CSF3R was observed 

on 3% of cultured Thy1+ spermatogonia.

Conclusion(s)—These results demonstrate that G-CSF protects spermatogenesis from 

gonadotoxic insult (busulfan) in rodents and this may occur via direct action on CSF3R

+undifferentiated spermatogonia. G-CSF treatment might be an effective adjuvant therapy to 

preserve male fertility in cancer patients receiving sterilizing treatments.
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Introduction

Lifesaving chemotherapy and radiation treatments for cancer can cause deficits in 

spermatogenesis that lead to male infertility (1;2). Patients who are making sperm can take 

advantage of sperm cryobanking before beginning gonadotoxic therapies, which allows for 

future assisted reproduction using in vitro fertilization (IVF) or intracytoplasmic sperm 

injection (ICSI) (3). By definition, however, prepubertal boys who are not yet producing 

sperm cannot utilize this approach, and thus, lack options for preserving their future fertility. 

This is a significant clinical problem because survival rates among childhood cancer patients 

are nearly 80% (4). Indeed, the American Society of Clinical Oncology recently emphasized 

the need to provide access to available standard-of-care and experimental fertility 

preservation approaches for both adult and pediatric patients (5).

Spermatogonial stem cell transplantation is an experimental strategy that regenerates 

complete spermatogenesis and may restore the fertility of male cancer survivors (6–15). 

Biopsied testicular tissue obtained prior to sterilizing treatments is cryopreserved so that 

SSCs present in the tissue may be transplanted back into patients’ testes after cancer cure 

(3;7). Indeed, recent nonhuman primate studies provided definitive demonstration of 

functional donor spermatogenesis following SSC transplantation using this strategy (14;16). 

Autologous transplantation, however, carries an inherent risk of reintroducing contaminating 

malignant cells back into patients after cancer cure (3;10;17) and it is unclear whether this 

risk can be abated (18–25). Furthermore, since successful nonhuman primate SSC 

transplants used 46–88×106 donor cells (14) and human testis tissue yields 42.5–142.8×106 

cells per gram (26–29), human SSC transplant conceivably may require ≥300mg testis 

biopsies. Since typical testis biopsies of prepubertal patients are miniscule in comparison 

(≤100mg; [14]), in vitro SSC expansion may be necessary for clinical SSC transplantation 

(3). Moreover, surgical testicular tissue retrieval carries risks associated with anesthesia, 

infection and delays to primary disease therapy. Thus, while SSC transplantation and related 

approaches show promise for regenerating spermatogenesis and fertility (30–38), clinical 

translation may lag until these limitations and risks are addressed. Alternative approaches, 

such as testicular tissue xenografting or autografting are also the focus of active 

investigation (reviewed by [23]), but have similar drawbacks and invite new challenges such 

as mitigating the risk of zoonotic disease transmission (39–41).
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Clearly, there is a significant need for less risky and noninvasive approaches to preserve 

fertility in prepubertal male cancer patients. Here, we demonstrate in mice that treatment 

with granulocyte colony-stimulating factor (G-CSF) protects spermatogenesis from 

alkylating chemotherapies. For prepubertal boys (and perhaps some men as well), G-CSF 

treatment could mean the chance of safely retaining their future fertility after cancer.

Materials and Methods

Animals

Male C57BL/6 mice from Jackson Laboratories were maintained with ad libitum normal 

laboratory diet. All experiments utilizing animals were approved by the Institutional Animal 

Care and Use Committee of the University of Texas at San Antonio (Assurance A3592-01) 

and were performed in accordance with the NIH Guide for the Care and Use of Laboratory 

Animals.

Experimental design, G-CSF and busulfan treatments

Two experimental schemes were employed. In both, five week old male mice were given 

seven daily subcutaneous injections of 50ug/kg recombinant human granulocyte colony-

stimulating factor (PeproTech) suspended in Dulbecco’s PBS (DPBS; Life Technologies) 

containing 0.5% bovine serum albumin fraction V (MP Biomedicals) or 0.5% BSA in DPBS 

alone (vehicle). On the third day, mice were also given either busulfan (44 mg/kg, DMSO; 

Sigma-Aldrich) or DMSO alone by a single IP injection. In experiment 1, animals were 

euthanized 10 weeks following the last G-CSF/vehicle treatment and testes weights, 

epididymal sperm counts, testis histololgy were evaluated. In experiment 2, mice were 

euthanized 24 hours after the last G-CSF/vehicle injection and used for immunofluorescent 

studies of undifferentiated spermatogonia together with apoptotic measures. See 

Supplemental Figure 1 for additional information on animal numbers per group in each 

experiment.

