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Abstract

We propose a method that uses genetic data to test for the occurrence of a recent range expansion 

and to infer the location of the origin of the expansion. We introduce a statistic ψ (the 

directionality index) that detects asymmetries in the two-dimensional allele frequency spectrum of 

pairs of population. These asymmetries are caused by the series of founder events that happen 

during an expansion and they arise because low frequency alleles tend to be lost during founder 

events, thus creating clines in the frequencies of surviving low-frequency alleles. Using 

simulations, we show that ψ is more powerful for detecting range expansions than both FST and 

clines in heterozygosity. We also show how we can adapt our approach to more complicated 

scenarios such as expansions with multiple origins or barriers to migration and we illustrate the 

utility of ψ by applying it to a data set from modern humans.

Introduction

Range expansions are ubiquitous in natural populations, and they are responsible for 

numerous biological phenomena. Range expansions result in a series of founder events that 

cause the newly founded populations to differ genetically from the source population. Some 

well-known examples are biological invasions (Handley et al., 2011), the post-ice age 

patterns of migration in several European taxa (François et al., 2008; Hewitt, 1999; Schmitt, 

2007), and the colonization of Eurasia, North and South America by modern humans 

(Cavalli-Sforza et al., 1994; Ramachandran et al., 2005; Tishkoff et al., 2009). Some of the 

descendants of an ancestral source population may remain near the location of that ancestral 

population. For example, the European population of the brown bear Ursus arctos most 

likely survived the last ice age in refugia in Spain and Greece. Brown bears followed the 

receding glaciers to colonize most of Europe, but populations at the locations of the former 

refugia persisted until the populations were driven to the verge of extinction by humans in 

the 20th century (Taberlet et al., 1998). Humans provide another example; derived 

populations are found all over the world, but there are also descendants of the first humans 

still living in Africa.
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Der Schweizer Daniel Bernoulli war im 18. Jahrhundert Mathematiker, Physiker und Mediziner. Er beschftigte sich mit 
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Sometimes, the routes of migration are known from direct observations, historical records 

and archaeological evidence. Frequently, however, the exact history of a species is 

unknown, and we want to use population genetic methods to gain more information. In this 

paper, we use genetic data to address two related problems: detecting whether a range 

expansion has occurred and inferring the geographic origin of a range expansion.

Characterizing the influence of geographic structure on genetic diversity has been one of the 

major goals of population genetics theory, with important contributions from Wright (1943), 

Malécot (1950), Kimura (1964) and many others. While there are many statistics designed to 

infer differentiation between populations (Balakrishnan and Sanghvi, 1968; Goldstein et al., 

1995; Nei, 1972; Reynolds et al., 1983), the most widely used statistic to detect 

differentiation between populations is the fixation index FST, which traces to Wright (1949). 

A variety of estimators of FST have been developed (e.g. Reynolds et al., 1983; Weir and 

Cockerham, 1984). Roughly speaking, FST measures how much diversity exists between 

subpopulations compared to the diversity in the entire population; an FST value of 0 

indicates that the two subpopulations are indistinguishable, whereas a value of 1 indicates 

that two populations are maximally differentiated. FST has been directly linked to the 

migration rate in several models, including the finite island (Slatkin and Voelm, 1991) and 

stepping-stone models (Cox and Durrett, 2002). Although FST can be used to estimate the 

amount of gene flow between equilibrium populations, it cannot be used to infer 

directionality of gene flow.

Two other methods that are widely used to detect geographic patterns are clustering 

algorithms and ordination methods. Clustering algorithms (Corander et al., 2004; François et 

al., 2008, 2010; Pritchard et al., 2000) such as STRUCTURE (Pritchard et al., 2000) classify 

individuals into discrete groups, which can then be used for further analysis. Ordination 

techniques (Cavalli-Sforza and Edwards, 1967), such as principal components analysis and 

multidimensional scaling, summarize data by indicating the overall similarity of 

populations. For example, principal component analysis has shown that genetic diversity is 

correlated with the geographic distribution of humans on a continental (Novembre et al., 

2008) and global (Cavalli-Sforza et al., 1996; Wang et al., 2012) scale.

It is also possible to use likelihood methods to infer past features of population history. For 

example, the program IM (Hey, 2010) estimates the time of separation of populations and 

migration rates between them using data from multiple unlinked loci, and the program dadi 

(Gutenkunst et al., 2009) estimates past rates of population growth from the joint allele 

frequency spectrum of two or three populations. Both of these programs are computationally 

intensive and analysis for more than a few populations is infeasible.

Most statistics applied to subdivided populations do not provide information about 

asymmetries. FST and most genetic distances are defined in such a way that they are 

commutative (i.e. FST between populations A and B is the same as FST between B and A), 

and hence the value depends only on the amount of migration, not whether migrants moved 

mostly from A to B or from B to A. Clustering algorithms can produce groupings of 

populations that can be interpreted as describing an expansion, but expansion-specific 

information is lost in the process and the results of clustering analysis is often sensitive to 
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tuning parameters such as the number of clusters. For principal components analysis, the 

view that the first principal component axis follows the direction of expansion (Menozzi et 

al., 1978) has recently been challenged (DeGiorgio and Rosenberg, 2012; François et al., 

2010; Novembre et al., 2008), and it has recently been shown that, depending on the 

parameter values and the locations of the populations sampled, the first principal component 

axis may be parallel to or orthogonal to the axis of expansion, or at an angle in between.

Population genetics theory has shown that a range expansion can be detected from the 

characteristic reduction in genetic diversity with increasing distance from the origin of the 

expansion (Austerlitz et al., 1997; DeGiorgio et al., 2009; Edmonds et al., 2004; Hallatschek 

et al., 2007; Ramachandran et al., 2005; Slatkin and Excoffier, 2012). The reason is that the 

succession of founder events during the expansion causes the progressive loss of genetic 

variants. In extreme cases, this can lead to relatively rapid fixation of neutral or even 

deleterious alleles, a process called allele surfing (Hallatschek et al., 2007; Klopfstein et al., 

2006). The prediction of decreasing diversity has been confirmed by comparing the numbers 

of mtDNA haplotypes found in Southern European refugia and in central Europe (Taberlet 

et al., 1998). The same pattern can also been seen in humans where both a reduction in 

heterozygosity and an increase in linkage disequilibrium with increasing distance from the 

presumed origin of the expansion in Africa can be seen (Ramachandran et al., 2005).

