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ABSTRACT The tertiary structures of globular proteins
have remarkable and complex symmetries. What forces cause
them? We find that a very simple model reproduces some of
those symmetries. Proteins are modeled as copolymers of
specific sequences of hydrophobic (H) and polar (P) mono-
mers (HP model) configured as self-avoiding flights on simple
three-dimensional cubic lattices. The model has no parame-
ters; we just seek the conformations that have the global
maximum number of HH contacts for any given sequence.
Finding global optima for chains in this model has not been
computationally possible before for chains longer than 36-
mers. We report here a procedure that can find all the globally
optimal conformations, the number of which defines the
degeneracy of a sequence, for chains up to 88 monomers long.
It is about 37 orders of magnitude faster than previous exact
methods. We find that degeneracy is an important aspect of
sequence design. So far, we have found that four-helix bundles,
a/ B-barrels, and parallel B-helices are globally optimal con-
formations of polar/nonpolar sequences that have minimal
degeneracy.

The tertiary structures of globular proteins are remarkable in
their great variety and often high symmetries (1-3). But ever
since the atomic structures of the first globular proteins
appeared (4), it has not been clear how the tertiary structures
of proteins are encoded within their amino acid sequences.
Tertiary structures are characterized by hydrogen-bonded
secondary structures, helices, and sheets and by their com-
pactness, which appears to be driven by the burial of nonpolar
amino acids. Based on these and other energetic interactions,
some computer models produce native-like conformations (5).
But because those models have many parameters and cannot
predict the full set of protein structures, it is not yet known
what physical interactions are predominant in real proteins or
what is the minimal model that can predict tertiary architec-
tures.

Here we seek such a minimal model. Motivated by earlier
results showing that helices and sheets can be stabilized by
chain compactness (6, 7) and that the uniqueness of native
structures can be largely encoded within the sequences of
nonpolar and polar amino acids (8, 9), we ask whether the
sequence of polar and nonpolar monomers might be sufficient
to encode tertiary structures. Until now it has not been
possible to address such questions because to do so requires
knowledge of the native states (i.e., conformations of lowest
free energy) for chains longer than about 40 monomers in
three dimensions. We have recently developed a method called
“constrained hydrophobic core construction (CHCC),” which
is based on discrete geometry (10), with which we found
globally optimal conformations for chain lengths up to about
36 monomers (11).

Here we report new developments with CHCC that allow us to
find globally optimal lattice conformations for chain lengths up to
88 monomers in minutes to hours on computer workstations. It
finds lowest energy states about 37 orders of magnitude faster
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than any other method that is currently able to guarantee finding
the global minimum. Thus, we can explore model sequence-
structure relationships for chains long enough to resemble real
proteins. Since the CHCC method finds all globally optimal
solutions, it is unique among existing conformational search
methods in its abilities (i) to establish with certainty the confor-
mations that are true global optima of this model, and (i) to
compute the degeneracies of the global optima. The conclusions
that emerge here are crucially dependent on both of these
capabilities.

The Model

Protein chains are modeled as copolymers of specific se-
quences of hydrophobic (H) and polar/charged (P) monomers
(HP model) (12). An example is as follows: P1 H2 P3 H4 H5
P6 H7 H8 P9 H10 P11 P12 H13 H14 H15 P16 P17 P18 H19 P20
H21 H22 P23 H24 H25 P26 H27 P28 P29 H30 H31 H32 P33
P34 P35 H36 P37 H38 H39 P40 H41 H42 P43 H44 P45 P46 H47
H48 H49 P50 P51 P52 H53 P54 H55 H56 P57 H58 H59 P60
H61 P62 P63 H64 H65 H66 P67. Within a sequence, a run of
monomers of a single type is called a segment. For example,
residues 13, 14, and 15 in the above sequence constitute an
H-segment of length 3. We call a P-segment of length 1 a
P-singlet (see P6 and P9). ,

Chains are configured as self-avoiding flights on three-
dimensional simple cubic lattices. A monomer can make at
most z = 6 contacts with nearest neighbor sites on the simple
cubic lattice. A contact between two H monomers has a
favorable free energy, and the contact free energy for all other
types of contacts is 0. Conformations are native if they have the
lowest free energy—i.e., the maximum number of HH con-
tacts—over all possible conformations. While the HP lattice
model is crude, it has the following characteristics of real
proteins: when the HH attraction is strong, chains fold to a few
native states with nonpolar cores and with secondary struc-
tures [defined by topological measures (13, 14)]. HP lattice
proteins also resemble real proteins in some mutational (15)
and kinetic properties (16). Most importantly for our present
purposes, the lattice model has the same conformational
search problem that proteins have. That is, both proteins and
the HP lattice model have conformational spaces too large to
be enumerated by computer. Because proteins fold to “single”
native states, there are few global minima. Hence, folding
represents finding few global minima on a large landscape. It
is this problem we call the Levinthal paradox. The HP lattice
model has very few global minima conformations, as we will
show. In these respects, the model resembles proteins. The
model does not accurately represent microscopic details of
proteins.