Testis Weights and Histological Analyses

Testes were weighed and fixed with fresh 4% paraformaldehyde, paraffin-embedded and 

sectioned (5 µm). Testis cross-sections for histological analysis were H&E stained. 

Composite mosaic images of eight complete sections from each testis (≥35µm between 

sections) at 20X magnification were generated with an AxioImager M1 (Zeiss) and an 

AxioCam ICc1 (Zeiss). Round seminiferous tubule cross-sections in each image were 

categorized according to the degree of spermatogenesis: complete spermatogenesis (all germ 

cell types up to and including elongating spermatids or spermatozoa), round spermatids (all 

germ cell types up to and including round spermatids), primary spermatocytes (all germ cell 

types up to and including primary spermatocytes), empty (marked absence of germ cells, 

Sertoli cell-only and/or some spermatogonia). Sample sections were blinded for imaging and 

analysis. Statistically significant differences between groups (p<0.05) were determined by 

Tukey-Kramer ANOVA.

Automated image processing to determine seminiferous tubule morphology was performed 

using MATLAB 2013b (The MathWorks, Inc). Each composite image was normalized using 
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adaptive histogram equalization to remove variability between images. Seminiferous tubule 

cross-sections were segmented using the following automated procedure. Otsu’s Method 

(42) was used to convert the red-green-blue image to a binary image using equally-weighted 

intensity values for red and blue channels. Objects smaller than 20,000 pixels corresponding 

to connective and interstitial tissues/cells were disregarded. Morphological operations were 

used to remove histological artifacts, specifically closing, opening, and hole filling (43) in 

that order. Subsequently, a Euclidean distance matrix was computed for each pixel (44) and 

a label matrix was generated using a watershed algorithm (45), producing a label matrix 

with an integer assigned to each contiguous group of pixels indicating that that group of 

pixels belonged to a given tubule cross-section. Geometric characteristics were then 

measured using the regionprops() function yielding the cross-sectional area, perimeter, 

lengths of the major and minor axes, and equivalent diameter (√(4area/π); diameter of a 

circle with the equivalent area of the object) of each tubule cross-section. Only data from 

round seminiferous tubule cross-sections [shape factor (4πarea/circumference2) values of 

≥0.8] were used for subsequent analyses, an approach used previously to define roundness 

of isolated cells (46–48).

Sperm Counts

One epididymis from each animal was used to quantify sperm counts using a swim-up 

technique 10 weeks after treatment. Briefly, each complete epididymis was minced in room 

temperature DBPS, incubated at 37°C for 30 minutes to allow motile sperm to swim out of 

the ducts and sperm number per ml was determined by hemocytometer after PFA fixation.

Immunofluorescent tissue staining

Tissue sections generated from treated mice were stained with antibodies against PLZF, 

cleaved CASPASE 3 and by TUNEL (49). Briefly, PFA-fixed paraffin-embedded sections 

were subjected to antigen retrieval in sodium citrate buffer, rinsed, and blocked in antibody 

diluent. Blocked sections were labeled concurrently with antibodies for PLZF and cleaved 

CASPASE 3 (Supplemental Table 1), detected by indirect immunofluorescence, and 

counterstained with 1ug/ml Hoechst 33342 (Sigma-Aldrich) to identify nuclei. Positive 

immunoreactivity was validated by omission of primary antibody. Separately, following 

PLZF antibody incubation, TUNEL labeling was performed using the TACS® TdT In Situ 

Apoptosis Detection Kit (Trevigen) using Mn2+. Subsequently, PLZF staining was detected 

as above with addition of 10ug/ml AlexaFluor 488-conjugated streptavidin (Life 

Technologies) to label for TUNEL and counterstained with Hoechst 33342. Fluorescently 

stained sections were mounted with FluoromountG (Southern BioTech). Composite tiled 

mosaic images for each complete section at 20X magnification were generated using an 

