Abstract
The maintenance of a stable extracellular concentration of ionized calcium depends on the integrated function of a number of specialized cells (e.g., parathyroid and certain kidney epithelial cells). We recently identified another G protein-coupled receptor (BoPCaRI) from bovine parathyroid that responds to changes in extracellular Ca2+ within the millimolar range and provides a key mechanism for regulating the secretion of parathyroid hormone. Using an homology-based strategy, we now report the isolation of a cDNA encoding an extracellular Ca2+/polyvalent cation-sensing receptor (RaKCaR) from rat kidney. The predicted RaKCaR protein shares 92% identity with BoPCaR1 receptor and features a seven membrane-spanning domain, characteristic of the G protein-coupled receptors, which is preceded by a large hydrophilic extracellular NH2 terminus believed to be involved in cation binding. RaKCaR cRNA-injected Xenopus oocytes responded to extracellular Ca2+, Mg2+, Gd3+, and neomycin with characteristic activation of inositol phospholipid-dependent, intracellular Ca(2+)-induced Cl- currents. In rat kidney, Northern analysis revealed RaKCaR transcripts of 4 and 7 kb, and in situ hybridization showed localization primarily in outer medulla and cortical medullary rays. Our results provide important insights into the molecular structure of an extracellular Ca2+/polyvalent cation-sensing receptor in rat kidney and provide another basis on which to understand the role of extracellular divalent cations in regulating kidney function in mineral metabolism.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abe T., Sugihara H., Nawa H., Shigemoto R., Mizuno N., Nakanishi S. Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J Biol Chem. 1992 Jul 5;267(19):13361–13368. [PubMed] [Google Scholar]
- Attie M. F., Gill J. R., Jr, Stock J. L., Spiegel A. M., Downs R. W., Jr, Levine M. A., Marx S. J. Urinary calcium excretion in familial hypocalciuric hypercalcemia. Persistence of relative hypocalciuria after induction of hypoparathyroidism. J Clin Invest. 1983 Aug;72(2):667–676. doi: 10.1172/JCI111016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Black B. L., Smith J. E. Regulation of goblet cell differentiation by calcium in embryonic chick intestine. FASEB J. 1989 Dec;3(14):2653–2659. doi: 10.1096/fasebj.3.14.2512193. [DOI] [PubMed] [Google Scholar]
- Brown E. M. Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev. 1991 Apr;71(2):371–411. doi: 10.1152/physrev.1991.71.2.371. [DOI] [PubMed] [Google Scholar]
- Brown E. M., Gamba G., Riccardi D., Lombardi M., Butters R., Kifor O., Sun A., Hediger M. A., Lytton J., Hebert S. C. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993 Dec 9;366(6455):575–580. doi: 10.1038/366575a0. [DOI] [PubMed] [Google Scholar]
- Clemens T. L., McGlade S. A., Garrett K. P., Craviso G. L., Hendy G. N. Extracellular calcium modulates vitamin D-dependent calbindin-D28K gene expression in chick kidney cells. Endocrinology. 1989 Mar;124(3):1582–1584. doi: 10.1210/endo-124-3-1582. [DOI] [PubMed] [Google Scholar]
- Conklin B. R., Bourne H. R. Homeostatic signals. Marriage of the flytrap and the serpent. Nature. 1994 Jan 6;367(6458):22–22. doi: 10.1038/367022a0. [DOI] [PubMed] [Google Scholar]
- Dascal N. The use of Xenopus oocytes for the study of ion channels. CRC Crit Rev Biochem. 1987;22(4):317–387. doi: 10.3109/10409238709086960. [DOI] [PubMed] [Google Scholar]
- Fliegel L., Ohnishi M., Carpenter M. R., Khanna V. K., Reithmeier R. A., MacLennan D. H. Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1167–1171. doi: 10.1073/pnas.84.5.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fray J. C., Park C. S., Valentine A. N. Calcium and the control of renin secretion. Endocr Rev. 1987 Feb;8(1):53–93. doi: 10.1210/edrv-8-1-53. [DOI] [PubMed] [Google Scholar]
- Gamba G., Saltzberg S. N., Lombardi M., Miyanoshita A., Lytton J., Hediger M. A., Brenner B. M., Hebert S. C. Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2749–2753. doi: 10.1073/pnas.90.7.2749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hediger M. A., Ikeda T., Coady M., Gundersen C. B., Wright E. M. Expression of size-selected mRNA encoding the intestinal Na/glucose cotransporter in Xenopus laevis oocytes. Proc Natl Acad Sci U S A. 1987 May;84(9):2634–2637. doi: 10.1073/pnas.84.9.2634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ho K., Nichols C. G., Lederer W. J., Lytton J., Vassilev P. M., Kanazirska M. V., Hebert S. C. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature. 1993 Mar 4;362(6415):31–38. doi: 10.1038/362031a0. [DOI] [PubMed] [Google Scholar]