In addition to creating a gradient in genetic diversity, range expansions tend to create clines 

in the frequencies of neutral alleles, with the frequency increasing on average in the 

direction of the expansion (Slatkin and Excoffier, 2012). An intuitive reason for this pattern 

is that each founder event results in additional genetic drift, and populations further away 

from the origin of expansion will therefore have experienced more drift. This can be seen 

from the following argument: The expected frequency of a neutral allele in the newly 

founded population is the same as in the source population. But some alleles will have zero 

frequency in the new population. Therefore, the average frequency of alleles in the newly 

founded population, given that they have non-zero frequency is expected to be higher than in 

the source population, thus creating the cline. This observation provides the foundation for 

our method of detecting range expansions.

In this paper, we introduce a statistic, the directionality index ψ, defined for pairs of 

populations. ψ is sensitive to patterns created by range expansions because it detects the 

allele frequency clines created by successive founder events. We show, using simulations, 

that the expectation of ψ is zero in an equilibrium isolation-by-distance model, and that its 

expectation is positive in the direction of the expansion. We also show that, using multiple 

samples, ψ can be used to infer the origin of a range expansion and the locations of barriers 

to expansion. We explore the power and robustness of our methods and finally apply it to 

human genetic data.

Results

In this section, we define the directionality index, give an intuitive explanation and discuss 

some of its properties. We will show that the directionality index is sensitive to recent range 
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expansions in a one or two dimensional stepping-stone model, and then explore some more 

advanced applications.

Definition Of The Directionality Index

Consider two samples of size n, n ≥ 2 taken from two subpopulations S1, S2. Each sample 

consists of L biallelic markers (e.g. SNPs) that are shared between S1 and S2. The 

directionality index is defined as

(1a)

where f̄(S) is the average allele frequency of all derived alleles in population S, and  is the 

number of copies of the derived allele at locus l in the sample from population S. It is 

important that the average and the sum are over only those alleles that are present in both 

populations; sites where either population is fixed for the ancestral copy are excluded. 

Equivalently, ψ can also be defined in terms of the two-dimensional site frequency spectrum 

(2D-SFS):

(1b)

where fij denotes the proportion of SNP in the sample that are at frequency i in S1 and at 

frequency j in S2, and the SFS is normalized such that

This normalization is unusual in that allels private to either of the two populations are 

excluded. In the special case where we compare two diploid genomes, n = 2 and equation 1b 

reduces to

(1c)

These three definitions are equivalent and represent different interpretations of the 

directionality index. To aid intuition, we discuss them briefly. Equation 1a corresponds to 

the model we introduced in the introduction; we compare the average allele frequencies in 

the two populations. Because the population further away from the expansion origin is 

expected to have experienced more genetic drift, its alleles are expected to be at a higher 

frequency on average. Thus a positive ψ indicates that f̄(S1) > f̄(S2) and that S1 is further away 

from the origin of the expansion than S2. If both populations have experienced similar 

amounts of genetic drift, then the average frequencies of shared alleles will be equal, ψ ≈ 0 

and we will not detect an expansion. Equation 1b is based on the SFS, and we see that ψ will 

be positive if fij is usually greater than fji. Thus, we are comparing the SFS entries that are 
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reflected along the x = y diagonal, and the directionality index measures the “skew” in the 

2D-SFS. If there are more SNP that fall in the upper left triangle of the SFS (where j > i), ψ 

will be negative, and we infer an expansion from S1 to S2. The opposite conclusion will be 

drawn if there is an excess of SNP in the lower right triangle, and if the SNP are distributed 

symmetrically around the x = y diagonal, ψ will be zero. Much of the paper will be focused 

on the case where each population is represented by a single genome, a case that will be 

particularly common in genomic studies. In that case, equation 1b reduces to 1c and we are 

simply comparing the abundance of SNP fixed for the derived allele in sample S1 and 

heterozygous in S2 to the number heterozygous in S1 and fixed in S2. If either number is 

significantly larger than the other, we infer expansion in the direction of the population with 

the larger number. It is also worth comparing the computation times. Equation 1a scales 

proportionally to the number of loci in the sample, whereas equation 1b scales with the 

square of the sample size if the site frequency spectrum has been previously calculated. As 

this is often required for calculation of other statistics such as FST, equation (1b) should be 

used for data sets where L ≫ n2. It is important to note that we have to assume that the 

sample sizes are the same in the two populations we are comparing. The reason is that the 

probability that an allele is absent in a sample is a complicated function of the sample size 

and the expected site frequency spectrum, and cannot be easily computed. When there are 

samples of unequal size we downsample the larger sample to the size of the smaller sample.

Determining Whether A Range Expansion Occurred—We first test the power of ψ 

to distinguish pairs of populations sampled from a recent range expansion to pairs of 

populations sampled under isolation-by-distance at equilibrium in a 1D-model. Figure 1 

shows that FST increases at approximately the same rate under an equilibrium stepping-stone 

model with only isolation-by-distance (Panel A) and a model with a range expansion (Panel 

B), indicating that the two scenarios are comparable. We see that ψ is nearly zero in the 

isolation-by-distance model, regardless of the distance between the samples. In contrast, ψ 

increases with distance under the expansion model. Interestingly, ψ increases almost linearly 

with the distance between the origin and the population sampled, a fact we exploit later to 

infer the origin of the expansion. We also plotted the heterozygosity, a statistic that is also 

expected to be constant under an equilibrium model (Durrett, 2008) and decreasing under an 

expansion (Austerlitz et al., 1997; Ramachandran et al., 2005). However, our simulations 

show that heterozygosity is larger in the center of the habitat than near the boundaries 

because of the boundary effects. This is in contrast to most theoretical results (Durrett, 

2008), which either assume either a circular model or an infinitely long stepping stone 

model, and where the heterozygosity is independent of the deme sampled. This observed 

gradient in heterozygosity has been observed previously and has been explained by longer 

coalescence times for a sample taken close to the boundary (Wilkins and Wakeley, 2002). It 

is also worth noting that this effect is much weaker in a two dimensional population.