AxioImager M1 (Zeiss) and an AxioCam MRm (Zeiss). The frequency of PLZF+ 

spermatogonia exhibiting positive staining for cleaved CASPASE 3 and TUNEL in each 

image was determined using NIH Image J using the Cell Counter plugin. To determine the 

number of PLZF+ spermatogonia per seminiferous tubule cross-section, the total numbers of 

PLZF-stained nuclei in round seminiferous tubule cross-sections were divided by the 

number of round cross-sections. For quantification of PLZF overlap with cleaved Caspase 3 

or TUNEL, single-positive cells for each marker and double-positive cells were counted in 

each entire image (complete testis section).
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Thy1+ Spermatogonia Culture

Testes from 6–8day old DBA/2 mice were used to Thy1+ spermatogonia cultures on 

mitomycin-C treated SNL76/7 (STO) feeders in a defined serum-free medium 

[53;72;87;88]. Cultured spermatogonia were mechanically disrupted from STO feeders by 

gentle pipetting, washed with ice-cold DPBS and used for RNA isolation and subsequent 

RT-PCR or protein isolation and Western blot. For flow cytometry experiments, 

mechanically-disrupted cells were treated with 0.25% Trypsin-EDTA (Life Technologies) to 

generate single-cell suspensions, followed by addition of 10% FBS and two washes with 

Hank’s balanced salt solution prior to antibody labeling.

RT-PCR

Testes from adult C57BL/6 mice (n=3), three Thy1+ spermatogonia cultures, and STO 

feeders were used to isolate total RNA with Trizol reagent (Life Technologies). 

Complementary DNA was synthesized essentially as described (50) with SuperScript III 

reverse transcriptase (Life Technologies) and oligo-dT priming. Subsequent PCRs used 

oligodeoxynucleotide primers against Csf3r (51) and Gapdh (Supplemental Table 2) with 

Platinum Taq DNA polymerase (Life Technologies). All PCR reactions were resolved by 

agarose gel electrophoresis.

Single-cell qRT-PCR

Testes from 6–8dpp DBA/2 mice were used to generate a single-cell suspension of Thy1+ 

spermatogonia as described [53;72;87;88], which was then used for specific target 

amplification (STA) qRT-PCR measurement of mRNA levels in individual cells using the 

C1 Single-Cell Autoprep System and BioMark HD instruments (Fluidigm) essentially as 

described (52). Briefly, individual Thy1+ spermatogonia were captured on a C1 STA 

microfluidic array (10–17 um cells) using the Fluidigm C1, stained with the LIVE/DEAD 

Cell Viability/Cytotoxicity Kit (Life Technologies), imaged on a AxioImager M1 to identify 

dead and multiple cell captures, and pre-amplified cDNA was generated from each cell 

using the Single Cells-to-CT Kit (Life Technologies), pooled qPCR primers (Supplemental 

Table 2) and Fluidigm STA reagents according to manufacturer recommendations. 

Preamplified cDNA was then used for high-throughput qPCR measurement of each 

amplicon using a BioMark HD system as described with modifications (53). Briefly, a 2.25 

µl aliquot of each amplified cDNA was mixed with 2.5 µl of 2X SsoFast EvaGreen 

Supermix with Low ROX (Bio-Rad) and 0.25 µl of 20X DNA Binding Dye Sample Loading 

Reagent (Fluidigm) and each sample mix was then pipetted into one sample inlet in a 

Dynamic Array IFC chip (Fluidigm). Individual qPCR primer pairs (100uM, Supplemental 

Table 2) were diluted 1:10 with TE (2.5ul total volume), mixed with 2.5 µl Assay Loading 

Reagent (Fluidigm), and then individually pipetted into one assay inlet in the same Dynamic 

Array IFC chip. Subsequent sample/assay loading was performed with an IFC Controller 

HX (Fluidigm) and qPCR was performed on the BioMark HD real-time PCR reader 

(Fluidigm) following manufacturer's instructions using standard Fast cycling conditions and 

melt-curve analysis, generating an amplification curve for each gene of interest in each 

sample (cell). Data were analyzed using Real-time PCR Analysis software (Fluidugm) with 

the following settings: curve quality threshold 0.65, linear derivative baseline correction, 
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automatic thresholding by assay, and manual melt curve exclusion. Cycle threshold (Ct) 

values for each reaction from live single cells were exported and further analyzed using an 

R-script package, SINGuLar Analysis Toolset 2.1 (Fluidigm), with a limit of detection of 24 

and default outlier exclusion, which generated the violin plots of Log2-transformed Ct 

values for each gene of interest in the 75 live, single Thy1+ spermatogonia.