Finding Native Structures of the HP Model by CHCC

We aim to find native structures of any HP lattice model
sequence. The CHCC strategy is as follows (11). We focus on
collections of H-monomers, which we call the “H-core.” These
collections determine the total interaction energy. It has been
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proven that if a conformation has an H-core with the minimal
possible surface area, it is native (11). To find such confor-
mations, the CHCC method systematically introduces geomet-
ric constraints to prune branches of a conformational search
tree. When the method finds a branch that provably cannot
lead to the minimal surface of H-core, the branch is pruned.
The CHCC method first constructs an optimal geometry for
an H-core and then systematically attempts to lay the chain
sequence into it, subject to geometric and energetic con-
straints. Then CHCC tries a different core geometry and
proceeds again.

To compute a “best possible” size and shape for the H-core,
CHCC counts the number of H monomers in the sequence and
constructs the most nearly spherical lattice container for them.
If we first suppose that there were no chain connectivity and
we “pour” all the H monomers into this container, then the
resultant surface of H-core must certainly be a lower bound for
any realizable chain fold of the sequence, since chain connec-
tivity is a constraint that could only lead to a “worse” core than
this (i.e., having larger H-core surface). This gives the first
estimate for the H-core surface area. Second, in optimal
conformations P-singlets must be located at the surface of the
H-core because placing P-singlets at any other locations will
have larger surface (i.e., higher energy) because of burial of P
residues in the core. Third, to avoid burial of P monomers in
the H-core, the H monomers at the center of the core must be
contained in long H-segments of a sequence. Optimal config-
urations will have such “tether” segments configured to begin
at the surface of the H-core, pass through the center, and
return to some other point on the surface. H residues in shorter
H-segments should not occupy these positions because it
would force P monomers to be buried. To form the H-core in
Fig. 1 requires H-segments of length greater than 2. Further-
more, only the H residues in the middle of such segments can
occupy the positions of H14, H31, H48, and H65 monomers,
which are deepest in the core. We now describe a theoretical
treatment that extends earlier work (11) and applies to chains
of lengths approaching those of real proteins.

For illustration here, we limit our discussion to conforma-
tions with no buried P residues in the hydrophobic cores. We
slice the H-core into residue-thick layers (see Fig. 2) and
compute the total surface area by summing up the lateral
surface areas of the layers. Assume we slice the H-core in the
direction perpendicular to the z axis, as shown in Fig. 3. Let the
contribution of the layer to the surface area be p, The
subscript z indicates the location of the layer along the z axis.
Under the assumption of no burial of P residues in H-cores, we
have:

pz = 2[(“2,2 - al,z) + (bz,z - bl,z)]’ [1]

where a3, and a,,; delineate the boundaries of the layer on the
x axis. Similarly, b, and b, ,; define boundaries on the y axis.
Note that p, is independent of the exact shape of the layer—
e.g.,g-and f; in Fig. 3. Let a, b, and ¢ be the sizes of the H-core
in x, y, and z directions. Summing over x, y, and z axes,

c a b
2A+2A+25=%, [2]
z= x= y=

where the factor of two corrects for double-counting each side
of the H-core surface S. The volume of the H-core, V, is

(4 azz
V= El 2 [8.0) — £ 31
z=1 x=ai,z
To avoid burying P monomers, a P-singlet cannot be colin-
ear with its two flanking H residues but must be accommo-
dated by a ““staircase” configuration—for example, H2 and H4
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Fic. 1. (a) A HP lattice model conformation resembling an
a/B-barrel in real proteins. Residues 2-10 are a lattice helix, and
residues 12-16 are a lattice strand. As in real a/ B-barrels, the B-strands
are hydrophobic, protected by the surrounding helices. (b) The ribbon
diagram of the conformation.

in Fig. 1. The number of stairs, J, in layer z in the z direction
is (See Fig. 3)

a2,z—1

Jz = 2 {[1 - 8g,(x+1),g,(x)] + [1 - 8f,(,\'+1),f,(x)]}’ [4]

Xx=ail,z

where for integers k, m, 8, = 1if k = m and 8y, = 0 otherwise.
That is, upon proceeding along g, (or f;), one stair increment
is added if g, changes; no increment is added otherwise. J, and
Jy are defined as in Eq. 4 but for x and y dimensions. The total
number of stairs J; in the H-core is the sum of J;, J,, and J,,
corrected for double and triple counting when there are
overlapping stairs.