Similar results for FST and ψ were obtained in 2D (Figure 2). FST is slightly larger in the 

case of a range expansion than in the isolation-by-distance model (Panels A and C), but 

qualitatively we see an increase of FST with distance under either model. The pattern for ψ, 

however, is again different (Panels B and D): under the isolation-by-distance model, ψ < 

0.01 for almost all comparisons, with the exception of a few demes that are at the boundary 

Peter and Slatkin Page 5

Evolution. Author manuscript; available in PMC 2015 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the simulated region. In contrast, the magnitude and sign of ψ nicely illustrate the effect 

of the range expansion. ψ is zero only for demes that are very close to each other or pairs of 

demes equally far away from the expansion origin. The latter is due to symmetry: two 

samples that are an equal distance apart from the origin will have a symmetric SFS, resulting 

in a ψ close to zero.

In Figure 3 we show the effect of the most important parameters on our ability to reject the 

null hypothesis of equilibrium isolation-by-distance for pairs of samples of size two. For all 

parameters, we find that using the directionality index results in higher power than 

comparing differences in heterozygosity, while false-positive rates are low and roughly the 

same for the two methods. We find that we have comparatively little power to reject the null 

hypothesis if the two sampled individuals are close to each other(Panel 3A). This is 

expected, since there are fewer founder events separating the two individuals. Therefore we 

expect ψ to be lower for nearby populations, as shown in Figures 1 and 2. Panel B shows 

that a moderate number of shared SNP is necessary, i.e. more than one thousand, to get high 

power to reject equilibrium isolation-by-distance. In addition, we find that slow expansions 

are harder to detect than rapid expansions, and more recent expansions are easier to detect 

than expansions that happened a longer time in the past (Panels C and D). Neither of these 

findings are unexpected; after an expansion, genetic drift will affect the loci in both 

populations equally. The number of shared SNP that are due to the range expansion will 

decrease with time and be partially replaced by SNP that only experienced the equilibrium 

population structure and hence do not carry a signal of the expansion. Similarly, if the time 

between expansion events is large, the founder effects caused by the expansion will become 

less important relative to genetic drift that occurs between expansion events, weakening the 

signal of the expansion. For these slow expansions, the power of heterozygosity to detect an 

expansion decays much faster than the power of ψ. Finally, we note that the false positive 

rate, denoted in grey and pink in Figure 3, is independent of both the distance between loci 

and the number of SNP for both ψ and H.

Inferring The Origin Of A Range Expansion

In addition to showing that a range expansion occurred, the results in Figures 1 and 2 

suggest that spatial patterns in pairwise values of ψ can indicate the origin of an expansion if 

more than two populations are sampled. For this purpose, we employ a method commonly 

used by engineers in problems of localization and navigation (Gustafsson and Gunnarsson, 

2003), called Time Difference of Arrival location estimation (TDOA). TDOA methods are 

used in remote sensing and to locate cell phones (Gustafsson and Gunnarsson, 2003). The 

key assumption of the TDOA algorithm is that the magnitude of a pairwise statistic between 

two sample locations i and j is proportional to the difference in distance from i to the origin 

and the distance from j to the origin. If i is very close to the origin and j far away, the TDOA 

statistic will be large, but if i and j are at the roughly the same distance from the origin, then 

the TDOA statistic will be close to zero. In engineering applications the TDOA statistic is 

the time difference between the arrival of a signal emitted from different sources (hence the 

name). In our application, ψ takes on the role of the time difference with the implicit 

assumption that the magnitude is proportional to the difference in distances of the two 

samples from the origin. To illustrate, we first consider the special case of ψij = 0. Assuming 
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that we have already rejected isolation-by-distance in favor of a range expansion, we know 

that i and j are equally far from the origin and the origin must therefore lie on the line 

perpendicular to the line through i and j. If we had three or more samples all at the same 

distance from the origin so that the pairwise ψ values are all zero, we could infer the origin 

was at the center of the circle passing through the three points.

In general, however, ψij will be non-zero. In that case, we know from elementary geometry 

that the set of candidate points based on a one pair of samples is not a straight line, but a 

hyperbola with the sample locations as its foci. (see Figure 4). For samples from k locations, 

we calculate ψ for k(k − 1)/2 pairs and hence obtain k(k − 1)/2 hyperbolas. In a perfect, 

noiseless world, all hyperbolas would intersect in a single point, the origin of the expansion. 

In practice, genetic data is stochastic and we have to estimate the location of origin. To do 

this, we interpret each hyperbola as a non-linear equation with three unknowns, the sample 

coordinates x, y and the speed of expansion v. v is a nuisance parameter that describes how 

much the allele frequency increases per unit distance from the origin. For more than three 

samples the system is over determined and, rather than solving the system of equations 

explicitly, we use weighted non-linear least squares.

We first illustrate this approach on simulated data, where we sample a regular grid (Figure 5. 

We simulated a range expansion in a 101 × 101 stepping-stone model. In all simulations, we 

chose the coordinate system such that each deme corresponds to one unit of distance. The 

start of the expansion is in deme (25,35), indicated by the grey dotted lines in Figure 5. The 

direction of the arrows plotted in Figure 5 indicate the sign of the pairwise ψ-value, between 

adjacent samples on a grid, and the thickness of each arrow corresponds to the magnitude of 

ψ. A missing arrow denotes a non-significant ψ value. In Panel 5A we performed a 

simulation under an equilibrium isolation-by-distance model. We see that in this scenario, 

only 11 out of the 60 pairwise comparisons are significant; all of them point towards the 

corners and are due to the boundary effects of the simulations. The red ellipse is a 95% 

confidence ellipse of the inferred origin. Under the isolation-by-distance model, this is 

located in the center of the population, illustrating that the TDOA approach will yield an 

answer even if there is no expansion has occurred, so it is important to first test if an 

expansion has actually occurred. From Panels B–D we see that the expansion signal is 

clearly portrayed by the directionality indices and we get high confidence in the estimated 

origin. In fact, the confidence region is so narrow that the ellipse is barely visible in Panel B. 