Western Blot

Total proteins from liver and testes of adult C57BL/6 mice (n=3) and Thy1+ spermatogonial 

cultures (n=3) were used for Western blot detection of CSF3R (54). Briefly, proteins (50µg) 

were resolved by SDS-PAGE, transferred to PVDF membrane (Millipore), blocked, probed 

with primary antibody (Supplemental Table 1) and detected with horseradish peroxidase-

conjugated secondary antibodies and SuperSignal West Pico chemiluminescence (Pierce).

Flow cytometry

Flow cytometry was used to identify cell-surface localization of CSF3R on cultured Thy1+ 

spermatogonia (24). Briefly, cultured mouse Thy1+ spermatogonia were stained with 

primary antibodies (Supplemental Table 1) in DPBS containing 10% FBS (DPBS+S) at 1.5 

× 106 cells/ml. Staining was compared to an isotype control antibody to correct for non-

specific binding. Primary antibodies were detected by indirect immunoflourescent staining 

(Supplemental Table 1). Propidium iodide (0.5µg/ml, BD Biosciences) was added for 

discrimination of dead cells. Evaluation of antibody staining by flow cytometry was 

performed using an LSRII flow cytometer (BD).

Immunoflourescent staining of cultures

Cultured Thy1+ spermatogonia were fixed with 1% PFA, washed with DPBS, blocked with 

antibody diluents, and incubated with primary antibodies (Supplemental Table 1) in 

antibody diluents and subsequently detected by indirect immunoflourescence and 

counterstained with 1ug/ml Hoechst 33342 to identify nuclei. Positive immunoreactivity was 

validated by omission of primary antibody. Images of stained cultured cells were acquired 

using an AxioVert CFL (Zeiss) and an AxioCam MRc5 (Zeiss).

Results

A previous mouse study revealed that G-CSF promoted retention of ovarian reserve in 

females treated with alkylating chemotherapy (55). To examine the possibility of a similar 

fertility-preserving G-CSF effect in males, we performed two separate experiments using 5 

week-old C57BL/6 mice in conjunction with sterilizing busulfan treatment. In both 

experiments, mice were randomly separated into three groups: “Control” animals which 

received only vehicle injections (DPBS + 0.1% BSA; DMSO), “Busulfan Only” animals 

which received G-CSF vehicle and busulfan treatment (44mg/kg), and “Busulfan + G-CSF” 

animals which received G-CSF (50ug/kg/day) in addition to busulfan treatment 

(Supplemental Figure 1). G-CSF or vehicle (DPBS + 0.1% BSA) injections were given 

every morning for seven days and busulfan or DMSO injections were given on the afternoon 

of day 3 (Supplemental Figure 1).
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In the first experiment, animals in all three groups were allowed to recover for ten weeks 

after treatment, which is sufficient to identify regenerated spermatogenesis arising from 

spermatogonial stem cells (56). Testis weights were significantly reduced in animals from 

both the Busulfan Only and Busulfan + G-CSF groups, compared with controls, but did not 

differ significantly between the Busulfan Only and Busulfan + G-CSF groups (Figure 1A). 

Epididymal sperm counts determined using a swim-up procedure were significantly lower in 

all busulfan-treated animals (Busulfan Only and Busulfan + G-CSF groups) than in controls 

(p=0.029), but sperm counts per epididymis were significantly higher in Busulfan + G-CSF 

animals than the Busulfan Only mice (p=0.036; Figure 1B). Histological examination of the 

testes confirmed that unlike control testes, in which nearly all tubule cross-sections 

contained complete spermatogenesis (Figure 1C, F, I and Supplemental Table 3), many 

tubule cross-sections were devoid of germ cells in animals treated with busulfan (Busulfan 

Only and Busulfan + G-CSF groups; Figure 1D–E, G-H, J-K and Supplemental Table 3). 