Now we give the generalization to the tethering constraint
(11). Let the sequence lengths from an H monomer to the two
terminating P residues in its segment be r; and r,. Let the
lengths of the two shortest distinct paths from a position within
the H-core to a position on its surface be d; and d. To assign
that H residue to occupy that position requires, for an optimal
conformation,

min(r,, r,) = min(d,, d,), (51
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FIG. 2. The layers of an H-core. (a) Each layer is indicated by an
envelope. (b) Exactly the same H-core as in a but the individual
residues are omitted. This is the shape of an H-core. (¢ and d) Two
alternative shapes of the same H-core. The volumes of the shapes are
the same, and the numbers of stairs are nearly equal.

max(ry, r,) = max(d,, d,). [6]

Definingg,andf,forz=1,2,3,...,c,allr; and r; of all H-core
positions are defined. Thus, Eqgs. 5 and 6 relate a sequence to
the shape of its H-core.

Therefore, if the total number of P-singlets is np, then to
construct a native conformation requires that we must mini-
mize S subject to Egs. 5 and 6, while

Ji=np (7]
V=n, [8]

Using the above constraints, we can find H-core geometries
for large subclasses of sequences. For example, it has been
shown (11) that the H-cores with minimal surface area are
close to a cube. Furthermore, if an H-core of minimal surface
area is enclosed by the tightest possible imaginary box, then all
of the P-singlets must also reside inside this box. If the
dimensions of the enclosing box are 4, b, and ¢, then

abc = ny + nyp. 91

The P-singlets often stack on top of one another, forming a
P-edge (for example, see the conformation of P3, P6, and P9

FiG. 3. A layer that is perpendicular to the z axis. Assume the
maximum dimensions of such layers are a and b. In general, a
particular layer may be confined inside (a1,., a2,;) and (b1,z, b2.2); 8:(x)
and f;(x) give the upper boundary and lower boundary of the layer,
respectively.
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in Fig. 1). The more P-edges there are in a given H-core, the
smaller the surface area. Since each P-singlet has two flanking
H residues, these H residues will form two columns of H
residues flanking the P-edge. No other residues can occupy
those positions. The P-singlets within a pattern of sequence
may form a P-edge among themselves—for example, the
pattern “HPHHPHHPH?” (see monomers H2-H10 in Fig. 1).
More details are given in ref. 11.

Demonstrating the CHCC Method: Folding a Small
a/ B-Barrel Sequence

The constraints in the CHCC method are powerful. We
demonstrate this by the example HP sequence given in The
Model section. While the CHCC method can find globally
optimal conformations for any HP sequence, certain se-
quences can be folded without computer enumeration. Here is
an example.

This sequence has 36 H residues and 12 P-singlets. Using Eq.
9, we find that 48 such monomers can be contained exactly
within an enclosing box of dimensions 4 X 4 X 3. This box
potentially describes a minimal surface H-core. Any other
enclosing box can be shown to entail a larger surface area of
H-core (e.g., either 4 X 4 X 4 or 5 X 5 X 3). Since we have
exactly 12 P-singlets, an optimal core, if we can achieve it, must
have four P-edges, and each edge must contain 3 P-singlets.
Furthermore, the 2 flanking H monomers of each P-singlet
must form two surface columns adjacent and parallel to its
P-edge. These eight columns must occupy all of the H-core
surface area in the direction parallel to the P-edges. This is the
z direction in Fig. 1. With this step, we have now preliminarily
assigned 36 residues.

All of the remaining H monomers in the sequence occur as
four H-segments, each of length 3. They must fill the remaining
positions in the H-core. By the tethering rule, the central H
monomers in these segments must fill the center core sites. But
this requirement can be satisfied by more than one configuration.
For example an H-segment can pass straight by H14 as it is
configured in Fig. 1. Or the H-segment could turn sideways at
position H14 and return to the surface at H7 or HS. But the latter
is impossible because all of the side exits are occupied by the
flanking H residues that have already been placed. Consequently,
all four H-segments must lie parallel to one another, and their
ending P residues, e.g., P16, must be placed directly above or
below them in the z direction. This now preliminarily assigns 12
additional monomers.

Next, we introduce the remaining chain connectivity and
consider the exact positions of individual P-singlets. Each
P-singlet occurs in one of four HPHHPHHPH patterns in the
sequence. Each such pattern can form the lattice equivalent of
an amphipathic helix (17) as in H2 to H10 in Fig. 1. The
intervening P residues can readily be placed, producing a
connected chain consistent with all of the prior placements.
Therefore, the conformation has a minimal surface H-core
and thus is native.