The confidence region becomes larger when we reduce the number of samples. Furthermore, 

we see in Panels C and D that the origin is slightly biased towards the center of the 

population. This is again due to a boundary effect, and goes away if we take all samples at 

least 10 demes away from the boundary of the population.

To assess the properties of this method more systematically, we report the root mean 

squared error (RMSE) under several scenarios (Figure 6). The RMSE is the square of the 

Euclidean distance between the estimated origin and true origin. We also compare our 

method to the method of Ramachandran et al. Ramachandran et al. (2005), who used a linear 

regression of the heterozygosity on the distance to a set of candidate origins. Their inferred 

origin of the expansion is the point with the highest associated regression coefficient, 

conditional on the slope of the regression curve being negative. Most data in Figure 6 was 
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simulated with a fairly rapid expansion; the time between subsequent expansion events was 

set to 0.001 coalescence units, so that the complete expansion was completed in 0.13 

coalescence units. This speed is roughly that of the out-of-Africa expansion of humans. For 

these parameters (Figure 6A–D) the two methods have similar performance, with only 

marginal improvements in how the methods perform with different amounts of data. We 

find that with adequate numbers of samples and data, the RMSE for both method is around 

four, with less than one distance unit of difference between the two methods. Overall, the 

ideal amount of data for this method lies around 20 diploid samples and 7,000 independent 

SNP. Having more data will not substantially improve performance. For the set of 

simulations with increasing numbers of SNP, we also tested the effects of sampling on a grid 

versus taking samples from random locations. The latter scenario is probably closer to real 

sampling schemes. Interestingly, we found only negligible differences, indicating that the 

sampling locations are only a minor issue unless the sampling locations are very skewed (for 

example if they all lie on a transect).

Changing the position of the origin has little effect on the RMSE for the first 30 distance 

units, indicating that the method is accurate if the origin is sufficiently far away from the 

boundary. If the origin is outside the region sampled, the the performance is significantly 

worse. This has two causes: first, we would expect it to be easier to infer the origin if it lies 

in the middle of the sample, as compared to an origin that is far from all samples. This part 

also explains the difference between samples taken on a grid and random samples: In the 

grid, the corners are systematically sampled (since we force a grid sample to be there), 

whereas in many random samples there may be fewer samples on one side of the origin than 

on the other, resulting in a loss of accuracy. A second factor resulting in reduced accuracy 

are again boundary effects, which skew the effect of the expansion if samples happen to be 

close to the boundary.

We next focus our attention on the effect of varying the parameters of the expansion (Figure 

6C–F): The number of founders (Figure 6D) has an almost linear effect on the estimation 

accuracy. Fewer founders imply a stronger founder effect and hence a stronger signal of 

expansion (Slatkin and Excoffier, 2012), which makes the origin easier to detect. We find 

the biggest difference in how our method performs in comparison to the Ramachandran 

method is when the expansion is slower, or when we want to detect an expansion that 

occurred at more times in the past. Interestingly, our method has almost the same accuracy 

for different expansion speeds, whereas the Ramachandran method is less accurate if the 

expansion is slower. Also, we find that the heterozygosity gradient disappears soon after the 

expansion has finished (6F), whereas the ψ retains the signature of the range expansion for 

much longer.

Adding Environmental Complexity

The previous section assumes an idealized population in a homogeneous habitat. In practice, 

however, habitats are heterogeneous and barriers to gene flow and range expansion often 

exist. In the following sections, we show how our method performs in slightly more 

complex scenarios. First, we allow demes with different population sizes. While we kept the 

mean size of demes the same, we followed Wegmann et al. (2006) in drawing deme sizes 
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from a gamma distribution. Next, we include barriers to dispersal that affect both the initial 

expansion and gene flow following the expansion. We illustrate how we can use algorithms 

from graph theory to locate barriers. Finally, we model an expansion starting from multiple 

origins.

Heterogeneous Population Sizes—The effect of variance in deme size on 

demographic expansions was explored by Wegmann et al. (2006). They found that 

heterogeneous populations have a higher rate of population differentiation between demes, 

and predicted that detecting range expansion would be more difficult because of the 

increased noise. Our simulations confirmed this prediction but only if there is substantial 

variation in deme size (Figure S1). We found that heterogeneity in deme size has little effect 

if the variance in deme size is low, with RMSE only differing slightly from the case with 

equal deme sizes. A variance of 0.5 in deme size, for example, corresponds to a size 

difference of around two orders of magnitude. But the average RMSE for the location 

estimate only increased to 5.43, compared to 4.57 in a comparable model without variation 

in deme size. However, this value corresponds to some kind of “tipping point”: when we 

further increase the variance in deme size, some deme sizes will become effectively zero in 

size and this greatly reduces the accuracy of the estimated origin.

Barriers—We can use pairwise directionality indices to gain qualitative information about 

colonization paths, i.e. the corridors through which the population expanded. To do so, we 

interpret the matrix of pairwise values of ψ as the adjacency matrix of a graph. A positive ψ 

between populations S1 and S2 is interpreted as meaning “Population S2 was colonized after 

population S1” and can be visually represented by an arrow between S1 and S2. To improve 

the visual representation of the graph, we apply standard algorithms to remove some of the 

edges. In particular, we apply the transitive reduction algorithm (Aho et al., 1972) to find the 

graph with the fewest edges that retains the connectivity of the original graph. If ψ is 

positive between populations S1 and S2, but there is also an indirect path with ψ > 0 when 

comparing S1 and S3 and S3 and S2, we remove the direct connection from S1 to S2. This is 

justified by noting that colonization of S2 through S3 is more parsimonious than colonization 

of S2 both through S3 and directly from S1. We obtained a further reduction by computing a 

maximum spanning tree (Korte and Vygen, 2008), which reduces the graph to n − 1 edges, 

where n is the number of sample locations. The maximum spanning tree identifies major 

migration paths, and does not cross strong barriers to expansion and gene flow (Figure 7). 