However, treatment with G-CSF led to significantly better spermatogenic recovery after 

busulfan treatment than in Busulfan only group (p=0.0428; Figure 1E, H, K and 

Supplemental Table 3). That is, mice in the Busulfan + G-CSF group had significantly more 

seminiferous tubules with spermatogenesis and significantly fewer empty seminiferous 

tubules than animals in the Busulfan Only group (Figure 1 and Supplemental Table 3). 

Morphometric measurements of seminiferous tubule cross-sections demonstrated a 

significant reduction in tubule diameter, area, and perimeter in all animals treated with 

busulfan (Busulfan Only and Busulfan + G-CSF groups; Supplemental Figure 2, 

Supplemental Table 4). Round seminiferous tubule cross-sections containing complete 

spermatogenesis in busulfan-treated mice did not differ significantly in their diameter, area 

or perimeter depending on whether G-CSF was administered, but these tubule cross-sections 

were smaller than untreated controls by all parameters (Supplemental Figure 2, 

Supplemental Table 4). Overall, these data suggested G-CSF prevented loss of 

spermatogenesis after busulfan treatment, so we sought to determine the mechanism behind 

this apparent protective effect of G-CSF.

For this purpose, in our second mouse experiment we treated 5 week-old animals as before 

and examined undifferentiated spermatogonia in their testes 24 hours after the last G-CSF or 

vehicle treatment (Supplemental Figure 1). As expected, busulfan treatment (Busulfan Only 

& Busulfan + G-CSF groups) induced a significant reduction in the number of PLZF+ 

spermatogonia per seminiferous tubule cross-section compared with controls (Figure 2A–D 

and Supplemental Table 5). However, busulfan-treated mice that also received G-CSF had 

significantly more PLZF+ spermatogonia per tubule cross-section than Busulfan Only 

animals (p=0.035; Figure 2A–D and Supplemental Table 5). Despite increased numbers of 

PLZF+spermatogonia in the Busulfan +G-CSF group (Figure 2E–H and Supplemental Table 

5), the proportions of PLZF+ spermatogonia that were positive for TUNEL were not 

different between the Busulfan Only and Busulfan + G-CSF groups (p=0.28). Likewise, the 

proportions of PLZF+ spermatogonia that were positive for activated Caspase 3 (Figure 2I–

L and Supplemental Table 5) were not different between the Busulfan Only and Busulfan + 

G-CSF groups (p=0.38). Thus, the increased numbers of PLZF+ spermatogonia after 

busulfan induced by G-CSF treatment is not likely the result of reduced apoptotic rates.
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To explore the cellular target of G-CSF in the testis, we examined G-CSF receptor 

expression (CSF3R; Figure 3). RT-PCR detected Csf3r mRNA in adult mouse testes, 

cultures of Thy1+ mouse spermatogonia (which contain SSCs), but not in SNL76/7 STO 

feeder cells (STO, [26]; Figure 3A). Further, we detected a band corresponding to CSF3R 

protein by western blot in testis and Thy1+ mouse spermatogonia (Figure 3B). A prominent 

band of approximately 75kDa was observed in all three samples and a less-prominent band 

at approximately 100kDa only in the liver sample. To determine whether Csf3r mRNA was 

present in all or some undifferentiated spermatogonia, we performed single-cell qRT-PCR 

using Thy1+ spermatogonia isolated from pup mouse testes (Figure 3C). Csf3r mRNA was 

present in 74/75 Thy1+ spermatogonia in a normal distribution similar to other mRNAs 

present in undifferentiated spermatogonia [Dazl, Ddx4, Foxo1, Gfra1, Sohlh1, Sohlh2, and 

Zbtb16 (Plzf)] and “housekeeping” controls (Actb, Gapdh, and Rpl7; Figure 3C). Consistent 

with these single-cell qRT-PCR results, we also observed immunofluorescent staining for 

CSF3R protein in nearly all cultured Thy1+ spermatogonia that overlapped with nuclear 

SALL4 staining, which labels undifferentiated spermatogonia, but not in STO feeder cells 

underlying the cultured cells [(57;58); Figure 3D–F]. To determine if CSF3R was localized 

to the plasma membrane of cultured Thy1+ spermatogonia, we also examined staining by 

flow cytometry. Approximately 3% of cultured Thy1+ spermatogonia exhibited cell-surface 

labeling with a CSF3R antibody (Figure 3G–H), which is similar to previous reports for the 

CSF1R in Thy1+ spermatogonia (59). These data suggest that G-CSF might act directly on a 

subset of undifferentiated spermatogonia through binding to its cell surface receptor, 

CSF3R.