Now we show how this process can count global optima. We
show that this sequence has only three native conformations:
(i) the one in Fig. 1, (i{) one in which P1 in Fig. 1 flips to the
right, and (iii) one in which the four a/B units go counter-
clockwise (i.e., H19 goes to the position of H55). We show that
the other potential possibilities, placing H5 instead at the
position occupied by H19 (in Fig. 1) and P6 at the position
occupied by P20, would have been unsuccessful. All of the
ending P residues of the long H-segments—e.g., P12, P16, P46,
and P50—are on P-segments of lengths 2 or 3 and are positioned
in the center of the top (or bottom) of the H-core. They are too
short to connect the top and bottom of the H-core; thus each
segment must reside entirely at the top or bottom. Thus, since all
of the HPHHPHHPH patterns and the H-segments of length 3
are alternately connected in the sequence, all of the ending H
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residues of the HPHHPHHPH patterns must be on the top or
bottom layer. There are two possibilities for each HPHHPHHPH
pattern. Either both of its ends can be in the same layer, or one
end will be at the top and the other at the bottom. The positions
of the P-singlets are fixed. Having both ends in the same layer
entails having every monomer in the pattern in the same layer.
This is clearly unacceptable because the pattern is too short for
sidesteps—e.g., for moving HS to the position of H19 in Fig.
1—because the ending H residues then would not reach their
required positions on the layer at the opposite end. Thus, the only
possible configuration of the HPHHPHHP pattern is an amphi-
pathic helix. Finally, the intervening P-segments are short and
must make small loops at each end. Hence, the only possible
connectivity involves the a/B-barrel conformations shown.

Finding Native Conformations by Computer

We have automated the CHCC method in a computer algo-
rithm. The search is divided into three steps. First, we identify
the possible boxes that can envelop the eventual minimal-
surface-area H-cores. We try all of the possible ways of
distributing the ny H residues to layers. The distributions with
the minimal surface area of the H-core and with a sufficient
number of stairs determine the dimensions of the boxes.

Second, for each such box, we enumerate the possible
detailed shapes of the native H-cores. A given set of layers can
be stacked in different ways. For example, in Fig. 2 b, ¢, and
d, the layers are identical but stacked differently. We examine
all possible combinations of placing an H or P monomer at
each position in the box. The number of computer operations
in this search is far fewer than 225 because of many constraints.

Third, we place residues one-at-a-time to attempt to con-
struct viable conformations. We first assign the P-singlets,
because they should be placed at stairs and are few in number.
Each P-singlet starts a new “thread.” We construct the con-
formation by expanding the threads at positions where there
are the fewest choices. The choices for placing other residues
are limited. For example, an H can only be placed at a depth
in the H-core allowed by the tether constraint. We backtrack
when a dead end is reached. A native conformation is found
when all residues are placed.

The run time for the program, ¢, is dependent on the HP
sequence, but it scales with chain length, L, roughly as

t =~ 0.001D%1.125¢, [10]

where D is the degeneracy of the sequence. On an Apollo
workstation, the program can find native states for any arbi-
trary sequence of up to L = 70 in hours and for sequences of
low degeneracy of up to L = 88 in minutes.

Origin of Tertiary Symmetries

To explore the relationship between sequence and structure in
the model, we have used the CHCC method to fold up HP
sequences for chain lengths from 40 to 88 monomers. We also
apply the CHCC method in reverse [to do “inverse” folding
(18)], where we are given a target structure, and CHCC
designs sequences that fold to it. We now briefly describe an
approach we call “tinkering,” which involves both folding and
inverse folding—i.e., changing both the sequence and the
structure. In tinkering, we (i) begin with a target structure and
tentatively design a sequence; (i) fold the sequence to all of
its native conformations; (iii) modify both the target structure
and the sequence to reduce the degeneracy, if any; and then
(iv) repeat this cycle until it converges on a “good” sequence/
structure pair—i.e., a structure that is encoded in a sequence
of lowest possible degeneracy. In the HP model, most arbi-
trarily chosen sequences will fold to many conformations—
e.g., for some 48-mers, we found degeneracies ranging from
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thousands to millions (19). This may not be unrepresentative
of real amino acid sequences, however, since “designed”
proteins also appear to have broad conformational distribu-
tions (20). Even so, by tinkering we have found a few good
structures that are encoded in sequences that fold to <100
other native conformations. .