Furthermore, we can obtain an ordering of all samples by simply summing all ψ values that 

sample is involved in:

(2)

The smallest value of ψi indicates the sample taken closest to the origin, and the largest 

value of ψi indicates the sample furthest along the expansion. In Figure 7B we show that 

both the maximum spanning tree and the ordering are useful qualitative tools to identify 

barriers.
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Multiple Origins—Range expansions may have more than one origin. A classical example 

is the colonization of Central Europe after the last glacial maximum. Species with Southern 

European refugia in the Balkan Penisula, Italy and the Iberian peninsula followed the 

receding glaciers and explain many biogeographical pattern we observe today (Schmitt, 

2007). A straightforward way to apply our method to such expansions is to first estimate 

which populations were colonized predominantly from each potential origin, and then use 

only those populations to infer the location of each origin. There are several ways to assign 

sampled individuals to clusters corresponding to a each origin. In classical studies, often 

mtDNA haplotypes were used for this purpose (e.g. (Hewitt, 1999; Taberlet et al., 1998)), 

but programs such as STRUCTURE (Pritchard et al., 2000) or simple clustering based on 

the observed polymorphism frequencies may yield more accurate results. In our simulations, 

a simple K-means clustering algorithm was able to correctly identify the number of clusters 

in all cases, even when the two founder populations were drawn from the same original 

population. The resulting estimates of the locations of the origins are slightly less precise 

than with a single origin (Figure 8), but that is to be expected because there are fewer 

samples contributing to the location estimate for each origin. Also, the estimates were worse 

when the two origins were close together.

Application

Human Diversity—We applied our method to a data set from 55 human populations from 

the Human Genome Diversity Panel and HapMap III (Altshuler et al., 2010; Cann et al., 

2002; Fumagalli et al., 2011). The results are given in Figure 9. We calculated ψ and its 

standard error for all pairs of populations and transformed this into a Z-score. As expected 

from a data set with several hundred thousand loci, the vast majority of comparisons were 

highly significant, with a median absolute Z-score of 28.1, and a mean absolute Z-score of 

41.9 across all comparisons. Globally, we could detect four major clusters: i) Africans, ii) 

Europeans and Pakistani, iii) East Asians and iv) Native Americans. Here, a cluster is 

loosely defined as a group of sampled populations that all show the same signal when 

compared to other groups of populations. For example, all 450 comparisons made between 

African and Non-African populations showed evidence for expansion out of Africa, 

consistent with the out-of-Africa hypothesis. Similarly, with few exceptions all comparisons 

between Europeans and Native Americans showed that Europe was colonized before the 

Americas.

Within Africa, we found all comparisons to be significant, and all pairwise ψ values 

agreeing on a single origin of the expansion. The San people were the only population that 

had positive ψ values when compared to all other populations, indicating that they are 

closest to the origin. They are followed by the Biaka- and Mbuti-pygmies, which are have 

negative ψ values with the San. This is followed by the southern Bantu sample, and a cluster 

consisting of Yerubans, Luhya, Mandenka and Northern Bantu, each having a negative ψ 

with the others previously mentioned, and positive values for all other populations. The 

African populations furthest from the origin were the Maasai and Mosabite, the latter being 

very distinct from the sub-Saharan populations.
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The closest outside Africa are the Bedouin and Palestinian populations, both from the 

Middle East. The third Middle Eastern population present in our data, the Druze, fall in a 

larger group containing almost all European, Pakistani and Indian populations. Within 

Europe, the three Italian population all have non-significant ψ scores with one another, but 

are found to be ancestral to the other European populations. They are followed by the 

French and French-Basque, which also cannot be distinguished, and the Orcadian, Adygei 

and Russians. In Pakistan, we find the Makrani to be the most ancestral population, followed 

by the Brahui and Balochi, Sindhi, Kalash and Burusho. It is noteworthy that this list 

corresponds to their distances from Africa, with the exceptions that the Brahui and Balochi 

are switched, and the Hazara are not in the main Pakistani cluster, but rather form a distinct 

group with the Uygur. Besides the Uygur, all other East Asian populations form a single 

large cluster with very little resolution. Clearly distinct from this cluster are the Papuans and 

Melanesians, which are similar with asymmetry between them(ψ = 0.0019, SEψ = 9.2e − 4, 

Z = −2.05). They are closer to the African populations than to the East Asian populations, 

but further away than the Pakistani and European populations.

Finally, Native American populations form a distinct cluster, which are strongly separated 

from all other populations. Within the Native American populations, we find evidence of a 

North to South colonization pattern with the Pima population being closest to the Eurasian 

populations, followed by the Maya and Colombians. The most distant populations are the 

South American Karitiana and Surui, which have a nonsignificant pairwise ψ between them.

We also tested our ability to infer the origin of humans using the TDOA approach. As 

continents most likely act as strong migration barriers, we did not use the TDOA approach 

on the entire HGDP data set. Instead, we applied our method to the data set of Henn et al. 

(2011) which contains 30 African populations. We estimate an origin of the Human 

expansion at 30° S 13° E, which lies in central South Africa, closest to the location of the 

San sample (28.5° S 21° E and 22° S 20° E).

Discussion

We introduce a new statistic, the directionality index ψ and showed that ψ can be used to test 

for a range expansion and to characterize it. Although we have focused on range expansions, 

ψ is sensitive to other deviations from symmetric migration. While a range expansion might 

be a plausible explanation in many cases, alternative scenarios such as a source-sink 

population structure or a large differences in effective population sizes should also be 

considered. One of the main advantages of the directionality index is that the assumptions 

and limitations of the approach are easy to discern: the directionality index is zero if the 2D-

SFS is roughly symmetric about the diagonal. This is certainly true under most equilibrium 

models considered in theoretical studies, such as island and stepping stone models, 

particularly as the boundary conditions in the latter are typically chosen such that the model 

is symmetric. The directionality index can be used to determine how appropriate these 

models are for a given data set. If ψ differs from zero then care should be taken in applying 

methods that are based on these theoretical models. On the other hand, if ψ is close to zero, 

we can interpret this as justification for using the powerful theoretical results for these 

models (Durrett, 2008).
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In this regard, the directionality index can be seen as a “first step” analysis that can be 

computed very easily, is able to answer very broad questions about a data set and may act as 

a guide to what parametric models might be employed, e.g. Approximate Bayesian 

Computation (Beaumont et al., 2002; Wegmann et al., 2010) or dadi (Gutenkunst et al., 