Discussion

Male infertility is a long-term side effect of childhood cancer treatments and preserving or 

restoring fertility in these patients is a major research focus (3;7;12). Indeed, experimental 

strategies are under development to preserve male fertility with testicular tissue surgically 

retrieved from the patient, stored, and used later to reestablish gamete production (e.g., SSC 

transplantation, tissue grafting). While promising, these approaches are expensive, clinically 

complicated, and introduce potentially serious risks to the patient (e.g., anesthesia, 

malignant cell contamination). An alternative to invasive fertility preservation strategies 

might be to include an adjuvant drug treatment regimen during and/or around the time of 

chemotherapy/radiation treatment to protect the germline from gonadotoxic damage and 

potentially preserve fertility.

Since a previous study in female mouse identified a fertility-preserving effect of G-CSF in 

animals treated with alkylating chemotherapy (55), we tested whether a similar phenomenon 

might occur in males. Our first experiment demonstrated that mouse spermatogenesis can be 

protected from busulfan chemotherapy by treatment with the cytokine granulocyte colony-

stimulating factor (G-CSF). While it was clear that G-CSF treatment did not spare all 

spermatogenesis from loss by busulfan, G-CSF did promote significantly better 

spermatogenic recovery over busulfan treatment alone. Additional studies will be required to 

maximize the recovery of spermatogenesis induced by G-CSF treatment after sterilizing 

chemotherapy. One possibility would be to alter the G-CSF dose. Arguably, the 50µg/kg/day 

G-CSF dose used here (56), is relatively low dose considering that PBSC mobilization 
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studies in mice typically involve G-CSF doses of 200–250µg/kg/day (61–63). Higher doses 

might improve the percentage of spermatogenesis surviving a sterilizing chemotherapeutic 

insult. Regardless, these observations are consistent with results of a previous study by Kim 

and colleagues in which mice were treated with G-CSF in conjunction with sub-sterilizing 

(5Gy) gamma irradiation (60). That study reported a beneficial effect of G-CSF treatment (3 

days prior to irradiation) on spermatogonial survival 3 weeks after treatment (60). Taken 

together, all of these results support the conclusion that G-CSF treatment protects 

spermatogenesis from cytotoxic insult (busulfan or radiation) in rodents.

Surprisingly, regenerating seminiferous tubules from animals in the Busulfan Only or 

Busulfan + G-CSF groups were also significantly smaller than those in the Control group. 

This result suggests that chemotherapy reduced the regenerative capacity of spermatogonial 

stem cells or diminished the spermatogenic ceiling via an effect at the level of testicular 

somatic cells (e.g., Sertoli cells, Leydig cells). Thus, future studies examining 

spermatogonial stem cell quality/robustness, Sertoli cell survival, and testosterone 

production might clarify the impacts of sterilizing chemotherapy on surviving germ cells 

and testicular somatic cells.

Gonadotropin suppression was among the first adjuvant approaches to male fertility 

preservation investigated in rodents and demonstrated enhanced recovery of 

spermatogenesis from surviving SSCs following chemotherapy and radiation treatments 

(68–71). However, all but one of seven subsequent clinical trials failed to demonstrate that 

gonadotropin suppression improved sperm counts in men after chemotherapy [reviewed in 

(72)]. Thus, positive protective effects of adjuvant fertility-protecting therapies in rodents 

proved to be a poor predictor of success in humans. In the case of G-CSF, results from 

previous nonhuman primate studies in which animals received high-dose busulfan 

chemotherapy might inform upon the potential efficacy of G-CSF adjuvant therapy in 

humans (8;14). In the first study, adult male rhesus macaques that were given a single dose 

of busulfan (8–12mg/kg) became azoospermic and failed to recover detectable ejaculated 

sperm for at least one year after treatment (8). In the second, busulfan treatment (8–