Remarkably, these few good structures appear to have some
of the tertiary symmetries found in globular proteins. The
example described above is the closest lattice equivalent to an
a/B-barrel. The sequence shown has a degeneracy of 3. That
is, to within certain internal mirror symmetries, there are only
three globally optimal conformations for this sequence of 67
monomers. Fig. 4b shows that a second class of good structures
is the class of four-helix bundles of different chain lengths; the
one shown has a degeneracy of 67. Fig. 5 shows a third tertiary
architecture we have found, with a degeneracy of 4, to within
mirror symmetries. It bears some resemblance to the parallel
B-helix fold recently observed (21).

Hence, these results offer a prediction about the origins of
tertiary structures in proteins. Tertiary structures would seem
to require hydrophobic collapse and hydrogen bonding. But
the present results offer a different conjecture—of a balance
of two tendencies. On the one hand, these model chains are
driven to collapse by hydrophobic interactions to compact
conformations in which steric constraints are severe—to glo-
bally optimal conformations. But almost any sequence can do
this, and collectively such sequences would fold to a very broad
array of possible compact states. On the other hand, according
to the present results another factor contributes to high-
symmetry tertiary architectures. That factor is the “encodabil-
ity” of the structure. For most (poor) structures, the “best” HP
sequences that can encode them will also encode many other
incorrect conformations. But for the few (good) structures, the
HP sequences that encode them also encode very few other
incorrect alternatives. In the HP model, these good structures
have some of the high symmetries observed in globular
proteins. The latter implies that proteins will be marginally
stable because to design uniqueness requires that a sequence
have a minimal number of H monomers (18). The observations
that (i) real proteins are marginally stable and (i) conforma-
tionally diverse “designed” proteins are extremely stable (22,
23) would support this hypothesis. The elegant experiments of
Kamtekar et al (24) support the hypothesis that the HP
sequence alone is sufficient to encode tertiary architectures.

FiG. 4. A four-helix bundle.
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FIG. 5. (a and b) A B-helix.

Of course real proteins are more complex, and their struc-
tures undoubtedly are also determined by the other types of
intramolecular interactions, neglected here. In addition, we
know that some tertiary structures, mainly in which B-sheets
predominate, cannot arise on the simple cubic lattice because
the spatial representation of the chain partly dictates the
sequence—structure relationships. But we believe the methods
developed here can be generalized to off-lattice models. Many
constraints discussed in this paper can be easily generalized.
For example, Egs. 5 and 6 for tether lengths will not change
much in an off-lattice implementation of the present method.

It is not yet possible to design amino acid sequences to fold
uniquely and without conformational diversity in the absence
of prosthetic groups. One explanation is that the side chains
haven’t been suitably designed to fit together or that more
monomer diversity is required than can be supplied in a
two-letter (HP) code. This might suggest that an HP model is
too simple. But the present results suggest another explana-
tion. It may be that even the hydrophobic and polar sequence
patterns in designed peptides are poor. That is, designing a
sequence to have a good H core is not sufficient; it is necessary
to also “design out” (18) [sometimes called “negative design”
(25)] incorrect folds, even with only H and P interactions. A
homopolymer of all H monomers will also have a good H-core,
but it will be a bad design because a homopolymer will fold to
a very large ensemble of low-energy compact states. Hence, it
may be the design strategy, not the model, that is too simple.
The present results suggest that simple protein design strate-
gies—just put H monomers in the core—are too simple. Perhaps
sequences can be designed from a simple HP binary code to fold
to unique native states. But conformational degeneracies must
become better understood first.
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The present results also bear on the Levinthal paradox, the
issue of how a chain with such a large conformational space can
find the one native conformation on the biological (short) time
scale. It has been argued that the folding problem is NP-
complete. That is, according to a widely accepted assumption,
the computer running time grows exponentially with the size
of the problem. In the case of the three-dimensional simple
cubic lattice, the number of accessible conformations for a
chain of length » is approximately 4.7%. However, Eq. 10 shows
that the exponential growth is not an insurmountable problem
as long as the base of the exponential is sufficiently small
(1.125 here). The CHCC method is an example of a practical
algorithm that can find all of the small number of global
minima in minutes to hours on workstations based only on
sequence information and no additional arbitrary constraints.
It implies that conformational searching is not the limiting
problem in folding proteins, at least for this model. The problem
is adequate potential functions and chain representations.

Proteins have remarkable symmetries. We have asked here
what is a minimal physical model that could account for the
tertiary symmetries in proteins. We have found protein-like
tertiary structures arise in a simple model in which chain
molecules have specific sequences of H (solvent-averse) and P
(neutral) monomers. Such symmetries are found in those HP
sequences designed to fold to the fewest possible stable states.
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