2009). We have also shown how we can introduce the physical location of the samples in 

our inference framework. In many cases, natural populations are well described by a 

continuous distribution (Guillot et al., 2009; Rosenberg et al., 2005), and as we show in the 

TDOA analysis, using a simple statistic together with the physical locations can result in a 

powerful method. Our approach is also different from most other methods dealing with 

spatial data in that it explicitly assumes a non-stationary population. In this paper, we link 

the ancestral demographic process of a range expansion to the observed patterns of genetic 

diversity. While the effect of the expansion on FST appears to be quite small, our ψ statistic 

can be used to distinguish between equilibrium and non-equilibrium models. Finally, we 

show how we can extend our method to deal with more realistic landscapes. Whereas the 

TDOA analysis is not robust to large barriers of gene flow, interpreting the pairwise ψ 

statistics as a graph can unmask important details of a species’ history.

Simulation Results

We find that ψ is well suited to distinguishing between isolation-by-distance and range 

expansion when demes are sufficiently far apart and the range expansion is recent and 

occurs at a fast rate. These restrictions are not surprising. Geographically close demes will 

be genetically more similar, regardless of their history, and historical processes should 

therefore be harder to distinguish. That a recent expansion is easier to detect than an older 

one is also easily explained by the eventual convergence to equilibrium isolation-by-distance 

pattern, and similarly, a rapid range expansion leaves less time for genetic drift to blur the 

patterns created by the range expansion. Lastly, increasing the amount of data will increase 

the power to distinguish asymmetric from symmetric processes as each SNP contributes 

only a little information about the history of dispersal. In all cases, our ψ statistic 

outperforms ΔH. From the analyses of the stepping-stone model we see one of the main 

differences between ψ and FST. In an isolation-by-distance model, as the distance between 

the sampled locations increases, FST will increase but ψ will remain small. Again, this 

makes sense intuitively. The number of shared genetic variants decreases with distance, and 

hence FST increases. However, this reduction in shared polymorphisms is symmetric, and 

hence will have no effect on ψ. The pattern is different in the model of a population 

expansion: when comparing with a sample from the origin of expansion, both FST and ψ 

increase with distance. The signal diminishes, when migration rates are high, however. This 

is apparent from Panel D in Figure 1, where ψ is zero for the first ten demes. Here, migration 

had enough time to undo the effect of the range expansion in the demes that are furthest 

away from the origin.

We find that we can get surprising estimates of the location of the origin of an expansion 

from relatively small datasets. 20 samples with around 10,000 SNP yield accurate estimates. 

This result indicates that our method is not applicable to mtDNA or microsatellite data, but 

it should be applicable to transcriptome data, which can be assembled for many non-model 

organisms. It is also worth noting that the error does not go to zero even with larger amounts 
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of data. There are several reasons for this. The linearity assumption we made for the TDOA 

approach is not completely accurate. ψ does not increase perfectly linearly with distance 

especially near boundaries. A more subtle reason is the algorithm we use; although least-

squares is easy to implement and yields good results, other optimization algorithms might 

reduce the RMSE. A third reason is the intrinsic stochasticity of genetic processes. We 

demonstrated how our method can be adapted to incorporate more complex models. We 

showed that small differences in deme size have little effect on our ability to estimate the 

location of origin. If however, the habitat is very heterogeneous our method becomes less 

accurate. This implies that when analyzing species that live in very patchy habitats,, the 

TDOA method should not been applied, because the assumption that ψ is proportional to 

physical distance is violated. In that case, while it is not possible to infer an origin that is 

distinct from the samples, it is nevertheless possible to find the sample that is closest to the 

origin, which in many cases might suffice. Also, we have shown that we can apply graphical 

algorithms to get an accurate representation of the expansion pattern.

Human Genetic Diversity

When analyzing the human data set, we found that i) ψ scores are correlated with distance 

and ii) if population i is closer to Africa than population j, then ψ(i, j) is in most cases 

negative, a pattern that is expected under a model of expansion from Africa. As explained 

previously, the directionality index depends not only on the two population compared but 

also on the history of the other populations. We find the South African San people to be the 

population closest to the origin of humans both using the TDOA method and when 

interpreting all pairwise directionality indices. This supports the interpretation that the origin 

of modern humans is somewhere in Southern Africa (Henn et al., 2011; Tishkoff et al., 

2009). Another interesting result is that the Melanesian and Papuan samples, while very 

similar, show positive ψ values when compared to other East Asian populations, but the 

directionality index is negative when compared to the Pakistani, European and African 

populations. This is consistent with a “two-wave” model of colonization of South-East Asia, 

with a first wave consisting of present-day Papuans and Melanesians, and a second wave 

consisting of the present day Chinese populations(Rasmussen et al., 2011). Our results are 

also in agreement to the results obtained by Hofer et al. (2009), who analyzed the HGDP 

data set and found that neutral processes might be an explanation for large differences in 

allele frequency between human population groups. Our results support their findings, and 

extend them by giving an explanation on how the increase in derived allele frequencies 

might have arisen.

Methods

Simulations

We implemented a simulator that performs continuous time coalescent simulations on a 

discrete stepping stone model (Kimura, 1964; Malécot, 1950) of finite size. We assumed 

that the backward migration rates were equal between all pairs of adjacent demes and that 

the boundaries were reflecting. We used a modified version of the expansion model of 

(Slatkin and Excoffier, 2012), where an expansion is modeled with a one-generation 

bottleneck of reduced size. In our backward-in-time framework, this corresponds to moving 
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all lineages present in a deme being colonized to a randomly chosen neighboring deme. We 

introduce a founder effect by adding additional coalescence events according to the 

appropriate backward Wright-Fisher transition probability (Page 62 in (Wakeley, 2009)). 