11mg/kg) was accompanied by G-CSF-mobilization (Neupogen, 10–20µg/kg/day for six 

days) of hematopoietic stem cells (HSCs) into the general circulation prior to collection by 

apheresis for autologous HSC transplant to counteract busulfan myelosuppression and then a 

single injection of pegylated G-CSF (Neulasta) after HSC reinfusion to promote their 

engraftment (14). Since some of the animals in this latter study were allogeneic SSC 

transplant recipients in which the transplants failed (never exhibited any evidence of donor 

SSC engraftment), all sperm observed in ejaculates after busulfan and G-CSF treatment 

were only from recovering endogenous spermatogenesis. Failed allogeneic SSC transplant 

recipient monkeys in this study, which also received G-CSF treatments around the time of 

busulfan treatment, recovered spermatogenesis as early as 20 weeks after busulfan treatment 

(14), which is consistent with G-CSF-enhanced recovery of spermatogenesis we report here 

in mice following sterilizing busulfan treatment. While these data from nonhuman primates 

are not derived from a single, controlled study, they tend to support the clinical potential of 

G-CSF as a male fertility preservation agent when combined with our current results in 

rodents.
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Results of our second experiment revealed that the G-CSF effect we observed in the first 

experiment is likely mediated by increased numbers of PLZF+ undifferentiated 

spermatogonia shortly after treatment, but the mechanism of this effect remains unclear. It is 

possible that G-CSF may promote PLZF+ spermatogonial survival to increase the 

regenerative pool or may later drive their proliferation to promote regeneration. Since G-

CSF treatments in the present study were given both before and after busulfan 

administration, it is not possible to discriminate potential protective effects of G-CSF prior 

to chemotherapy from any regenerative effects that may emerge from G-CSF action after 

chemotherapy. In the previous study by Kim and colleagues, G-CSF was given only prior to 

irradiation (3 days), and thus, it is possible that the protective G-CSF effect we observed 

here is mediated through an action before busulfan treatment.

Detection of G-CSF receptor (CSF3R) in the mouse testis and in undifferentiated 

spermatogonia, which contain SSCs, suggests that G-CSF may act directly on the foundation 

of spermatogenesis in the testis. Results from single-cell qRT-PCR and immunofluorescent 

staining in cultured cells, which suggested widespread Csf3r mRNA and CSF3R protein 

expression among Thy1+ spermatogonia, conflicted with flow cytometry results indicating 

only 3% of Thy1+ spermatogonia had cell-surface localized CSF3R protein. It is possible 

that either only a portion of the CSF3R protein produced in Thy1+ spermatogonia is 

localized to the cell surface or flow cytometry of trypsinized cells underreports the 

proportion of CSF3R+ cells due to antigen cleavage by tryspin. In either case, this finding 

mirrors a previous report that the receptor for CSF1 is present in a subset of undifferentiated 

spermatogonia, including SSCs, and contributes to their self-renewal (59). Thus, it is 

possible that G-CSF may also play a role in support of ongoing spermatogenesis which is 

the subject of future investigations. In hematopoiesis, G-CSF has been defined as a mitogen 

that drives granulopoiesis (64) and modulator of HSC function (65–67). Paradoxically, G-

CSF administration to mice promotes non-cell-autonomous HSC expansion, but also induces 

their quiescence (67). Thus, it is possible that G-CSF could induce proliferation and/or 

quiescence among spermatogonia to produce the protective effects revealed in this study, 

and through this action, may be an effective adjuvant therapy for male fertility preservation. 

While more studies are needed to optimize G-CSF delivery, maximize its spermatogenic 

protection and define a mechanism of action, G-CSF adds a new potential tool in the 

growing repertoire of male fertility preservation strategies for cancer patients.

Conclusions

Mouse spermatogenesis and undifferentiated spermatogonia can be protected from loss 

following busulfan treatment with granulocyte colony-stimulating factor (G-CSF). G-CSF 

may contribute to normal spermatogenesis since its receptor is expressed by undifferentiated 

spermatogonia. There is potential for employing G-CSF treatment clinically to protect male 

fertility in some cancer patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. G-CSF prevents loss of spermatogenesis after busulfan treatment in mice
Animals from Experiment 1 were evaluated 10 weeks after the final G-CSF/vehicle 

treatment (see Supplemental Figure 1). (A) Testis weight, (B) Epididymal sperm counts. 