- Jones S. M., Frindt G., Windhager E. E. Effect of peritubular [Ca] or ionomycin on hydrosmotic response of CCTs to ADH or cAMP. Am J Physiol. 1988 Feb;254(2 Pt 2):F240–F253. doi: 10.1152/ajprenal.1988.254.2.F240. [DOI] [PubMed] [Google Scholar]
- Kanai Y., Stelzner M. G., Lee W. S., Wells R. G., Brown D., Hediger M. A. Expression of mRNA (D2) encoding a protein involved in amino acid transport in S3 proximal tubule. Am J Physiol. 1992 Dec;263(6 Pt 2):F1087–F1092. doi: 10.1152/ajprenal.1992.263.6.F1087. [DOI] [PubMed] [Google Scholar]
- Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Marx S. J., Attie M. F., Stock J. L., Spiegel A. M., Levine M. A. Maximal urine-concentrating ability: familial hypocalciuric hypercalcemia versus typical primary hyperparathyroidism. J Clin Endocrinol Metab. 1981 Apr;52(4):736–740. doi: 10.1210/jcem-52-4-736. [DOI] [PubMed] [Google Scholar]
- Masu M., Tanabe Y., Tsuchida K., Shigemoto R., Nakanishi S. Sequence and expression of a metabotropic glutamate receptor. Nature. 1991 Feb 28;349(6312):760–765. doi: 10.1038/349760a0. [DOI] [PubMed] [Google Scholar]
- Mathias R. S., Brown E. M. Divalent cations modulate PTH-dependent 3',5'-cyclic adenosine monophosphate production in renal proximal tubular cells. Endocrinology. 1991 Jun;128(6):3005–3012. doi: 10.1210/endo-128-6-3005. [DOI] [PubMed] [Google Scholar]
- Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science. 1992 Oct 23;258(5082):597–603. doi: 10.1126/science.1329206. [DOI] [PubMed] [Google Scholar]
- Nemeth E. F., Scarpa A. Cytosolic Ca2+ and the regulation of secretion in parathyroid cells. FEBS Lett. 1986 Jul 14;203(1):15–19. doi: 10.1016/0014-5793(86)81427-2. [DOI] [PubMed] [Google Scholar]
- O'Hara P. J., Sheppard P. O., Thøgersen H., Venezia D., Haldeman B. A., McGrane V., Houamed K. M., Thomsen C., Gilbert T. L., Mulvihill E. R. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron. 1993 Jul;11(1):41–52. doi: 10.1016/0896-6273(93)90269-w. [DOI] [PubMed] [Google Scholar]
- Pollak M. R., Brown E. M., Chou Y. H., Hebert S. C., Marx S. J., Steinmann B., Levi T., Seidman C. E., Seidman J. G. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell. 1993 Dec 31;75(7):1297–1303. doi: 10.1016/0092-8674(93)90617-y. [DOI] [PubMed] [Google Scholar]
- Quamme G. A. Control of magnesium transport in the thick ascending limb. Am J Physiol. 1989 Feb;256(2 Pt 2):F197–F210. doi: 10.1152/ajprenal.1989.256.2.F197. [DOI] [PubMed] [Google Scholar]
- Slatopolsky E., Mercado A., Morrison A., Yates J., Klahr S. Inhibitory effects of hypermagnesemia on the renal action of parathyroid hormone. J Clin Invest. 1976 Nov;58(5):1273–1279. doi: 10.1172/JCI108582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takaichi K., Kurokawa K. High Ca2+ inhibits peptide hormone-dependent cAMP production specifically in thick ascending limbs of Henle. Miner Electrolyte Metab. 1986;12(5-6):342–346. [PubMed] [Google Scholar]
- Takaichi K., Kurokawa K. Inhibitory guanosine triphosphate-binding protein-mediated regulation of vasopressin action in isolated single medullary tubules of mouse kidney. J Clin Invest. 1988 Oct;82(4):1437–1444. doi: 10.1172/JCI113749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takaichi K., Uchida S., Kurokawa K. High Ca2+ inhibits AVP-dependent cAMP production in thick ascending limbs of Henle. Am J Physiol. 1986 May;250(5 Pt 2):F770–F776. doi: 10.1152/ajprenal.1986.250.5.F770. [DOI] [PubMed] [Google Scholar]
- Tanabe Y., Masu M., Ishii T., Shigemoto R., Nakanishi S. A family of metabotropic glutamate receptors. Neuron. 1992 Jan;8(1):169–179. doi: 10.1016/0896-6273(92)90118-w. [DOI] [PubMed] [Google Scholar]
- Trechsel U., Eisman J. A., Fischer J. A., Bonjour J. P., Fleisch H. Calcium-dependent, parathyroid hormone-independent regulation of 1,25-dihydroxyvitamin D. Am J Physiol. 1980 Aug;239(2):E119–E124. doi: 10.1152/ajpendo.1980.239.2.E119. [DOI] [PubMed] [Google Scholar]
- Weisinger J. R., Favus M. J., Langman C. B., Bushinsky D. A. Regulation of 1,25-dihydroxyvitamin D3 by calcium in the parathyroidectomized, parathyroid hormone-replete rat. J Bone Miner Res. 1989 Dec;4(6):929–935. doi: 10.1002/jbmr.5650040618. [DOI] [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]