Unless noted otherwise, all expansions were done with a founder size of 200. Once the final 

deme is reached, an regular island model coalescent is run where each island corresponds to 

a founder population (in most simulation, the number of islands is one).

Throughout this paper, we simulated unlinked SNP using an importance sampling scheme. 

After generating 1,000 gene trees, we calculate the appropriate multi-dimensional site 

frequency spectrum, where each sampled population corresponds to a dimension. We can 

then draw SNP with replacement from this site frequency spectrum.

The parameters used for the majority of the power simulations are as follows: We simulated 

on a 101 × 101 stepping stone model, with deme coordinates starting at (−50,50) at the 

lower left corner and (50,50) in the upper right corner. Each deme exchanges migrants to the 

neighboring demes to the north, south, east and west at scaled migration rate of M = 2Nm = 

1. For the power simulation, we sampled a single diploid individual each from two colonies 

at (−25,−25) and (−25,25). For the TDOA simulations we simulated one individual each 

from a deme on a quadratic grid between (−30,−30) and (30,30), with 36 samples in total. 

This corresponds to a distance of 12 demes between any two sampled demes. We usually 

generated 1,000 independent coalescent trees and then used importance sampling to generate 

100,000 SNP from the population, conditioning on them being shared between at least two 

of the samples. In the case of a range expansion, the standard point of origin was set to 

(−15,−25) and the expansion occurred at a rate of one expansion event every 0.001 

coalescence units, with the expansion being observed 0.13 coalescent units after it started, 

where coalescent units are measured on the time scale of a local deme. These parameters 

were chosen to roughly correspond to the human out-of-Africa expansion: if we assume a 

local human population size of N ≈ 10, 000 and a generation time of 25 years, this 

corresponds to an expansion that started 65,000 years ago. The directionality index ψ and 

FST were calculated in Python; for ψ we used equation (1b), and FST was estimated using 

Reynold’s estimator (Reynolds et al., 1983). Note that these are only baseline parameters, 

and exploring the effect of changing these parameters was the purpose of our power 

simulations.

Various significance tests can be used to determine the significance of ψ between two 

populations; for the case of n = 2 in both samples we can simply perform a binomial test on 

the absolute frequencies f21 and f12. If their proportions differ significantly from 0.5, we can 

reject the null hypothesis of symmetric migration between the two demes. When comparing 

samples of size n > 2, we can generate a null distribution using a permutation test, i.e 

randomly assigning the allele frequencies for each SNP to either population. However, both 

these tests will underestimate the variance in the data if SNP are not in linkage equilibrium. 

In that case the “effective” number of loci will be lower than the actual number. To take 

linkage into account we use a computationally more computationally intensive block-

jackknife approach (Busing et al., 1999; Reich et al., 2009) to analyze the human data.
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To generate data for the 1D stepping stone model analyzed in Figure 1, we simulated a 201 

× 1 habitat, with scaled migration rates M = 1, 10 between adjacent demes. Sampling was 

done in demes −i/2 and i/2, with the center deme having coordinate 0. In case of range 

expansions, the expansion started in deme −i/2.

SNP ascertainment may influence our results, because most ascertainment schemes favor 

high frequency alleles in the populations where the ascertainment was performed. To assess 

the effect of ascertainent bias on the value of ψ, we performed simulations in an isolation-

by-distance stepping stone model with samples at coordinates (0,0), (10,0), (20,0), (30,0), 

(40,0), (50,0) as well as (0,10) and (15,10) and then computed ψ between the (10,0) and 

(20,0) sample. We then simulated ascertainment by selecting a set of population, and 

rejection sampled SNP so their 1D-SFS followed a Beta(2,4/3) distribution, which roughly 

matches the SFS in the HGDP data set and is very different from the expectation without 

ascertainment bias. We chose this ascertainment scheme as the original ascertainment 

scheme for HGDP is unknown. If ψ differs significantly from zero, then we know that 

ascertainment is important. Results are given in Figure S2; ascertainment is important if it is 

performed in one of the populations that we calculate ψ for. However, the effect of 

ascertainment is negligible if the population we calculate ψ for are different from the 

ascertainment population, even if the ascertainment population is much more closely related 

to some populations than to others.

Estimating the origin of a range expansion

We use a time-difference of arrival (TDOA) approach (Gustafsson and Gunnarsson, 2003) 

to estimate the origin of a range expansion. TDOA was originally used in naval navigation 

during the Second World War, and is currently widely used to solve localization and 

navigation problems. It is based on the assumption that a single source emits a signal that 

decays with increasing distance from the origin. For range expansions, this signal is the 

difference in frequency of shared alleles. At the origin, the allele frequency is expected to be 

lowest (Slatkin and Excoffier, 2012) and to increase approximately linearly with distance. 

However, since we do not know the allele frequency at the origin, we have to use the 

indirect approach by comparing pairs of populations. To be precise, if we know that shared 

alleles have a lower frequency at point Si compared to point Sj, then we know that Si is 

closer to the origin than Sj. If the habitat is two-dimensional, however, this does not tell us 

the direction of the expansion. Let ||Si, Sj|| denote the Euclidean distance between two points 

Si and Sj. Then,

(3)

where O denotes the unknown origin ψi,j is the directionality index between samples Si and 

Sj and v is a constant that links space to allele frequency (i.e how much does the allele 

frequency change per unit of space). In words, ψi,j is approximately proportional to the 

difference of the distances ||Si, O|| and ||Sj, O|| (see also Figure 5). We assume that the 

sampling locations of Si and Sj are known without error, and that ψi,j can be estimated from 

genetic data, along with its sample variance Var(ψi,j). We estimate the variance by doing 

1,000 bootstrap replicates on the SNP. The unknowns that remain are the coordinates of the 
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origin O and the proportionality constant v. To infer these parameters, we solve for ψ, 

subtract ψ from the equation and sum over all pairs of samples:

(4)

In most biological application, space will be two-dimensional and therefore we can make 

this equation more explicit by writing O = (x, y) and Si = (xi, yi). Then,

(5)

The variance terms correspond to weighting terms; terms where ψ has a high variance are 

weighted down, whereas terms where we can infer ψ with high accuracy are given a larger 

weight. We can then find a solution to this equation using nonlinear least squares.