Labels above bars signify statistically-significant differences between groups as determined 

by student’s t-test. Tiled brightfield images of H&E-stained sections of testes from (C) 
Control group, (D) Busulfan Only group, and (E) Busulfan + G-CSF group. Scale bars = 

500µm. Enlarged images of the dashed boxes in C–E are shown in (F–H), respectively. 

Scale bars = 50µm. Filled arrowheads = seminiferous tubules with spermatogenesis. Open 
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arrowheads = no spermatogenesis. Further enlarged images of dashed boxes in F–H are 

shown in (I–K), respectively. Scale bars = 50µm. (L) Stacked bars show the percentage of 

all seminiferous tubule cross-sections counted from all animals in each group which exhibit 

differing degrees of spermatogenesis: complete spermatogenesis (complete), up to round 

spermatid spermatids, up to 1° spermatocytes, or containing no spermatogenesis (empty or 

Sertoli cell-only). A, B, and C categorical notations above bars denote statistically 

significant differences between groups (p<0.05) as determined by Tukey-Kramer ANOVA. 

The number of animals in each experimental group (n) is indicated at the base of each bar. 

The number of seminiferous tubule cross-sections evaluated per animal is shown in 

Supplemental Table 3. Details of experimental groups are in Supplemental Figure 1.
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Figure 2. G-CSF treatment improves PLZF+ spermatogonial numbers after busulfan treatment 
without changing apoptosis
Testes from mice in Experiment 2 were evaluated on day 8 (24 hours after the last G-CSF/

vehicle treatment, see Supplemental Figure 1). (A–D) PLZF+ spermatogonia were quantifed 

per round seminiferous tubule cross-section from testes of mice obtained from each group. 

Sections co-stained for (E–H) PLZF and activated Caspase3 or (I–L) PLZF and TUNEL 

were used to determine the percentage of PLZF+ spermatogonia that were positive for 

activated Caspase 3 and TUNEL, respectively. The A, B, and C categorical notations above 

bars denote statistically significant differences between groups (p<0.05) as determined by 

Student’s T-test. Scale bars = 50µm. The number of round seminiferous tubule cross-

sections and cells counted per animal is in Supplemental Table 5.
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Figure 3. Undifferentiated spermatogonia express CSF3R (G-CSF receptor)
(A) RT-PCR detected mRNAs for (top) Csf3r and (bottom) Gapdh in adult mouse testis, 

cultured Thy1+ spermatogonia and SNL76/7 STO feeders (STO). Template cDNA samples 

were from reactions with and without reverse transcriptase (RT: + or −). (B) Western blot 

detection of CSF3R in liver (+ control), adult testis and cultured Thy1+ spermatogonia. (C) 
Single-cell qRT-PCR measurement of the steady-state mRNA levels for the noted genes in 

75 individual Thy1+ spermatogonia. Data are presented as violin plots of the log2-

transformed Ct values from all 75 cells analyzed (curve height = mRNA levels, width = 
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relative cell number). In addition to Csf3r (black), genes were separated into three groups: 

undifferentiated spermatogonia genes in blue (Dazl, Ddx4, Foxo1, Gfra1, Sall4, Sohlh1, 

Sohlh2, and Zbtb16), somatic cell genes in red (Gdnf Hsd3b1), and “housekeeping” control 

genes in white (Actb, Gapdh, Rpl7). Immunofluorescent staining for CSF3R protein in 

mouse Thy1+ spermatogonia cultures using antibodies that recognize (D) CSF3R and (E) 
SALL4, a marker of undifferentiated spermatogonia and (F) merged of CSF3R and SALL4 

with Hoechst 33342 counterstain (blue, DNA). Staining was compared to omission of 

primary antibodies (data not shown). Flow cytometry dot plots show Thy1+ spermatogonia 

cultures stained with (G) isotype control antibodies or (H) CSF3R antibodies, both on the X-

axis. Y-axis depicts autofluorescence in the AlexaFluor488 channel. Quadrant statistics are 

shown in the upper-right of each dot plot and depict the percentage of propidium iodide (PI) 

negative (viable) cells that fall within the noted quadrant.
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