Software

A program to calculate ψ and to estimate the origin of a range expansion is available from 

www.bpeter.org

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Behavior of H (red, full line), ψ (black, dotted) and FST (blue, dashed) in one-
dimensional (A) isolation-by-distance and (B) population-expansion models
Simulations were performed on a 200 demestepping-stone model with scaled migration rate 

M=100 between adjacent demes, and expansion events every 0.001 coalescence units. FST 

increases linearly with distance in both models and ψ is zero in the isolation-by-distance 

model, but increases approximately linearly in the expansion model. Heterozygosity is 

plotted for demes from the center of the population (left) to the border of the habitat (right), 

and given as the difference to the central deme.
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Figure 2. Behavior of FST and ψ in isolation-by-distance and population expansion model
Each panel gives the value of the pairwise statistics FST and ψ under an isolation-by-distance 

model and an expansion model with the expansion starting in the central deme (50,50). 

Simulations were performed on a 101 × 101 deme stepping stone model, and a diagonal 

transect from demes at coordinates (0,0) to (100,100) was sampled, and all pairwise 

statistics were calculated. Black regions correspond to regions where FST and ψ are very low 

(below 1%). The orange and grey regions denote areas with positive and negative ψ, 

respectively. Whereas FST behaves qualitatively similar under both models, the behavior of 

ψ is very different. Under isolation-by-distance, ψ is very close to zero, with some 

deviations due to boundary effects. Under an expansion, however, we see a clear signal for 

all demes, except demes that are very close to each other, or demes that have the same 

distance to the origin, but in different directions.
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Figure 3. True/false positive rates of detecting range expansion
Each panel give the proportion of replicates in which the null model was rejected at the 5% 

significance level. Black circles correspond to ψ under an expansion model and an isolation-

by-distance model, red triangles and plus signs denote simulations correspond to using H to 

distinguish an expansion model and isolation by distance model, respectively. The grey 

dashed line at 0.05 gives the expected proportion of false positives under the null 

hypothesis. Baseline parameters for the simulations were of 2 chromosomes (one diploid 

individual) at each location sampled, with locations a distance of 50 each other. Fixed 

parameters used for generating the data sets are 1,000 independent SNP from one diploid 

individual per sampled deme. Time between expansion events was set to 0.1 (coalescence 

units) and the data was observed immediately after the expansion ended.
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Figure 4. Illustration of the method used to infer the origin of a range expansion
The black and grey points correspond to genetic samples taken, the white point corresponds 

to the (unknown) origin of the expansion. Using the directionality index ψ, we can infer the 

difference in distance from the samples to the origin (dashed lines). The set of all points that 

has the same difference in distance to the origin corresponds to the arm of a hyperbola (red), 

which comprises all candidate points according to ψ and the location of two points. Using a 

second pair of points (the grey and top black point), we can identify a second hyperbola 

(dotted), and find an unique location of the origin. In practice, we use more than three 

sampling locations. Sampling noise will cause the hyperbolas to not intersect in a single 

point and we use a least-squares criterion to estimate the location of the origin.
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Figure 5. Detecting the origin of a range expansion
Each panel corresponds to a 101 × 101 grid of populations that were simulated. The 

expansion began at point (25,35) (indicated by gray dotted lines). Black bordered circles 

indicate sampling locations, black arrows correspond to ψ > 1% between adjacent samples, 

with the direction of the arrow indicating the sign of ψ. Thicker arrows correspond to larger 

ψ. The red ellipse corresponds to the 95% confidence interval of the estimated location of 

the origin. Panel a: no expansion (isolation-by-distance model). Edge effects cause the 

estimated origin to be close to the center of the grid of populations. Panels b–d: Expansion 

with parameters M = 1, t = 0.1 and samples taken every 10th, 20th and 50th deme. While the 

confidence region is larger for smaller numbers of samples, we get a very accurate result 

even when we have only 9 samples.
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Figure 6. Performance of TDOA method
We present the root mean squared errors (RSME) of our TDOA method (black) compare it 

with the method of Ramachandran et al. 2005 (red). Samples taken on a grid ware 

represented by full lines, whereas dashed lines denote samples that were taken from random 

coordinates in the simulated region. Our method is superior when the expansion occurred 

slowly or when it finished some time in the past; but the method perform very similar for 

recent, fast expansions.
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Figure 7. Identifying complex patterns of migration
We simulated data on a S-shaped habitat with two impermeable barriers (Panel A) The 

darkness of the shading is proportional to the arrival time of the expansion, which began in 

deme (20,20). Black circles correspond to locations sampled. In Panel B we show the 

inferred pairwise directionality, with all edges remaining after thinning the graph shown in 

grey, and a maximum spanning tree in red. We also show the inferred ordering of the 

samples as a color gradient of the samples from light (closest to origin) to dark. The barriers 

can be identified from panel B by the absence of any indication of gene flow across the 

barriers and by examining the ordering of the samples.
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Figure 8. Detecting multiple origins
Panel a: We simulated two expansions that originated at the same time from origins 

indicated by the blue crosses. The color gradient in the background corresponds to the time 

of colonization time of each deme. We address the problem of inferring the origin of 

multiple expansions using a two-step procedure. First, we cluster the samples into discrete 

clusters (red and black circles, respectively) and then estimate the expansion signal and 

origins independently for the clusters, resulting in high accuracy for both estimated origins 

(green X) when compared to the actual origins (blue +). The grey triangle denotes the 

estimated single origin if we did not do the two step procedure; it lies approximately half 

way between the two actual origins. The right panel shows the inferred migration patterns 

after a transitive reduction (grey/red arrows) and a maximum spanning tree (red arrows).
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Figure 9. Inference of human migration routes
The figure shows a visual representation of the pairwise directionality indices between 

human populations in HGDP and HapMap. Each line corresponds to the pairwise ψ statistic, 

with thicker and brighter lines corresponding to higher values. Grey and red lines denote 

eastward and westward migration, respectively. Lines with an absolute Z-score below 5 

were omitted.
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